

Zinc Designer

Zinc® Application Framework™
Version 4.0

Zinc Software Incorporated
Pleasant Grove, Utah

Copyright © 1990-1994 Zinc Software Incorporated

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license is included in the section entitled "GNU

Free Documentation License".

Preface

‘ ~ ith Zinc Designer, Zinc offers the tightest integration available
between an interactive design tool and the supporting class library.

Most Windows developers use a resource tool to help create their program
interface. Resource tools are language- and library-dependent by design, and
therefore they are inadequate to access all the features of a given class
library. This inadequacy results in a fragmented approach to application
development, with isolated user functions and nonspecific documentation.
Consequently, the application developer is saddled with the sometimes pain-
ful details of integrating code with both the class library and the resource
tool. In contrast, the seamless integration of Zinc Designer and Zinc Appli-
cation Framework contrasts sharply with this a la carte approach.

As remarkable proof that Zinc’s class library is flexible and robust, Zinc
built the Designer completely with Zinc objects. The equally remarkable
result is that with the Designer, you can work visually with Zinc objects—
and with all other features of the library as well. You simply drag windows
and window objects from the menu or button bar, and drop them on the

Zinc Designer v

Preface

screen. And since Zinc Designer allows us to work with Zinc objects, we can
port all our Zinc Designer output to all compilers and operating platforms
that Zinc supports.

This approach contrasts sharply with that taken by traditional resource-
builders and source-code generators. These tools lock developers into API,
platform, and language dependencies, which hinder flexibility.

Zinc Designer provides a better way. Let’s look at how you can use this pow-
erful tool to expand your horizons.

To help you do this, we’ve divided this book into four sections: introduction,
tutorials, reference, and appendices. The introduction provides a guided tour
of the Designer, explaining how to access its functionality and features. The
tutorials, based on an application called MOVIE, provide a detailed expla-
nation of how to build a complex application with the Designer. The refer-
ence documents each option and window of the Designer, explaining what
each does and how to use it. And the appendices section explains how to
build the Designer and its components, making it easy to add in components
later.

Conventions used in this book

This manual uses the following conventions:

TABLE 1. Conventions

Italics identify arguments, variables, and pointers in function and
method prototypes.

Bold identifies file and directory names, and Zinc class and member
function names.

Constant identifies programming examples and command line or shell

width output.

text

(ol is the command line DOS prompt, which you can access from

inside Windows

Vi

Zinc Designer

Preface 1%

section one

Conventions used in this book vi

Zinc Designer introduction

1 Introducing Zinc Designer 3
Running Zinc Designer 4

The button bar 7

The status bar 7

Help 8

How to start 8

Creating a simple window 9
Creating the resource window and its objects 9
Information inside of objects 11
Prompt information 12
String information 15
Button Information 16
Spin control Information 16
Creating lists and grouped objects 17
List information 19
Group Information 22
Creating advanced window objects 22
Button bar Information 24
Subobject Information 24

Using the Edit command 26
File options 30

Zinc Designer vii

2 Zinc Designer’s Support Editors

Image Editor 34
Main components 34

Learning to use the Image Editor 35
Drawing an ellipse 36
Filling the bitmap 37
Creating an icon image 39
Drawing a bounding rectangle 40
Viewing the stored images 41
Associating the icon with the window 44

Help Editor 45

Creating a help context 45

Connecting the help context to the help system 47
Message, Defaults, and String Editors 49

Browsing the Defaults Editor 50
Browsing the Message Editor 51
Browsing the String Editor 51

Exiting the Designer 53

33

viii

Zinc Designer

section two

Zinc Designer tutorials

3 Writing an Application

Movie components 58

Running the MOVIE application 60
Running the program in its finished state 60

Working with the program 62
Movie Selection 62
Movie Information 62
Movie Create 63
Movie Delete 64

Application components 65

MOVIE.HPP 65
MOVIE.CPP 67

Writing MOVIEI’s Movie Control Window 67
Components of MOVIEL1 68
Source files 69
Creating the window 69
MOVIEL.CPP 75
P_MOVIEL.CPP 76
Makefile 77

Conclusion 78

57

Zinc Designer

ix

4 Designing Dialog Windows

Working with MOVIE2 80

Components of MOVIE2 80
Source files 81

What we’ll do 81
Finishing the Movie Control Window 82

Creating a tool bar 85
Importing bitmaps 86
Editing the tool bar buttons 88
Browsing the window 89

Creating the Movie Selection window 90

Creating the Movie Information window 94
Updating the source code 95

Conclusion 96

5 Architecting the Control

Working with MOVIE3 98
Components of MOVIE3 98
Source files 99

The Movie Control window 99
The constructor 100
Event handling 101

Connecting messages 103

Connecting messages to the pull-down menu 103
Connecting messages to the Movie Control window 103
Closing a window 105

Connecting menu items to functions 106

79

97

Zinc Designer

Finishing the tool bar buttons 107

Processing messages 107

What the Movie Control window’s Event() does 107
Viewing the application 109

Message flow 110

Conclusion 111

6 Deriving Support Modules

Working with MOVIE4 114
Components of MOVIE4 114
Source files 115

The Movie Selection window 115

Changing its information 116
Assigning messages to buttons 116
The constructor 118

Movie Information 120
Changing its information 120
Movie Information definitions 122
The Event() function 122

Help system, persistence architecture 123
Testing our handiwork 124

Conclusion 125

7 Loading and Storing Data

Working with MOVIES 128

Components of MOVIES 128
Source files 130

Laying the ground work for storage 130

113

127

Zinc Designer

Xi

The Movie Control window 131
The Movie Selection window 131
The Movie Information window 132

Writing the load and store functionality 132

Opening and closing the data file in the constructor 132
The Event() function 133

MovieCreate() 134

MovieDelete() 134

MovieLoad() 135

MovieStore() 136

The Movie Control window 137

The Movie Selection class 137

The Movie Information class 140

Summarizing the Movie Information class 144

Admiring our handiwork 144
Conclusion 146

8 Making Movie Robust

Working with MOVIEG 148
Components of MOVIE6 148
Source files 149
Adding features to the Movie Control window 149

Minimize icon 149
Exit window 151
Status bar 155
Error handling 157

Adding geometry management 159
Movie Selection 159
Individual objects 159

Refining the help system 165
Item help 166

147

Xii

Zinc Designer

Dialog help 167
General application help 168
Run time 168

Conclusion 168

9 Generating an Internationalized

Application 169

Working with MOVIE7 170
Components of MOVIE7 170
Source files 171

Message Editor 171

Using multiple languages 178

Replacing language strings 178

Changing locale information 179

Importing language and locale 180

Setting language and locale at run time 180
Delta storage 182

Enabling delta storage in the Designer 182

Enabling delta storage in the source code 187
Unicode 189

Naming Unicode strings 189

Conclusion 191

Zinc Designer

xiii

section three Zinc Designer reference

10 File Options 195

New 196

Filename 196

List Files of Type 196
Directories 196
Drives 197

OK 197

Cancel 197

Help 197

Open 197

Filename 198

List Files of Type 198
Directories 198
Drives 198

OK 198

Cancel 198

Help 198

Save 199

Save As 200

Filename 200

List Files of Type 200
Directories 200
Drives 201

OK 201

Cancel 201

Help 201

Close 201

Xiv Zinc Designer

Delete 202

Filename 202

List Files of Type 202
Directories 202
Drives 203

OK 203

Cancel 203

Help 203

Preferences 204
Presentation 204
Delta storage 204
Minicell 205
File options 205
OK 206
Cancel 206
Help 206

Exit 206

11 Edit Options 209

Object 210

General page 211
Position page 213
Geometry page 214
Advanced page 218
Subobjects page 220

Cut 222
Copy 222
Paste 222
Delete 223
Move 223

Zinc Designer XV

Size 223
Group 223

Edit Group page 224
Subobjects page 224
Position page 225
Geometry page 225
Advanced page 225

Ungroup 225

12

Window Options 227

Import 228
Export 230
Create 232
Load 233
Store 234
Store As 235
Clear 236
Clear All 236
Delete 237
Test 239

Xvi

Zinc Designer

13

General page 243
Position page 245
Geometry page 246
Advanced page 250
Subobjects page 252

14

String 256
General 256
Position 257
Geometry 257
Advanced 257

Formatted string 258

General 258
Position 260
Geometry 260
Advanced 260

Text 260

General 261
Position 262
Geometry 262
Advanced 262

Date 262

General 263
Position 265
Geometry 265
Advanced 265

Time 266
General 266

Object Options 241

Input Objects 255

Zinc Designer

xvii

Position 268
Geometry 268
Advanced 268

Bignum 269
General 269
Position 270
Geometry 270
Advanced 271

Integer 271
General 271
Position 272
Geometry 272
Advanced 272

Real 273

General 273
Position 274
Geometry 274
Advanced 274

15

Control Objects 275

Button 276

General page 276
Position page 279
Geometry page 279
Advanced page 279

Radio button 279

General page 280
Position page 283
Geometry page 283
Advanced page 283

Check box 283

Xviii

Zinc Designer

General page 284
Position page 286
Geometry page 287
Advanced page 287

Horizontal slider 287
General page 288
Position page 289
Geometry page 289
Advanced page 289

Vertical slider 290
General page 290
Position page 291
Geometry page 292
Advanced page 292

Combo box 292
General page 293
Subobjects page 294
Position page 294
Geometry page 294
Advanced page 294

Spin control 295
General page 295

Pull-down item 296
General page 297
Subobjects page 298
Position page 298
Geometry page 298
Advanced page 298

Pop-up item 299
General page 299
Subobjects page 301
Position page 301
Geometry page 301
Advanced page 301

Zinc Designer

Xix

16

Selection Objects

Horizontal list 304

General page 304
Subobjects page 306
Position page 306
Geometry page 306
Advanced page 306

Vertical list 307

General page 307
Subobjects page 308
Position page 309
Geometry page 309
Advanced page 309

Tool bar 309

General page 310
Subobjects page 311
Position page 311
Geometry page 311
Advanced page 311

Pull-down menu 312

General page 312
Subobjects page 313
Position page 313
Geometry page 313
Advanced page 313

303

XX

Zinc Designer

17 Other Objects

Prompt 316
General page 316
Position page 316
Geometry page 316
Advanced page 317

Group 317
General page 317
Subobjects page 318
Position page 318
Geometry page 318
Advanced page 319

Icon 319
General page 319
Position page 320
Geometry page 320
Advanced page 320

Status bar 321
General page 321
Subobjects page 322
Position page 322
Geometry page 322
Advanced page 322

Notebook 322
General page 323
Subobjects page 323
Position page 324
Geometry page 324
Advanced page 324

Table 324

General page 327
Subobjects page 328
Position page 328

315

Zinc Designer

XXi

Geometry page 328
Advanced page 328

Subwindow 329

General page 329
Subobjects page 332
Position page 333
Geometry page 333
Advanced page 333

18 Help Options

Index 336

File 336

Edit 336

Window 336

Object 336

About Window Editor 337

19 Image Editor

Control window layout 339

The menu bar 340
The button bar 342
The color bars 342

Edit 342

Grid 342
Roller Size 343
Pattern 343
Erase 344

xxii

Zinc Designer

395

339

Cut 344
Copy 344
Paste 344
Delete 344
Group 344
Ungroup 345

Bitmap menu options 345

Import 345
Export 347
Create 349
Load 349
Store 350
Store As 351

Clear 352
Clear All 352
Delete 353

Icon menu options 354

Import 355
Export 357
Create 358
Load 359
Store 360
Store As 360

Clear 361
Clear All 362
Delete 362

Mouse menu options 364

Import 364
Export 366
Create 368
Load 368
Store 369
Store As 370

Zinc Designer xxiii

Clear 371
Clear All 371
Delete 372

Help menu options 373
INDEX 374
FILE 374
EDIT 374
BITMAP 374
ICON 374
MOUSE 374
About Image Editor 374

Bitmap creation window 375
Icon creation window 377

Mouse cursor creation window 380

XXiv

Zinc Designer

20 Help Editor 383

Context 384

Import 384
Export 386
Create 388
Load 389
Store 390
Store As 390
Clear 391
Clear All 392
Delete 392

Help 393

Index... 393

File 393

Context 393

About Help Editor 394

21 Message Editor 395

Message 396

Import 396
Export 398
Create 400
Load 401
Store 402
Store As 403
Clear 404
Clear All 404
Delete 405

Help 406

Index... 406
File 406

Zinc Designer XXV

Message 406

System events 406
Logical events 406
About Message Editor 406

The message edit window 407

Message 407

NumberID 407

StringID 407
OK 407
Cancel 407
Help 407

22

Defaults Editor 409

Language 410

Import 410
Export 412
Create 414
Load 414
Store 415
Store As 416
Clear 417
Clear All 417
Delete 418

Locale 419

Import 420
Export 422
Create 423
Load 424
Store 425
Store As 425
Clear 426
Clear All 426
Delete 427

XXVi

Zinc Designer

Help 428

Index... 428

File 429

Language 429

Locale 429

System events 429

Logical events 429

About Language Editor 429

The language window 429

Common buttons 429
Day 430

Month 430

Am 431

Date 432

Integer 433
Number 433

Real 434

System button 435
Time 436
Window 436
Error 437

Help 438

The locale window 438

Common buttons 439
Date 439

Number 441

Time 443

Currency 444

Zinc Designer XXVii

23 String Editor 447

Original 448
Current 448

Page 448
Character table 448
OK 448

Cancel 449

Help 449

xxviii Zinc Designer

section four Zinc Designer appendices

24 Building the Designer 453

The Designer components 453

Compiling the components 455

DOS, Windows, OS/2, Motif, Curses, NEXTSTEP 455
Macintosh 455

Zinc Designer XXix

XXX Zinc Designer

section one

Zinc Designer
introduction

Zinc Designer

Zinc Designer

Chapter 1

Introducing Zinc
Designer

Zinc Designer is an interactive design tool that allows us to create and
edit components of user interfaces in Zinc programs, including windows and
window objects, images and icons, help prompts and windows, strings used
by our application, and application language and locale default information.
In this chapter we will learn the basics of using Zinc Designer.

Zinc Designer 3

Introducing Zinc Designer

Running Zinc Designer

Zinc Designer runs on all environments supported by Zinc Application
Framework including: DOS, Windows, OS/2, Macintosh, OSF/Motif,
Curses, and NEXTSTEP. The Designer is located in the /ZINC/BIN direc-
tory and has the name DESIGN.EXE or ?DESIGN.EXE, where the ques-
tion mark indicates the environment. For example, the OS/2 designer is
called ODESIGN.EXE. To launch Zinc Designer in most operating environ-
ments (i.e., DOS, Motif, NEXTSTEP, and Curses) that use command lines,

simply type

C:> design <Enter>
For Windows, type

C:> wdesign <Enter>
For Windows NT, type

C:> ndesign <Enter>
For Unicode, type

C:> udesign <Enter>
For OS/2, type

C:> odesign <Enter>

In environments with a graphical user interface, such as Macintosh, double-
click on the Zinc Designer icon. If you have trouble launching Zinc
Designer, please see Getting Started with Zinc Programming for more infor-
mation on how to run an application.
Zinc Designer has five main components:

the Window Editor;

the Image Editor;

the Help Editor;

the Message Editor; and

the Defaults Editor.

Zinc Designer

Only the Window Editor should appear as a full window on the screen at
startup—all other editors should be visible as minimized icons at the bottom-
left portion of the screen. In this chapter, we’ll discuss the Window Editor,
and leave the other editors for the next chapter.

=| 180 - Window Editor - <no file> [~]~
File Edit Window Object Help

= EEEEE = R EEE

=N E E = E R E E I E E =

B ®

Image Editor Help Editor Message Editor Defaults Editor

The Window Editor has four visible areas: title, pull-down menu, button bar
and status bar. Each of these areas is described below.

The title area is located at the top of the window. It contains information
about the Window Editor as well as the name of the file we are working on.

The menu bar is located just below the title bar at the top of the window. It
contains the options necessary for Zinc Designer file operations and for cre-
ating window resources. Selecting some menu items causes an action to take
place immediately, while selecting others causes a related window to appear,
from which more options are available. Menu items that cause another win-
dow to appear are distinguished by ellipses (...). A brief explanation of each
menu item follows:

File. This menu consists of options that control the creation of files and
allow exiting from the Designer. The selectable items on this menu are:

New...

+ Open...
Save
Save As...

+ Close
Delete...
Preferences..., and
Exit.

Zinc Designer 5

Introducing Zinc Designer

Edit. This menu consists of options that edit or control the operation and pre-
sentation of objects within an application. The edit options are:

Object...
Cut

Copy
Paste
Delete
Move

Size
Group, and
Ungroup.

Window. This menu consists of options that control the creation of window
resources within the current file. The selectable items are:

Import...
Export...
Create
Load...
Store

Store As...
Clear

Clear All
Delete..., and
Test....

Object. This menu presents the objects, divided into four groups, that can be
created with the Designer. The four groups presented in the first level pull-
down menu are:

Input
Control
Selection, and
Other.

Selecting one of these items causes another menu to appear which contains
the actual window objects of that group.

6 Zinc Designer

The button bar

The status bar

Help. This menu provides a list of the following selectable help contexts:
Index...
File
Edit
Window
Object, and
About Window Editor.

All of these menu items are discussed in more detail later in this book.

The button bar presents some of the available window objects within Zinc
Designer. It is designed to allow you to easily select these items with a
mouse and then attach them directly to your current resource window. When
one of the objects is selected, its name appears in the place object field on
the status bar, where it remains until it is attached to a window, or until
another object is selected from the button bar. The object is attached to a
resource by positioning the mouse cursor on the desired location and click-
ing the mouse button.

The button bar is not available in text mode.

The status bar displays some information about the current object and about
the state of the current process. The following fields are present:

type. Indicates what the current object is.

name. Displays the string identification of the current object.

pos. Indicates the position, in cell coordinates, of the current object. If the
current object is attached to a parent window, its position is relative to that
parent window.

size. Indicates the size, in cells, of the current object (width by height).
place object. Indicates the object that has been most recently selected from

the button bar (or from the Object options menu) that is ready to be placed
on a resource window.

Zinc Designer 7

Introducing Zinc Designer

Help

In addition to the four major areas, we can request help at any time by select-
ing Help from the pull-down menu or by pressing the system-dependent key
that invokes the help system (<F1> under DOS and Windows, for example).

How to start

Once you have entered Zinc Designer and the Window Editor, the following
steps can be followed for creating a basic application:

1

Open a new file for the application by selecting File | New... Select the
drive and directory to which the file is to be saved, and enter a name for
the file at the Filename prompt. If all of the information is correct, select
the OK button.

Create a new resource by selecting Window | Create. A generic window
that can be moved and sized will appear on the screen.

Attach the desired objects to the window:

Select the objects with the mouse directly from the button bar, or select
them from the Object menu options.

Position the cursor in the window at the desired location and press the
left mouse-button.

Edit the objects:

Call the information notebook by double clicking on the object itself, or
double click on the resource window and then select the object (by dou-
ble-clicking on its name) from within the Subobjects folder.

Change the default information by positioning the cursor on a field,
pressing the left mouse-button, and entering the new information. Flags
are toggled by clicking on the associated option.

Notice that there are several different folders in which default informa-
tion is listed. You can change folders by clicking on the tab of the desired
folder. When all of the necessary information is entered for the object,
select the QK button of the current folder.

Save the current window resource by selecting Window | Store As...
Enter a name for the window at the Name prompt. Select the OK button
to close the Store As... window and store the resource.

Save the current file by selecting File | Save.

Zinc Designer

7. Test the resource by selecting Resource | Test... and interacting with the
objects. When you are done testing it, select the Exit Test button.

8. To add other resources to the current file, repeat steps 2 through 7.

Creating a simple window

Creating the
resource window
and its objects

Let's familiarize ourselves with the some of the window objects that can be
created using Zinc Designer. First, we’ll create a simple window. Then we’ll
add a prompt object, a string field, a button field, and a spin control object.

Create a resource window by selecting Window | Create from the pull-
down menu. Once selected, a medium-sized window will appear at the cen-
ter of the screen. This window has a border, maximize and minimize buttons,
a system button, and a title.

=| <untitled> [+]~

Let's place the prompt object on the window. Here’s how:

1. Move the mouse cursor over the Prompt object in the button bar.

2. Select the prompt's bitmapped button by pressing the left mouse-button.
Notice that once you select Prompt, the status bar has the word Prompt
in the place object field.

3. Place the new prompt object in the resource window by moving the
mouse cursor over the resource window, and then

Zinc Designer 9

Introducing Zinc Designer

4. Click the left mouse-button on the desired location.

=| <untitled> [+]~

prompt:

Follow the same procedure to create a string object. The string object's bit-
mapped-button is located on the top-left part of the button bar.

Select the string's button, then place the object by clicking the left mouse-
button inside the resource window.

=] <untitled> [+]~

prompt:

Select a button object for placement in the window.

=]

Create and place it by selecting the button's bitmapped-image from the but-
ton bar, and then by clicking the left mouse-button at any position inside the
resource window.

=| <untitled> [=1~

10 Zinc Designer

The final object that we will create is a spin control. The spin control is
located on the second line of the button bar and is the first bitmapped button
you see.

Place the spin control anywhere inside the resource window.

=| <untitled> [+~
string I [I]]g—l

Creating and placing window objects using the Designer is simple, but it is
not the only method. Later, we will discuss some of those ways.

Information inside of objects

Each object has information, such as default data, location, and settings,
encapsulated inside of it. We can view or edit this information by double-
clicking the object, which shows its information in notebook form. The
information notebook contains information unique to that object on its first
page, and generic information on its subsequent pages.

Zinc Designer 11

Introducing Zinc Designer

Prompt
information

For example, if we double-click on the prompt object, the prompt's informa-
tion notebook appears:

General 1 Postion | Geometry | Advanced |

Text: Ipmmpt: I

Name: [FIELD_1 |

ok] [concet | [tte |

The prompt information notebook contains four pages. They are:
General
Position
Geometry; and
Advanced

Let's first examine the General page.

General. The General page contains only information associated with the
prompt, namely the prompts Text and Name. You should see the word
prompt: in the Text field. This is the default text that is connected with our
prompt when we create and place it on the resource window. Near the second
field you should see the title Name. This associated data field contains the
programming name of our prompt object, in our case, FIELD_1.

12

Zinc Designer

Position. The Position page is presented when we click the left mouse-but-
ton over the Position tab.

 General | Position 1 Geametry Advanced |
Position/Size ‘Bon‘yie. ’
EEE] Irt et ELTE '
column: | | | | 5 | Hegian
o[][10] Ewil
width: | | | | [s I Alignment
e) 1 [| [(o) 30
| 0K ’ Lancel ’ Help l

Position has four areas of interest: Position/Size, Border, Region, and
Alignment. Position/Size contains several buttons, prompts, and numbers.
Each number describes the location and position of the prompt on the
resource window, including pixel, mini-cell, and cell coordinate information.
The Border area tells us whether the object will be drawn with a surround-
ing border. The Region area controls how the object uses its region; whether
it expands to fill the space of its parent or uses the position and size informa-
tion shown in the Position/Size area. The Alignment area tells us whether
the text is left, center, or right justified within the field's region.

_ General | Pasition [Geometry i Advanced |
o [Constraint Features
offset [5]~
options: |[] stretch
|:| opposite
[hz-center

—

anchor: |<untitled>

el

[Size Restrictions

: : 6] <=widthE
L—.Q:‘-—I L_Qanoel | _ﬂeb 1| [| <= height <= ,1_—1

Geometry. This page has three main object groups. The first group, located
at the top-left portion of the notebook page, defines the object's geometry
constraints. The top-right portion of the notebook page allows us to modify
the constraint information identified by the first region. The bottom-right

Zinc Designer 13

Introducing Zinc Designer

portion of the notebook page contains information that restricts the prompt
object's height and width within its parent window. We will discuss geome-
try management in greater detail during a future tutorial.

General —f Pasition ! i Geometry [Advanced l
NumbedD: 1=} Interaction ----- b
T
@ N“ 1. (N
UserObject:] I
UserFlags: l: ----- Data Settings --—--
T —
Darvd Name: &
----- Miscellaneous -----
0k | [Cancel | [Hew | 5

Advanced. This page contains the object’s advanced features and data
options. In brief, it provides a place for user information—where we can
change the programming, or identification, number associated with our
object—and a list that contains many advanced features and options, useful
when programming advanced objects. We’ll examine more features associ-
ated with this page in later tutorials.

Now let’s exit the prompt's information notebook. One way to exit the
prompt notebook is to select the QK button. Besides exiting the notebook,
this saves the data we changed when viewing the notebook pages. We can
cancel the operation without saving changes by pressing Cancel.

Further, if we need help with any of the pages in the notebook, we could
press Help, which would cause the Designer to display a help window sensi-
tive to the context of the application. This means if we press the Help button
in the advanced page, we will receive help on the advanced portion of our
object. Similarly, if we press Help on the general section of the notebook,
help information will be presented for the object's general features.

Let's leave the prompt information notebook by pressing Cancel.

14

Zinc Designer

String
information

Let's look at the information notebook for the string object. Invoke the string
information notebook by double-clicking on the resource window's string
object.

T Gewal | Peoion | Gemey | Adences
----- Input Format -----
@ Normal
Text: [string | O Lower-case
O Upper-case
Length: ©) Password [==)

----- Input Conversion -----

[Spaces to underscores
Automatically highlight data

Name: [FIELD_2
Help: |[N one)

l 0K I l_gancel ' I Help I

Lell |

The general page of the string object contains the same Name and Text field
that were visible on the prompt's general information page. In addition, how-
ever, new Length and Help fields appear on the page. The notebook’s Text
field shows the default data for our string object. The Length field indicates
the maximum length of text that can be entered into our string. The default
value for string data is 32 characters. The Name field, as described for the
prompt object, is the string identifier associated with our object, in this case
a string. The Help field contains the help context name to associate with our
string object. This field will be described later in this tutorial.

The right side of the general page lists many formats that can be selected
with our string object. These formats include: normal input, lowercase,
uppercase, and password. In addition, we can convert spaces to underscores
when we edit the field or we can highlight the string data when we begin
editing the string data. We will discuss these features more extensively in
later tutorials. For now, we just want to become familiar with the location of
the fields on the notebook.

Take a few minutes to browse through these pages and to examine the infor-
mation associated with string objects. Once you have finished browsing this
notebook press the Cancel button.

Zinc Designer 15

Introducing Zinc Designer

Button Let's now look at the button object and its associated information.
Information
General 1 Position { Geometry | Advanced |
..... Type - +
Text: [button | @ Normal
Value: ‘:‘ > Radio-button
) Check-box
Imgs [(None) Iil vvvvv Settings -

[[] Send user message
Name: [FIELD_3 [Set as default button

|
Help: [(None) I8 | State

@ 1-state [no toggle)
) 2-state [on/off)
o] [concel | [Hew ||~ i v

The button object has text, value, image, name, and help fields, as well as
many button flags. All of these features can be selected to change the opera-
tion and appearance of a button on the screen. In time, you will find that
most of these features are beneficial to your programming efforts. Take a
moment to view this information.

Spin control The final object whose information we will look at is the spin control object.
Information -
G |] Fosition l Geometry l Advanced |
Type: | = Integer ’_t_l Edit..
Name: [FIELD_4 |
Help: I(none) I}l
‘ 0K I Cancel I Help l

The bottom two fields Name and Help look like fields from the other objects
that we created. However, the Type, Edit, and Delta fields are unique to spin
controls. By default, the spin-control object contains a 16-bit integer value,
but its information notebook allows us to change its default data type to a
date, time, real, or bignum type.

16 Zinc besigner 7

We’ve accessed the information associated with our prompt, string, button,
and spin control objects. Each object contains unique information on its first
information notebook page, and generic information on its subsequent note-
book pages. We’ve also created a simple window with simple objects, which
we’ll use as a springboard to learn new parts of the Designer.

Creating lists and grouped objects

We just learned how to use the Designer to access the information associated
with certain window objects. Now we’re going to learn how to use the
Designer to create lists and groups. Move the simple window we just created
to the bottom of the screen, and create another window by selecting Window
| Create from the pull-down menu. Another untitled window will immedi-
ately appear on the screen.

We will create two objects for this window using the drag-and-drop capabil-
ity of Zinc Designer. To create the vertical list using drag and drop, do the
following:

1. Move to the vertical list button on the button bar.

2. Click down on the left mouse-button, then, while holding down the left
mouse-button

3. Drag the object to the resource window.

4. Release the left mouse-button.

Zinc Designer automatically places the object inside the resource window.

= <untitled> [~]~

Zinc Designer 17

Introducing Zinc Designer

Now let's do the same with a group object. Click down on the group's button,
drag the object to the resource window, and release the left mouse-button.
This places the group object.

= Cuntitled> ME
Group

Let's now look at some other ways that objects can be created and placed
into lists and groups. First, recall how we created and placed objects in the
first simple window. We selected an object by clicking the left mouse-button
while positioned over the object's button on the button bar. Let's do this now
with a string object; click on the string button, release it, then move the
mouse cursor over the list object and reclick the left mouse-button. This
places a string object inside of the list.

At this point, we could go back to the string button, reclick the button from
the button bar and reclick inside the list. This would allow us to slowly cre-
ate and place string objects in the list—but Zinc Designer offers a faster way
of creating and placing additional string objects. This method simply
requires us to click the right mouse-button while positioned inside a resource
window. When you click the right mouse-button the place object field on
the status bar updates to reflect that a new string object can be added. When
we click the left mouse-button, the place object goes away, but the string
appears in our list. We can place another string object by simply reclicking
the right-mouse and then clicking the left mouse-button inside the list.

Another way to create objects—this one a little slower but more intuitive for
finding objects if we are not familiar with the Designer—is with the pull-
down menu. The Object menu item has several object categories—Input,
Control, Selection, and Other—which contain groups of particular object
types. Though we can also access these objects through the button bar, object
categories allow us to more easily find the objects we want. For instance, the

18

Zinc Designer

List information

Input category contains all the objects related to inputting information;
objects including string, formatted string, text, date, time, bignum, integer,
and real input objects.

=] 1SO - Window Editor - <no file>]~
File Edit Window Object Help
== =g Input String
Control Formatted String
EE‘! g]] [¢ Selection Text
Zrres Oth e'r Date Bi

object: Ulw ‘WINDOW pos: 32, 22 Time
stringlD: | <untitied> size: (50,7 Bignum

Integer

Real

Getting back to object creation, now add a set of radio buttons to the group
object by clicking on the Object pull-down menu. Then move down to the
Control item and select Radio Button from the pop-up menu. Now the
words Radio Button appear in the place object field.

type: |Group pos: :28,0 place object:
name: [FIELD_2 size: (205 [RadoButon

We can now place a radio button inside our group object by moving the
mouse cursor over the group object and by clicking the left mouse-button.

Place three more radio buttons inside your group by doing any of the follow-
ing:
+ Selecting a radio button from the pull-down menu in the Object cate-
gory,
Selecting the radio button image from the button bar, or by

Clicking the right mouse-button to reactivate the radio-button place
object.

Group
 radio-button

(radio-button

 radio-button

 radio-button

Let's look at one more Zinc Designer feature through the list information
notebook. Move the mouse cursor over the list object and double-click with
the left mouse-button. At this point the vertical list notebook appears. Notice

Zinc Desrignerw 19

Introducing Zinc Designer

the same four categories that we had with the simple objects, namely: Gen-
eral, Position, Geometry, and Advanced. In addition, however, we now
have a new category called Subobjects. Select the subobjects page by click-
ing the Subobjects tab with the left mouse-button. There are four areas in
the subobjects notebook page. The first is called Objects, the second Direc-
tories, the third is a group of support buttons, and the fourth is a combo box,
located on the bottom-right portion of the page.

| General [Subobject] Pasition [Geometry | Advanced
Objects: Directories:
--- Support Objects --- WINDOW Edit I
== NUMID_VT_SCROLL FIELD_1
--- Normal Objects ---
= AW 7
=] FIELD_8

Move Down

| ok | Lgancel ‘ | Help I 1DBullon

Let's first look at the items in the objects list. The first item in the list is an
image of a scroll bar with the word NUMID_VT_SCROLL. In addition, the
list contains small pictures of the string objects inside our edit list. We can
bring up their information notebooks by:

double-clicking the left mouse-button on any of the objects in this list, or

by

scrolling to the desired list item and pressing <Space>, or by

scrolling to the desired list item and selecting the Edit button, located on

the right side of the notebook page.

20

Zinc Designer

Now let’s bring up the string information notebook. Double-click on the first
string object in the list. A new window appears for the string object, just
underneath the vertical list notebook.

|

UIW=_V_T_=LIST =EIERD =]
UIW_STRING - FIELD_7
G | I Position | Geometry | Advanced
~~~~~ Input Format -----

® Normal
O Lower-case

|

Text: Istring [ O Upper-case

Length: ) Password [*=%)

----- Input Conversion -----

Name: \FIELD_? J [] Spaces to underscores
Help: I[N one) |_t.l [ Automatically highlight data

I 0K I Cancel I | Help ]

Browse the string notebook information, then exit by selecting the Cancel
button. Control now returns to the vertical list notebook.

The support buttons, located on the right side of the notebook page are used
to edit objects, add and delete objects, or to move objects up or down in the
objects list. The directory portion of the notebook shows us our current edit
object, the vertical list, and the parent hierarchy of the object back to the
untitled resource window.

The bottom-right portion of the notebook page allows us to create additional
objects of a specified type. The default type of object for vertical list is But-
ton. We can add a new Button object by selecting the Add button located on
the right side of the notebook page. We will examine these features later in
our tutorial.

Zinc Designer 21



Introducing Zinc Designer

Group
Information

Now exit from the vertical list notebook by pressing Cancel. Bring up the
group notebook by double-clicking on the group object in the resource win-
dow. (Be careful as you double-click on the group not to select one of the
radio buttons inside the group, as doing so would open the radio button
information notebook.)

General |  Gubobjects |  Posiion |  Geomety |  Advanced

----- Interaction -----

[] Automatic item selection

lect multiple childi
Texl: GIUUP j I:] Sel EIC muitiple chiidren
[] Don't wrap keystrokes

Name: [FIELD_2 |

Help: [(None) e
[ox ] [ cancer | [ Hew ]

The group notebook contains the same five categories that were available
with the vertical list. If we click on the Subobjects tab, we view the same
information page seen in the vertical list, but under the Objects category we
see button images instead of strings. These are the four radio buttons that we
inserted into the group. Exit from the group notebook by selecting Cancel.

Take a moment to browse the list and group objects, then move the resource
window to the bottom-right portion of the screen next to our first resource
window.

Let's now create a window with advanced objects. Select the Window | Cre-
ate option to create a new window. We are going to place three objects on
this window; a pull-down menu, a button bar, and a status bar. First, create
the pull-down menu using one of the methods discussed earlier, then place

22

Zinc Designer




the pull-down menu inside the resource window. Next, create and place a
button bar inside of the resource window. Finally, create and place a status
bar inside the resource window.

=] <untitled> -1
item

Let's place a few pull-down items in the pull-down menu by selecting the
pull-down item option from the button bar then by clicking the left mouse-
button inside the pull-down menu. (Remember that the right mouse-button
reactivates the last object you created). Next create several buttons to go
inside the button bar. Do this by selecting the button item from the button bar
and placing it inside the button bar. Finally, place several strings inside the
status bar. This is done by selecting the string from the button bar and then
by placing it inside the status bar object.

=] <untitled> [+]=
item item item
button ’ button I

'sting | string

Zinc Designer ‘ 23



Introducing Zinc Designer

Button bar
Information

Subobject
Information

24

Let's take a moment to look at the button bar's edit window. Invoke the but-
ton bar notebook by double-clicking on any region outside the button
objects' regions, but inside the button bar's region.

General |  Subobjects | Position |  Geomety |  Advanced |

----- Interaction -----
[] Bitmap children
[] Select multiple objects
[] Don't wrap keystrokes

Name: [FIELD_3 ]
Help: I[Nune] J_!l
| 0K l Lgancel I l Help j

Notice the five notebook categories; General, Subobjects, Position, Geom-
etry, and Advanced. Information contained in the button bar edit window is
similar to that contained in the vertical list and group objects we created ear-
lier. Once you have finished browsing the button bar information, exit by
selecting Cancel.

The method used to bring up edit information for the pull-down menu is a
little more complex. In most environments, this object is considered a sup-
port or decorative object, so we cannot invoke its information notebook by
simply clicking inside the object's region. This information notebook must
be called through the Window Editor. To do this, bring up the General infor-
mation notebook by double-clicking anywhere inside the edit window.

General 1 Subabijects ! Paosition } Geometry [ Advanced |
----- Support Features --—-- +
Border
2 Maximi
Title: [ cuntitled> Fipzz Loy
: B M Button
Minlcon: 1 (None) il X Sy Button

[] Geometry Management

Name: [<UNTITLED> [ Vertical Scroll-Bar
Help: l[None] il [[] Horizontal Scroll-Bar
_____ Type --—--
@ Default
TS| |_Cancel | [ Heo § [~ i ohien 3

Now move to the Subobjects page. On the left side of the page under the
Objects category there is an image associated with the pull-down menu. In
addition, on the right-side of the notebook page, under the Directories cate-
gory, there is another field associated with the pull-down menu. The left-side

Zinc Designer



list allows us to directly invoke the object's information notebook. The right-
side list, however, allows us to traverse through the window object hierarchy
and view any of the objects that we have placed in our resource window.
Double-clicking over items on the right-side list does not bring up their asso-
ciated information notebook, it simply traverses down into that object's view.
For example, double-click on the pull-down menu item located in the right-
side list.

General T Subobject: ] Pasition l Geometry f Advanced |
Objects: Directories:
--- Support Objects - H(Hljlilled} Edit l
~ Normal Obieots — £ 5L P
B FIELD_2 & FIELD_2
- i “Delete
B FIELD_5 & FIELD_5 —
B FIELD_6 | EFIELD_S
|
ok ] [ Concel | [ Heb | [# pulrdown liem T4

Inside the pull-down menu's view, we can select any of the pull-down items
from the left-side Objects list by double-clicking on the item.

Let's briefly revisit the Add feature associated with this notebook page. On
the left-side, we see the pull-down items created earlier in the tutorial. In
addition, the word Pull-down Item appears inside the combo box, located on
the bottom-right portion of the page.

We can now add a pull-down item to the pull-down menu by pressing Add.
Once the Add button is selected, an additional pull-down item appears in the
object list. These are actual window objects and are as real as the other pull-
down items created through the main Window Editor.

Let's delete some of the pull-down items by selecting an item in the object
list and then by pressing the Delete button. When wé delete an item from the
object list it is removed from our view. We can delete additional items by
continuing to select the Delete button.

The Move Up and Move Down buttons, located on this notebook page,
allow us to move items either up or down in the object list, thereby changing
their position and the user movement on and off the items. To move an item
up in the list, do the following:

1. Select the item from the object's list.

Zinc Dééigner 25



Introducing Zinc Designer

2. Press the Move Up button on the right side of the notebook page, or type
<Ctrl + up-arrow> from the keyboard. (To move an object down follow
the same process but select Move Down or type <Ctrl + down-arrow>.)

After you have browsed this notebook, exit back to the main Window Editor
by selecting Cancel from any notebook page. Now, prepare for the next tuto-
rial section by moving the pull-down window to the bottom-right portion of
the screen, next to the other two windows we created previously in this tuto-
rial.

Using the Edit command

We will now shift our focus from creating window objects to editing and
placing objects. Let’s give ourselves some objects to edit by creating a new
window and creating several prompt and string objects. Place them ran-
domly on the window, but keep the prompts on the left side of the window
and the strings on the right side of the window.

=] <untitled> [~]~
prompt: string
prompt:

prompt:

We can group objects for modification by using the Edit | Group option
located in the pull-down menu, or by:

1. Pressing the <Ctrl> key on the keyboard, while

2. Pressing the left mouse-button, then by

3. Dragging the mouse cursor over the objects that you want to place in the
group, shown by a overlapping rectangle, and then by

4. Releasing the mouse button once all desired objects have been included
in the group.

26 Zinc Designer



For example, use the Edit | Group command to select the prompt fields in
our window. First, select the Edit | Group option, click the left mouse-but-
ton in the top-left portion of our window, and then drag the mouse cursor
over the prompts that we have created in the window. Finally, release the left
mouse-button. The new edit group forms a shaded rectangle behind the four
prompts.

=| <untitled> [~
prompt: string

We can modify the position of these prompts by pressing down on the group
with the left mouse-button and then by moving them with the mouse drag
operation. In addition, we can move the group by selecting the Move and
Size commands located under the Edit option. Conceptually, the shaded
window area acts as a new group or object. All of the prompts within the
shaded region are now considered subobjects of the edit group.

Let's change the left justification of all the prompts inside our edit group.
Double-click the left mouse-button anywhere inside the edit group.

General l“ Subobjects | Position | Geomety | Advanced

D Sort objects on screen location.
[ Left justify objects.

[ center justify objects.

[ Right justify objects.

LCancel i Help

Zinc DesEner 7 7 27



Introducing Zinc Designer

28

We make all of the prompts in our edit group left justified by selecting the
Left-justify objects option in the notebook and then by pressing OK.

=] <untitled> [~
prompt: string
prompt:
prompt:
prompt:

In addition to left justification, we can center- or right justify the objects
inside our edit group using the same method, but by selecting the appropriate
option. To remove the edit group, select the Edit | Ungroup option from the
pull-down menu. Once the edit group has been removed, each object returns
to an autonomous state—it can be moved, sized or edited individually.

Group the string objects using only the keyboard and mouse by simulta-
neously pressing the <Ctrl> key and the left mouse-button, then by dragging
the left mouse-button and the associated XOR rectangle over the string
objects. Be careful not to begin your group operation over the prompt
objects—this would cause some of the prompts to be included in the string
group. Left justify these objects by double-clicking on the edit group, then
by selecting the Left-justify objects option and by pressing OK.

Move the string group close to the prompts by pressing the left mouse-button
over the edit group, then by dragging the objects near the prompt objects.

=] <untitled> [~]~
prompt: string
promp:
promp:

Zinc Designer



Now group both the prompts and the strings together to examine the Edit |
Cut, Edit | Copy and Edit | Paste commands. Do this by pressing the left
mouse-button over the prompt area, by dragging the mouse to include the
string objects from the string area and then by letting-up on the left mouse-
button.

=l <untitled> l 'l o
prompt: string

Let's first examine the Edit | Copy option. We can copy the edit group we
selected by choosing Edit | Copy from the pull-down menu and then select-
ing Edit | Paste. Once you choose this option, notice the place object status
indicator contains the new string Edit Group. We now have a copy of the edit
group in the copy/paste buffer. To paste the edit group, press the left mouse-
button inside the edit window.

=| <untitled> [~]~
prompt: string
prompt: prompt:
prompt: prompt:
prompt: I;Eng_——_——_]

We can create additional copies of the edit group, by pressing the right
mouse-button to reactivate the place object, then by pressing the left mouse-
button to create a new edit group.

Each time you paste an edit group, the focused edit group changes. Zinc
Designer restricts users to only one edit group per window. This is always
the last edit group defined or created using any of the edit commands.

Let's remove the edit group that we just created, by selecting the Edit |
Delete option from the pull-down menu.

The Edit | Cut option is similar to Edit | Copy, except that the edit group is
removed from the screen. The contents of the edit group are moved directly
into the paste buffer. Retrieval of the paste buffer is accomplished in the
same manner as described previously in this tutorial.

Zinc Designer 29



Introducing Zinc Designer

We have now looked at some of the basic features associated with the Edit
option. Prepare for the next section by removing the edit group.

File options

Let’s give each of our four windows the names SIMPLE, LIST, PULL-
DOWN, and GROUP. Bring back the first window into the middle of the
screen by pressing the left mouse-button while positioned over the window’s
title, and by dragging the window to the center of the screen. Double-click
inside the window’s region to bring up the information notebook.

General | Poson | Geomety |

T— Subohjects

----- Support Features -—-- b
Border

Maximize Button
Minimize Button
System Button

[] Geometry Management
[[] Vertical Scroll-Bar

[] Horizontal Scroll-Bar

Title: | <untitled>

|
Ei
Name: [<UNTITLED> |
Help: 'ﬁlone] Iil

| OK l I__;ancal I I Help |

Minlcon: I {None)

® Default
() Dialna Ohiect A4

Type in the word
Simple
in the Title field. Then move to the Name field, and enter the word

SIMPLE

Save both the title and name by selecting OK. Now bring the list edit win-
dow to the middle of the screen. Change its name by double-clicking on the
window, typing the word

List
into the Title field, and

LIST

30

Zinc Designer



into the Name field, then select OK. Change the name of the pull-down
menu window by bringing the window to the middle of the screen, invoking
it's associated information notebook and by entering the word

Pull-Down Menu

into the Title field, and

PULL_DOWN

into the Name field. Finally, change the name of our edit group window by
following the same procedures and entering the name

Group
into the Title fields, and
GROUP

into the Name fields. All of our windows now have unique names and are
ready to be saved out to a file. Save the information to a file named
TEMP.DAT by selecting the File | New option, then by entering the name

TEMP . DAT
into the field just under the Filename prompt, then by selecting OK.

After creating the file, all of the windows on the screen can be saved by
selecting the File | Save command. Notice that two windows appear during
the save operation—a .CPP status window, and an .HPP status window,
which show the state of our save operation. The first status window is enti-
tled Generating the CPP file.

Generating the CPP file

Generating CPP entry SIMPLE

The second window is entitled Generating the HPP File.

Generating the HPP file

Generating HPP entry SIMPLE

Zinc Designer 31



Introducing Zinc Designer

Each time a window is stored, the status information for the window
changes. For example, saving our windows will cause the status window to
update SIMPLE, LIST, PULL-DOWN, and GROUP.

The file TEMP.DAT contains the four windows SIMPLE, LIST, PULL-
DOWN, and GROUP that we created during our edit operation. Selecting the
File | Save operation also causes two other files to be created—TEMP.CPP,
and TEMP.HPP.

TEMP.CPP contains entries used by programmers when the windows are
used in an application program. In particular, this file contains a jump table
and a user information table. TEMP.HPP gives us programming hooks that
tell the name and index of a particular field inside our edit window. We’ll
discuss the details of using TEMP.CPP and TEMP.HPP in the next tutorial.

We will come back to our edit windows in a few moments. Let's first prepare
for the next section of this tutorial by selecting the Window | Clear All
option from the pull-down menu. When you select Window | Clear All, all
of the edit windows are removed from the screen, though they still exist in
the TEMP.DAT file.

32

Zinc Designer



s 4ANC Designer’s
Support Editors

In the last chapter, we learned about the Window Editor, the main editor of
Zinc Designer that allows us to create and edit windows. In this chapter,
we’ll learn about the support editors: the Image Editor, the Help Editor, the
Message Editor, the Defaults Editor, and the String Editor. These are what
allow us to edit bitmaps and icons, create help contexts, create run-time
loadable strings, and internationalize applications. If you’ve closed the .DAT
file we created in the last chapter, open it again, since this tutorial will mod-
ify the objects we created.

Key
Concepts

Zinc Designer 33



Zinc Designer’s Support Editors

Image Editor

The first support editor is the Image Editor, located in the bottom-left portion
of the screen at the Designer’s launch time. Open the Image Editor by dou-
ble-clicking on the image edit icon or by single-clicking the image edit icon
and then selecting the Restore option from the pop-up menu that appears
above the Image Editor's icon.

=| Image Editor | '] bt
Edit Bitmap Icon Mouse Help

A5 /|0l < e ¢

o I Tl W
ion [ W W ()
scvcor T [T |
Main The Image Editor’s interface has four main components:
components the title;
the pull-down menu;
the button bar; and
the color bars.
Title. The title, which contains the words Image Editor, is located on the top
portion of the window like the Window Editor.
Pull-down menu. The pull-down menu, which appears just under the title,
controls the operation of the Image Editor. However, it does not control the
operation of the Window Editor. In particular, we have the same File option
available as the Window Editor, except this option is grayed out. (Since the
Image Editor is a subcomponent of the Window Editor, the option is not
selectable in the Image Editor—the Window Editor performs all file opera-
tions.) The other options in the pull-down menu—Edit, Bitmap, Icon,
Mouse, and Help—allow image editing.
Button bar. The button bar, located underneath the pull-down menu, contains
buttons which represent draw operations.
34 Zinc Designer



Color bars. The final interface component is a set of three color bars. The
first color bar shows colors that are associated with the left mouse-button.
The second shows colors associated with the right mouse-button. And the
third shows screen colors. We can change the current color selection with the
mouse by selecting color bar options.

Learning to use the Image Editor

Let's begin learning to use the Image Editor. Create a bitmap image by
selecting the Bitmap | Create option in the pull-down menu.

=| <untitled>

|__Stoe | [Storeas. | [ Close | [ Hep | sie__|

The bitmap image window has four areas—the drawing field, the actual
image, the image size, and support buttons. The expanded image is located
on the left side of our window. The actual image is located on the right side
of the window and shows how the bitmap will appear on the screen. On the
bottom-right side of the window are two numbers that contain the bitmap
width and height. The support buttons, Store, Store As..., Close, Help, and
Size allow us to store, close, resize, or obtain help about the bitmap image.

Zinc Designer 35



Zinc Designer’s Support Editors

Drawing an Let’s draw an ellipse in the bitmap. Move the bitmap window to the bottom

ellipse of the screen, so the Image Editor's patterns are visible. Select the blue color
from the left color bar. Then select the unfilled ellipse button. To draw the
ellipse in the bitmap window, do the following:

1. Click while positioned in the top-left edit cell.
2. Drag the mouse cursor to the bottom-right portion of the edit bitmap.

3. Release the mouse button.

-=| <untitled>
[
c i
| |

Store I Store As... i Close I Help l Size I

Now let’s fill the ellipse with the light blue color. Use the right mouse-button
to select the light blue color from the right color bar. Use the left mouse-but-
ton to select the color fill pattern, which is the right-most button on the bar

36 Zinc Deéig){ér



located in the Image Editor control window. Fill the interior of the ellipse by
clicking the right mouse button while positioning the mouse inside the
ellipse.

=] <untitled>

i Width:

Store J |Store‘&'s...‘] ‘__glnse l [ Help I [ Size l

Filling the Let's fill the outer four corners of the bitmap with a screen background color.

bitmap Use the left mouse-button to select yellow from the screen color bar. We still
have the desired fill option selected as our pattern. Move the mouse cursor
over the top-left portion of the image without overlapping the ellipse and
click the left mouse-button. Do the same thing for the top-right, bottom-
right, and bottom-left areas of the edit bitmap. You should now have a bit-
map with three separate colors, yellow on the corners, blue on the outer
ellipse, and light blue on the inside of the ellipse. Store this bitmap image by
selecting the Store As command and by entering the name

circle

Zinc Designer 7 B7



Zinc Designer’s Support Editors

into the Store As window.

=| Object Selection
Objectname: Directories:
[cIRCLE | ~ui_BITMAP E
=
7= Cancel

Now store the circle in the TEMP.DAT file by selecting the OK button.

38 Zinc Designer



Creating an icon
image

Now let’s create an icon image. First, close the circle bitmap by selecting the
Close button. Then select the Icon | Create option.

=| <untitled>

[

with:

L_glole j |5loxe$_x... I L__!_:_Iose 1 | Help ! Size I

The default width and height for icon images is 32, whereas the default
height and width for bitmap images is 16. Let's draw a small rectangle and
an overlapping ellipse for our icon image. To draw these objects, first select
the filled rectangle button from the button bar. Select a left color by pressing
the left mouse-button inside the left color bar over the desired color. Move
back to the icon image and press the left mouse-button just inside the icon
image. Drag the image to approximately half the window size, then release
the left mouse-button.

.=.| <untitled>

i

Store I IS!otegs... I Close | l Help I Size

Zinc Deéigner 39



Zinc Designer’s Support Editors

Select a new color, then select the filled ellipse as your pattern. At around the
three-fourth mark of the right-bottom portion of your rectangle, begin draw-
ing the ellipse. Release the left mouse-button once your ellipse pattern has
filled half the image.

=| <untitled>

HHHHH -
LT T

Store | [Storeas. | [ Close | [ Hep | Size

Drawing a Draw a bounding rectangle on the image by selecting the unfilled rectangle
bounding pattern and by selecting the color black from the left color bar. Begin the
rectangle rectangle by selecting the top-left pixel, dragging the mouse cursor to the
bottom-right corner of the image, and releasing the mouse-button.
=| Luntitled>
i

(I
T T EerEt

T
T
IEEEEE

T

- X widh:
NN
T Height:

Qtore l [Store&s... l L___glose I ‘_gelp | Size I

Save this icon image as rectangle. To do so, select the Store As button, enter
the name

rectangle

40 ’ Zinc Designer



and press OK. Close this window by selecting the Close button.

Viewing the To view the names of the images we just stored, go into the bitmap pull-
stored images down item and select the Bitmap | Load option.
=] Image Editor -]~

Edit Bitmap Icon Mouse Help

21 e @lo]e

X 4

o [l Creae
von [l <00 -
Store
scrcen Bl Sorc pc.. | ML R |
Clear
Clear All
Delete...
= Resource, Load...
Objectname: Directonies:
- i
[ circle =
.

_

The bitmap named circle appears in our bitmap list. Press Cancel to close
the window, then select Icon | Load to view the icon list. The bitmap and
icon images are now available to the Window Editor. Save your work by
returning to the Window Editor and selecting the File | Save option. Then

Zinc Designer 41



Zinc Designer’s Support Editors

minimize the Image Editor by selecting the minimize button from the image
window. Finally, reload the simple window from TEMP.DAT by selecting
the Window | Load command from the Window Editor's pull-down menu.

=] 1S0 - Window Editor - TEMP.DAT M E
File Edit Window Object Help

EEE R E B EEE
s

Export... -
— Fl=EE| — el @]
= ] i [ = [
— Load... = =
object: i Store Sl place object:
stringlD: T‘ Store As... |z | 1
Clear
Clear All
Delete...
Test...
=-[ Resource, Load...
Objectname: Directories:
| | ~ulw_wiNDOW Taee |
=9 eroup =
EuisT £
=9 puLL-DOWN
= sIMPLE

Select the simple window by double-clicking on the SIMPLE list item or by
entering the name

SIMPLE

under Objectname and by selecting OK. The simple window is now visible
on the screen.

42 Zinc Designer



Incorporate the bitmap and icon images into the edit window by first invok-
ing the button’s information notebook. (Remember, to select the button note-
book, move to the button object, then double-click the mouse button.)

General Y Pasition [ Geometry f Advanced |
@ 1-state [no toggle) kS
Text: |butlon | () 2-state [on/off)
S Co— N e o
(O Cell based
Jisaoe l (None] J_!_I @ Auto-sized
----- Depth -----
Name: [FIELD_1 ] O Flat
Help: [(None) 3] ® Normal 3-D e
----- Action —--
@ Action on UP-CLICK
L—g'(— J L—g-.ancel I &eb J () Action on DOWN-CIICK 3

Select the circle image by first moving down to the image field. Then click
the left mouse-button on the down-arrow of the combo-box, and select the
circle image from the pull-down list. The circle image is now selected and
the button information notebook reflects the image change.

G | l Position | Geometry I Advanced l
@ 1-state [no toggle) +
Text: [button | (O 2-state (on/off)
----- Height -----
e ‘E——_] O Cell :ased
e |O circle |£I @ Auto-sized
----- Depth -----
Name: [FIELD_1 | O Flat
Help: |[N0ne] |El @ Normal 3-D :
----- Action - -
- Action | £
2 [omee ] (oo ] [ 5

Save the changes by pressing OK. The edit window is automatically updated
to show the bitmapped button.

='| Simple [+]~

prompt:

I;tring ] ID : E‘

Zinc Designer 43



Zinc Designer’s Support Editors

Associating the
icon with the

Let’s associate the icon image with our simple window. Double-click on the
window to bring up its information notebook. Move down to the MinIcon

window field, bring up the image list, then select the rectangle image from the avail-

able items. Save this change by pressing OK.
View the changes made for the minimized icon and the bitmapped button by
selecting the Window | Test feature.

Test Mode

Exit
=| Simple [~1~
prompt: O
string | Ll] li]

To view the minimized icon, press the minimized button from the simple
window.

Test Mode

Exit

Simple
To exit test mode, press the Exit button on the Test Mode window. We’re
now finished with our tutorial on using the Image Editor.
We have now examined various methods used to create bitmap and icon
images and how to insert those images into our simple edit window. Take a
moment to browse the Image Editor and the options available through the
Image Editor and the Window Editor.

44 Zinc Designer



Help Editor

The Help Editor will be the final area of focus in this tutorial. We’ll leave
extensive coverage of the Message and Defaults Editors to a later chapter,
though we will introduce them in a moment.

= Help Editor [~]=-
Context Help
Creating a help Like the Image Editor, the Help Editor is also a subcomponent of the Win-
context dow Editor; it too contains a grayed-out File option. The Help Editor allows

us to create a help context, which is specific help information tied to a partic-
ular object. Select the Context | Create command to begin creating a help
context.

=] Help Editor : [+]~
Context Help
Import...
Export...

Create...
Load...
Store
Store As...

Clear
Clear All
Delete...

=| <untitled>

Title:

Message: +

+

I Vgtore l Store As... I Close l Help l

Zinc Designer 45



Zinc Designer’s Support Editors

Type the words
Simple Help

into the title field. Type the words
Simple help for a simple button

into the message field.

==[ Luntitled>

Title: lSimpIe Help J

Message: |Simple help for a simple button h 4

I"'Eiore I Store As... I Close l Help I

Store this information by pressing the Store As button, and entering the
word

SIMPLE HELP

and then by selecting OK. Close this window and create a new help context
by reselecting the Context | Create command. Enter the words

General Help
into the title field. Enter the words

General help for our Application

46 Zinc Designer



Connecting the
help context to
the help system

into the message field.

=I {untitled>

Title: |General Help

Message: |General help for our Application 1

]

l Store ] ,StoreAs... l Llose I | Help ’

Save this help context by selecting Store As, by entering the name

GENERAIL,_HELP

and by pressing OK. Remove this window by pressing the Close button.

We have now created two help contexts that can be used by the Window Edi-
tor. Now we need to connect them to the button object. Minimize the Help
Editor and then open the button information window by double-clicking on
the Edit menu item. Move down to the Help combo-box and select
SIMPLE_HELP from the pull-down list. Press OK to save the changes.

G 1 I Position [ Geometry | Advanced |
@ 1-state [no toggle) +
Text [button | |© 2-state (on/off)
o o N Y i
() Cell based
I I O circle [il ® Auto-sized
----- Depth -
Name: [FIELD_1 | O Flat ’ :j
@ Action on UP-CLICK ||
Help ) Action on DOWN-C1 ICK s

Now bring up the edit information notebook for the main window. Move
down to the Help field and select GENERAL_HELP from the list. Save the
changes by pressing OK. We can now view our help changes by reentering

Zinc Designer 47



Zinc Designer’s Support Editors

the Window | Test option. Once you are in test mode move to the button
field and press the help key (<F1> in DOS and Windows). This invokes the
specific help associated with our button object.

1=l Simple Help =11
]

Simple help for a simple button

Close the help window by selecting the Close option from the system button.
To view the general help associated with this window, move to any other
field and press the help key.

=| ___ General Help T=1-]
General help for our application B,
-
L+

Exit the test mode by selecting Exit from the test mode window. Take a few
moments to browse the Help Editor and its available options.

48

Zinc Designer



Message, Defaults, and String Editors

There are three remaining pieces of the Designer: the Message Editor, the
Defaults Editor, and the String Editor, which we use for internationalizing
applications. Briefly open the Defaults Editor by double-clicking on the
Defaults Editor image icon. Select Language | Create to create a window

in the English language:

=l

Luntitled>

Enor [ Help |

Day | Month | Time | Date | int | Num [ Real [ Sys. | Time | Win |
short days: Mateddayz: long daps:
Sun [Sun. Sunday

~ |Mon ‘ Monday

|{Tue Tuesday

- |Wed Wednesday

| Thu Thursday

~ |Fni Friday
Sat Saturday

[ st ] [stoeas | [ goso ] [ oo 'LFE""

Zinc Designer




Zinc Designer’s Support Editors

Browsing the
Defaults Editor

We can modify many pieces of information associated with an object. For
instance, an object’s Day tab contains short days, abbreviated days, and long
days. If we wanted to translate the window to Spanish, we could edit each of
these fields and change the text to the appropriate language.

-

€S
Day | Month | Time | Date | Int | Num | Real | Sys. | Time | Win | Enor | Help |

short days: abbreviated days: long days:
DOM o] | DO Domingo
Lun Lun. Lunes
Mar | Mar. Martes
Mié Mier. Miércoles
Jue Juev. Jueves
VYie Vier. VYiernes
Sab Sab. Sabado

Store l | Store As I LClose I I Default I Help l

In a similar manner, we could change each of the tabbed items—month, am/
pm specifiers, date, integer, number, real, system button, time, win, error,
and help. Once we change this information, we can store the window with
the same method used by the Image and Help Editors. Let's close this note-
book and look at a locale notebook by selecting Locale | Create.

=| <untitled>
Date I Number ] Time f Currency |

(> Dash separators _’J
‘ > Slash separators

separator: [-

----- Country Format -----

O Europ format

date: |zledIZy | (O Asian format

date/time:  [%m/%d/Zy Z:%M:%S %0 | | Military format ]
@ U.S. format . A4

gtole I l Store As l L_glose

| [__Default

50

Zinc Designer



Browsing the
Message Editor

Browsing the

The locale notebook contains information, such as date, number, time, and
currency values, for a specific geographic area, which we can save to an
environment independent .DAT file. Go ahead and browse the Defaults Edi-
tor, then invoke the Message Editor by double-clicking on the message icon.

=] Message Editor [+]~
Message Help

The Message Editor ties program identifiers, which are const number decla-
rations, with strings assigned at run time. For example, an application may
use the word Exit. Rather than programming a specific hard-coded string
into the program code, we can associate a logical number with the word Exit.
In the application we use the raw number with a ZIL_LANGUAGE::-
GetMessage( ) function to get, rather than enter, the actual string.

Create a message table by selecting the Message | Create option from the
pull-down menu.

=] <untitled>

__ Edit

|

i

| Store | Slman...I Close | Help !

Messages can be added to, deleted from, or moved in our message table by
selecting the support buttons located on the right side of the window. Take a
few moments to browse the Message Editor.

Zinc Designer 51



Zinc Designer’s Support Editors

String Editor

The String Editor provides access to Unicode character sets, allowing you to
translate the text of your application into language characters not available
from a standard keyboard. You must be in Unicode mode to use the String
Editor. Invoke it by double clicking on the String Editor image icon, or, in
DOS and Windows, by pressing <F12>when positioned on a text field.

==| i String Editor
Original:
~ Cumrent: Icin:le

1 0 @ P ° p 1 1 A P a 3
L1 0 1A Qla gl i AN AR
L1 " 2'BR b [r 1] Te? TATO 'S d
L1 % '3[CiSjlcfs i {0 [£1° TATOTE I6
1 1 $ 4 D T d ¢t 1 1 % - A 0 a &
I I % 5 E U e u 1 1 % p A O 3 35
1 1 _ 6 F V't v 1_1 }J 1 £ 0 =20
| . 7 G W g w I 1 § Cix ¢ [+
1 1 (8 H X h x 1 1 -~ . 'E B & &8
L ) 19l IYTi Jelr jn (® v TE O 6 @
0 = 2 3 Zi 2z (n (21" TETO & ia
L+ c KL (ki1 1) leiaETD &'
(TN AT PP S0 A O O ™ I O A I
11 = M 1 m } @11 - % i ¥ i g
I 1. > Ni*n ~Ip 1 %1 P i b
11/ 2?20 o L 1 1 " ¢ 1 B 1§

| oK ] Cancel |

Browse through the character sets by either entering a page number into the
Page field, or by clicking its spinner arrows with the mouse. Notice that if
you select a character with the mouse, that character will appear in the Cur-
rent field. In this manner, new character strings are formed.

52

Zinc Designer



EXxiting the Designer

To exit the Designer, select the File | Exit option. If no changes have been
made since the last save, the following dialog box appears:

S ki

0 This will close the application.
e Cancel ‘

If any changes have been made to the file, the program will ask you to save
the .DAT files again.

Press the OK button in the exit window to exit the application.

And we’re done!

Zinc Designer 53



Zinc Designer’s Support Editors

54 Zinc Designer



section two

Zinc Designer
tutorials

Zinc Designer

55



56

Zinc Designer



ames WWIItING AN
Application

This tutorial details compiling and running an application in Zinc. If you
are not familiar with Zinc or Zinc Designer, see the appropriate sections of
Getting Started with Zinc Programming or Zinc Designer.

In the first part of this chapter, we will look at the finished application to see
what we will be doing. In the second part of the chapter we begin writing the
application by putting together the basic framework required to bring up the
Movie Control Window.

Key
Concepts

Zinc Designer 57



Writing an Application

Movie
components

In the next few chapters, we’ll discuss the steps to build the MOVIE appli-
cation. Each chapter discusses how to implement some major component of
MOVIE, and the following diagram represents how these components fit
together.

FIGURE 1. The relationship of MOVIE’s components

o Globalization

Error system

Control

Help system I

Storage
¢

Selection Information

r—-m-mm—um-—m—--——-
~
L_-_------_-—

58

Zinc Designer



The following table describes what we will do in the chapters of the MOVIE
tutorial. Each row in the table corresponds to a step in the diagram. And each
chapter will contain the piece of the diagram that represents the current step.

TABLE 2. Steps in the MOVIE application

Chapter App Description

Chapter 3—Writing MOVIE1 Putting together the framework for
an Application the Movie Control Window.
Chapter 4—Designing MOVIE2 Designing dialog windows, but leav-
ing their implementation for later.
These windows will display informa-
tion about the movie, as well as
allow us to select a movie.

Dialog Windows

Chapter 5—Architect- MOVIE3  Implementing the architecture to
control the other components of the

ing the Control i
application.

Chapter 6—Deriving MOVIE4 Fleshing out the functionality of the
Movie Selection and Movie Informa-

Support Modules ; ] 3
tion windows that we left in part 2.

Chapter 7—Loading MOVIES Giving Movie the ability to store
and Storing Data data in a flat file.

Chapter 8—Making MOVIE6 Making Movie robust by implement-
Movie Robust ing error and help systems.
Chapter 9—Generat- MOVIE7 Globalizing Movie to display its
ing an International- interface in French and German as
well as English.

2
]
b=]

ized Application

You will achieve the best results if you complete the tutorials in order, as
each provides a foundation for the next. If you jump in the tutorials in the
middle, you will likely find yourself confused.

Each MOVIE component in the tutorial contains .CPP, .HPP, and .DAT
files for user-defined objects and for persistent objects. We generate the code
for user-defined objects, and Zinc Designer generates the code for persistent
objects. Since we use two types of storage in MOVIE, we use two separate
.DAT files—MOVIE.DAT for data storage, and P_MOVIE.DAT for per-
sistent object storage.

Zinc Designer 59



Writing an Application

Below is a table of source files we’ll be working with in this part of the tuto-
rial. We can find these files in /ZZINC/TUTOR/MOVIE.

TABLE 3. Components of the MOVIE application

Type of file Name of file Description of file
User-provided files MOVIE.CPP The main program
MOVIE.HPP Class definitions, identifica-
tions, and messages
MOVIE.DAT User data storage
Designer-generated P_MOVIE.CPP Code for tying Designer objects
files to our program
P_MOVIE.HPP Identifications and help con-

texts

P_MOVIE.DAT

Persistent object storage

Running the MOVIE application

Running the
program in its
finished state

Now that we’ve discussed what we’re going to do in the next few chapters,
let's take a moment to view the application as it appears in its finished state.

=| Movie Catalog System =1~
File Movie Help

The source code for MOVIE, which contains the program in its finished
state, is located in /ZINC/TUTOR/MOVIE. (MOVIE is exactly equivalent
to MOVIE7, which we’ll write in the last MOVIE tutorial.) Go ahead and
compile the source code and run the executable. To start the program in com-
mand-line environments, type the word

movie
If you need to enter the full path, type

c:\zinc\tutor\movie

60

Zinc Designer



For systems that require an iconized program, double-click on the icon to
bring up the movie application.

You should see the following window on the screen:

=| Movie Catalog System [~]~
File Movie Help

Movie: I

Here’s the way the program works. The movie cataloger allows users to gen-
erate new movie information records or to view previously created records.
The main window contains a title field, a pull-down menu, a button bar, and
a status bar. The title contains the name of our application, Movie Catalog
System. The pull-down menu has three options: File, Movie, and Help.

File allows us to exit the application or to receive help about the cataloging
system. Movie allows us to either create, load, store, or delete movie records
from the information catalog. Help brings up help about the movie catalog
system or about the individual options that are available during the applica-
tion's operation.

The button bar contains four bitmapped buttons. These buttons give us the
same options as those in the Movie section of the pull-down menu, namely,
the ability to do all of the following:

1. Create a new movie record.

2. Delete an existing record.

3. Load a record from the catalog library.
4

Store the current movie record into the movie catalog.

Zinc Designer 61



Writing an Application

Working with the program

Movie Selection

Movie
Information

Let's view some of the movies that have previously been entered into the cat-
alog system. Select Movie | Load from the pull-down menu. Then we can
browse through some of the functionality of our program.

=| Movie Selection ME

Title:

Affair to Remember, An
Bridge on the River Kwai, The
Casablanca

Fiddler on the Roof

Field of Dreams

Gone With the Wind

ITHT] d Ona Miaht

L__I_Il__l( | Ll;_ancul I L_ﬂelp

LI

«]

The Movie Selection dialog lets us view all of the movies currently entered
into the system by presenting documented movies in the vertical list. We can
view information about a movie by clicking on the desired item, then by
pressing OK. For example, if we do this with Affair to Remember, An, we
will see the movie information record for this movie.

=] Movie Information =1~

Title: |Aﬂail to Remember, An |
Copyright: Length (in minutes): (EI
Director: |En McCarey |
Actors: ,ay Grant, Deborah Kerr |

Description: | Shipboard r whose i ion on-shore is [+
interrupted by unforseen circumstances.

L_gavej l:_glose l ] Help ’

The Movie Information record presents information about the movie we
have selected, such as the title, copyright date, length of the movie (in min-
utes), name of the movie director, list of the most prominent actors and
actresses, and a short description of the movie. In addition, there are three
buttons at the bottom of the record that allow us to save the record into the

62

Zinc Designer



Movie Create

movie catalog, to close the movie record window, or to receive help. Take a
moment to view the information associated with An Affair to Remember.

Once you have finished, close the window by pressing Close.

New movie records are created by selecting Movie | Create from the pull-
down menu.

=| Movie Information []=

Title: | ]
Copyright: ‘Cl Length (in minutes]: D
Director: L |
Actors: L |

Description: +

Lgave i L_glose I | ~ Help I

The Movie Create record contains the same fields we saw when the Load
operation was selected, except that all the fields are blank. We can enter data
into the movie information window by moving to each field and then by
entering the appropriate data. Let's experiment by adding a new record for
the movie Vertigo. To do this:

1.
2

Select Movie | Create from the pull-down menu.

Move to the Title field and enter the name

Vertigo

Move to the Copyright field and enter the date

1958
Move to the Length field and enter the value

68
Move to the Director field and enter the name
Alfred Hitchcock

Move to the Actors field and enter the names,
James Stewart
and

Kim Novak

Zinc Designer

63



Writing an Application

Movie Delete

Move to the Description field and enter the sentence,

Haunting dream-like thriller. A great motion picture that
demands multiple viewings.!

=| Movie Information []-]

Title: IVBItign |

Copyright: Length (in minutes):

Director: [Alfred Hitchcock |

Actors: |James Stewart, Kim Novak I

Description: |Haunting dream-like thriller. A great motion picture |
that demands multiple viewings.

_Save | [ Cose | [ Hew |

We can save the movie information by selecting the Save button from the
movie record, by selecting the Movie | Save option from the pull-down
menu, or by clicking in the button bar while positioned over the save button,
which contains a picture of movie reels and an arrow pointing to a cylindri-
cal disc.

We can delete movies from the catalog by selecting Movie | Delete from the
pull-down menu, and then by moving to the desired video item, clicking on
the selection so that the movie's title appears in the title field, and then
selecting OK. (We can also double-click the selection to delete it.)

=| Movie Selection [+]~

Title: |Affair to Remember, An

Affan to Remember, An +
Bridge on the River Kwai, The
Casablanca

Fiddler on the Roof

Field of Dreams

Gone With the Wind Y
1r H d Ona Miaht

T e

Take a few moments to browse its contents, then exit the application by
selecting the File | Exit option and by pressing OK on the exit application
window.

1.Leonard Maltin’s Movie and Video Guide, 1994.

64

Zinc Designer



Application components

Let’s look at the MOVIE application and the code and data we need to gen-
erate an executable. While we’re doing that, we’ll examine the architectural
concepts of creating applications with Zinc Designer.

When we store windows with Zinc Designer, three files are generated: <file-
name>.DAT, <filename>.CPP, and <filename>.HPP. When we write an
application that uses Zinc's persistent objects, which are stored to disk and
retrieved later, the associated .CPP files must be included with our own C++
code files to produce the application. The following diagram shows the rela-
tionship of these components and how we combine them to generate an
application.

FIGURE 2. Creating a Zinc application

MOVIE.HPP

Ej <persist >.DAT
Zinc persistent files
+ | = <persist >.CPP
+ | = <user>.CPP
_* user files
+ & .MAK
= % .EXE

Zinc Designer automatically generates a P MOVIE.DAT, P_MOVIE.HPP,
and P_MOVIE.CPP file. But we will create two additional source code files
that will control the internal flow of our application—these are
MOVIE.HPP and MOVIE.CPP.

MOVIE.HPP will contain all the class definitions and messages that will be
used in the MOVIE application. These definitions include the code for
MOVIE_CONTROL, MOVIE_SELECTION, and MOVIE_INFOR-
MATION classes. The class messages section will contain special identifi-
cations—integer values that will signal the program to create, load, store and
delete movie records.

/] === class definitions ——————- _—
class MOVIE CONTROL : public UIW_WINDOW

{

public:

Zinc Designer 65



Writing an Application

static ZIL ICHAR *_pathName;

static ZIL ICHAR * exitName;

static ZIL STORAGE * dataFile;

static ZIL STORAGE READ ONLY *_intlStorage;

static ZIL ICHAR movieName[64];

static ZIL LANGUAGE *_errorMsgTable;

MOVIE_CONTROL(void);

~MOVIE CONTROL(void);

virtual EVENT TYPE Event(const UI_EVENT &event);

virtual void *Information(ZIL INFO REQUEST request, void *data,
ZIL OBJECTID objectID = ID DEFAULT);

private:

static EVENT TYPE Exit(UI_DISPLAY *, UI EVENT MANAGER *,
UI _WINDOW MANAGER *windowManager);

EVENT TYPE MovieCreate(const UI_EVENT &event);

EVENT TYPE MovieDelete(const UI_EVENT &event);

EVENT TYPE MovieLoad(const UI_EVENT &event);

EVENT TYPE MovieStore(const UI_EVENT &event);

+i

class MOVIE SELECTION : public UIW WINDOW
{
public:
static ZIL_ICHAR *_pathName;
static ZIL ICHAR *_allObjects;
MOVIE SELECTION(ZIL STORAGE READ ONLY *file,
ZIL USER_EVENT request);
virtual EVENT TYPE Event(const UI_EVENT &event);
private:
ZIL USER _EVENT request;
bi

class MOVIE INFORMATION : public UIW WINDOW
{
public:
static ZIL ICHAR * pathName;
MOVIE INFORMATION(ZIL ICHAR *name = ZIL NULLP(ZIL_ICHAR));
virtual EVENT TYPE Event(const UI_EVENT &event);
virtual void Load(const ZIL ICHAR *name,
ZIL_STORAGE READ ONLY *file,
ZIL STORAGE_OBJECT READ ONLY *object =
7IL NULLP(ZIL STORAGE OBJECT READ ONLY),
UI_ITEM *objectTable = ZIL NULLP(UI ITEM),
UI ITEM *userTable = ZIL NULLP(UI ITEM));
virtual void Store(const ZIL ICHAR *name,
ZIL STORAGE *file = ZIL NULLP(ZIL STORAGE),
ZIL STORAGE_OBJECT *object = ZIL NULLP(ZIL STORAGE OBJECT),
UI ITEM *objectTable = ZIL NULLP(UI ITEM),
UI_ITEM *userTable = ZIL NULLP(UI_ITEM));

66 Zinc Designer



MOVIE.CPP

/] === class messages
const ZIL USER EVENT OPT HELP= 10000;

const ZIL USER EVENT OPT MOVIE CREATE= 10001;
const ZIL USER EVENT OPT MOVIE DELETE= 10002;
const ZIL USER EVENT OPT MOVIE LOAD= 10003;
const ZIL USER EVENT OPT MOVIE STORE= 10004;
const ZIL USER EVENT OPT MOVIE OK= 10005;

const ZIL USER EVENT OPT RESET SELECTION= 10006;

MOVIE.CPP will contain four sections.

1. The first section will define all of the information and code needed to
open and control the application.

2. The second section contains the Movie Control Window that we viewed
first on the screen, as well as its annotated code.

3. The third section contains the code necessary to use the movie selection
window that we viewed earlier in the tutorial.

4. The fourth and final section contains all the programming code for the
movie information window, including code needed to create the record
information window, to save the information record, and to load or store
the contents of individual movie records.

Our makefile will combine these source modules to produce object code,
then generate the movie executable, MOVIE.EXE under DOS and Win-
dows. (Makefiles for other platforms are included in the MOVIE directory.)

We will look more closely at all of the program code later in this tutorial, but
for now, take some time to become familiar with it, as we’ll refer to it
throughout the entire MOVIE series of tutorials.

Writing MOVIEL s Movie Control Window

Now that we’ve seen the completed application, let’s begin writing it. First,
let’s look at the Movie Control Window's .DAT information and .CPP code.
The goal in this section is to get something—anything—to run!

Zinc Designer 67



Writing an Application

Components of
MOVIE1

In Figure 1 on page 58, we discussed the components of the MOVIE appli-
cation we’ll be working with in this series of tutorials. In this part of the tuto-
rial, we’ll be working with MOVIE], the first component of MOVIE. The
diagram below shows the component we’re working on in relationship to the
other components of the tutorial. (The components we’re not working with
are grayed out.)

i i
I° i
i i
i i
1 |
i i
: 0oL !
i i
- ® R ’
i 'I i
[ i
4
i i
I. ’ i
i 1
1 1
1 i
i i
i i
B ome o oo ooe oow ooe e s oms e by e my D ome w ob oms mw omm ows ol

68

Zinc Designer



Source files Below is a list of source files we’ll be working with in this part of the tuto-
rial.

TABLE 4. Components of MOVIE1

Type of file Name of file Description of file
User-pro- MOVIEL.CPP The main program
SR MOVIE1.HPP Class definitions, identi-
fications, and messages
Designer- P_MOVIE1.CPP Code for tying Designer
generated objects to our program
il P_MOVIEL.HPP Identifications and help
contexts
P_MOVIE1.DAT Persistent object storage
Creating the We will first create a portion of the controlling window with Zinc Designer,
window then write a short program that creates and loads this window into our appli-
cation.
=| Movie Catalog System [+~

File Movie Help

Enter the Designer to create the application Movie Control Window. Create a
new window by selecting the Window | Create option from the pull-down
menu. Next, add a pull-down menu by clicking on the pull-down button,
then by placing the pull-down menu inside the edit window. This creates a
pull-down menu with one pull-down item.

=| <untitled> M
item

Now let's create the File, Movie, and Help items on the pull-down menu. We
already have one pull-down item on the menu, so we need to add two more:

Zinc Designer | | 69



Writing an Application

1. Select the pull-down item from the button bar and click inside the pull-
down menu. This places the second pull-down item, which will eventu-
ally be the Movie item, in the menu.

2. Reactivate the pull-down item option by pressing the right mouse-button.

3. Place the last pull-down item, which will eventually be Help, in the pull-
down menu.

Change the names of these pull-down items:

1. Open the window's information notebook,

2. Move down to the Subobjects notebook page,

3. Double-click the pull-down menu image, FIELD_1, from the Directo-
ries list. This gives us access to the objects attached to the pull-down
menu.

4. Edit the information associated with each item in the object's list.

For example, to edit the information associated with the first pull-down item,
double-click on FIELD_2 in the object list. Then move to the Text field and
enter

&File

(The ‘&’ designates the F character as a hot key for that object. When desig-
nating the hot key character, put the ‘&’ just before the appropriate charac-
ter.)

Change the name of the file item by moving to the Name field and entering
the word

FILE OPTION.

Save these changes by pressing OK.

General ] Subobjects { Paosition l Geometry } Advanced 5
e e Interaction -----
[] Alphabetical sorting

| [] Don't wrap keystrokes

Test: [tFile
l [ Select multiple
Value: l::l [ Send user message
Name: [FILE_OPTION ]
Help: |<none> L!_I

L__gx | L_Qancel l | Help I

Next, open the information notebook for FIELD_3.

70

Zinc Designer



Enter the word
&Movie
into the text field and

MOVIE_OPTION

into the name field. Press OK to save the changes.

Name: [MOVIE_OPTION

Help: l(none)

(2]

[ox ] [ cancel ||

Help |

General | Subobiects |  Postion |  Geomety |  Advanced |
----- Interaction -----
[] Alphabetical sorting
Text [&Movie l [J Don't wrap_key:tlokes
[] Select multiple
Value: l::l [] Send user message

Follow the same procedure with the last menu item by entering the text

&Help

and name

HELP_OPTION

into the item's information notebook. Select OK to save the changes to the
pull-down item. Then select OK on the window’s information notebook to
save the changes to the window and exit the information windows.

ok ] [ Cancel | [ Hew ]

G ] l Subobjects I Pasition I Geometry ‘ Advanced j
----- Interaction -----
[] Alphabetical sorting
Test: I&Help | [] Don't wrap keystiokes
[] Select multiple
Value: I:I [] Send user message
Name: [HELP_OPTION |
Help: r<none> IE’

Zinc Designer

71



Writing an Application

When you return to the untitled edit window, three pull-down items should
be visible: File, Movie, and Help.

=] Movie Catalog System [~]~
File Movie Help

Now let's size the window by moving the mouse cursor over the bottom-
right corner of the window so that the mouse is positioned over the window's
border, then by clicking and dragging the window's border to the desired
size—we want a window width of 60 and height of 4. The window's size can
be viewed on the status bar in the pos and size fields; the position and size of
the window are given in cell coordinates.

type: [thow pos: !28,8 place object:
name: [<UNTITLED> size: [60, 4 |

Let's now enter three subobjects into the File pull-down item.

1. Double-click on the edit window and then select the Subobjects note-
book page.

2. Double-click on the pull-down menu in the Directories list.

3. Double-click on the pull-down item labeled OPTION_FILE in the Direc-
tories list. This gives us access to the objects attached to the pull-down

item.
General [ Subobi 1 Position 1 Advanced ]
Objects: Directories:
--- Support Objects - MOVIE Edit l
--- Normal Objects --- FIELD_1

EPALEOPTION

. R

l_ﬂ‘_l L.Ei"ﬂ'—-' L_.Hi_l lPovfup Item

At this point, the directory list shows the edit hierarchy of our pull-down
item, and the object list contains a list of all the added Support and Normal
objects, though no object should be visible yet. Add three pop-up items to
the objects list by pressing the Add button three times. Pressing the Add

72

Zinc Designer



button adds an instance of the type of object currently selected in the object
combo box in the bottom-right corner of the notebook page. Only pop-up
items can be added to a pull-down item.

General | Subobject: I Position T Advanced
Objects: Directories:

- Support Dbjects - MOVIE Edt |
- Normal Dbjects --- ECFELD '
FIELD_5 - FILE_OPTIOI |
— S RS —Dde!e .
FIELD_6 E FIELD_S -
FIELD_7 SHEND Movelp |
FIELD_7 Move Down -

ok J [ concel | [ Helb | [ Popuptten

Edit the first item, FIELD_S, by double-clicking on the field item in the
objects list, then by entering the word

&About. ..
in the text field and

ABOUT_OPTION

in the name field.

General I Subobjects | Position | Geomety | Advanced |
----- Item Features - 4 .
[] Mark as separator L]
Text: l&Aboul J [] Allow check-mark il
[] Send user message

Value: ‘T]_—————] ----- Sub-Menu Options -----

[] Alphabetical sorting
Name: [ABOUT_OPTION ] |CJ Don't wrap kegstrokes

Help: l(mme) Li-l |:| Select multiple children
»»»»» Item Message -----

@ Normal operation =

[ox ] [ concel | [_mew ]|~ ol

Save these changes, then edit FIELD_6. Identify this item as a menu separa-
tor by deleting all the text from the text field and by entering

FILE SEP1

Zinc Designer 73



Writing an Application

into the name field. (You could also select the separator option from the
options list.)

G | | Subobjects | Position | Geomety |  Advanced |
----- Item Features --—-- ﬂ
[J Mark as separator

Text: I l [] Allow check-mark

[] send user message
Value: C] ----- Sub-Menu Options -
[] Alphabetical sorting

MName: |FILE_SEP1 J [] Don't wrap keystrokes

Help: |(n0ng) Izl [] Select multiple children
44444 Item Message -----

Select FIELD_7 and enter the name
E&xit

into the text field and
EXIT OPTION

into the name field. Save the changes by pressing OK and return to the main
edit window. Let's take a moment to enter a title and name with the pull-
down menu and with the edit window. Bring up the information notebook
and enter the words

Movie Catalog System
in the title field and
MOVIE CONTROL

in the name field.

G i ] Subobjects ] Position [ Advanced }
----- Support Features ----- 2
(X Border
Title: lMovie Catalog System I n' s Button
; Minimize Button
Minlcon: | <none> * System Button
[ Geometry Man
Name: [MOVIE_CONTROL | |0 Vertical Scroll-Bar
Help: l(none) lé.l [] Horizontal Scroll-Bar
_____ Type ——-

@ Default

L._%'S._J L_ga"c'" J [_tew | ) Dialoa Nhiect +

74 Zinc Designer



MOVIE1.CPP

Move to the Subobjects notebook page and double-click on the pull-down
menu inside the objects list. Change the name of this field to PULL_DOWN_
MENU. Press OK to save the changes.

We now have a simple window with associated pull-down and pop-up items.
Let's save the window by selecting File | New and entering the name

P_MOVIE1l.DAT

under the Filename prompt and by pressing OK.

=| File Selection
Filename: Directories:
[P_MOVIE1.DAT | e:Azil400vdesign L___Q—KI
Ee ki
[ zil400
) design
3 direct
£ file
3 help hd
List Files of Type: Drives:
*.dat E | (] Lij

Select File | Save from the pull-down menu. The window is saved to the P_
MOVIEL.DAT file. Finally, exit the Designer by selecting File |
Exit.

Let's now look at the code modules used to run our application. First, let's
look at the main control loop used to bring up the Movie Control Window
and to process user input. The main control loop is located in
MOVIEL.CPP.

#include <ui_win.hpp>

int UI_APPLICATION::Main(void)

{
UI_APPLICATION::LinkMain();
*windowManager + new UIW WINDOW("p moviel.dat~MOVIE_CONTROL");
UI_APPLICATION::Control();
return (0);

}
The first part of the program contains include files necessary to initialize
Zinc Application Framework and to launch our movie program. The next
part, UL_APPLICATION::Main( ), loads the program. LinkMain() is
needed to make sure a main( ) function definition is included in our applica-

Zinc Designer 75



Writing an Application

P_MOVIE1.CPP

tion. The next line is used to retrieve MOVIE_CONTROL from the .DAT
file, and then to add the window into the window manager. The next line,
UI_APPLICATION::Control( ), sends control to Zinc Application Frame-
work, which processes all of the user responses, then returns control to our
module, once we have finished viewing the main Movie Control Window.
The final line returns the value 0 to the main application control loop, which,
in turn, returns O to the operating system.

So all we need is six lines of code to run our simple application. Take a
moment to examine this code and review the purpose behind each line.

When Zinc Designer writes P_MOVIEL.DAT, it generates an associated
.CPP, and .HPP file. P_MOVIE1.CPP contains three sections:

1. Include directives,
2. pointers to user functions, and

3. pointers to Zinc object constructors.

The first section gives directives that load Zinc Application Framework
objects and the programming information associated with the Movie Control
Window we just created.

#include <ui win.hpp>
#define USE_DERIVED OBJECTS
#include "p moviel.hpp"

The next section contains a user information table. The user-table normally
contains information that has been entered by a programmer in the Designer
but is not yet used by our application. Thus the table contains only an end-
of-table indicator.

static UI_ITEM _userTable[] =

{ { ID_END, ZIL NULLP(void), ZIL NULLP(ZIL_ ICHAR), 0 }

}i
The final section contains a table with object descriptions. At this point, we
have only created a few objects—a border, maximize and minimize buttons,
several pop-up items, a pop-up menu, several pull-down items, a pull-down
menu, system button, title, and a window. As you browse this table, you will
see unique object, name, and constructor references to the objects used by
the Movie Control Window. These references tell Zinc how to construct and
link specific persistent objects into our application.

static UI_ITEM _objectTable[] =
{

76

Zinc Designer



Makefile

}i

ID BORDER, ZIL VOIDF(UIW BORDER::New),

UIW_BORDER:: className, 0 },

ID MAXIMIZE BUTTON, ZIL VOIDF (UIW MAXIMIZE BUTTON::New),
UIW _MAXIMIZE BUTTON:: className, 0 },

ID MINIMIZE BUTTON, ZIL VOIDF(UIW MINIMIZE BUTTON::New),
UIW _MINIMIZE BUTTON:: className, 0 },

ID POP UP_ITEM, ZIL VOIDF(UIW POP UP_ ITEM::New),
UIW_POP_UP_ITEM:: className, 0 },

ID POP_UP_MENU, ZIL VOIDF(UIW POP UP MENU::New),
UIW_POP_UP_MENU:: className, 0 },

ID PULL_DOWN_ITEM, ZIL VOIDF (UIW_PULL_DOWN_ITEM::New),
UIW_PULL DOWN_ITEM:: className, 0 },

ID PULL DOWN MENU, ZIL VOIDF(UIW PULL DOWN MENU::New),
UIW_PULL DOWN MENU:: className, 0 },

ID SYSTEM BUTTON, ZIL VOIDF(UIW SYSTEM BUTTON::New),
UIW_SYSTEM BUTTON:: className, 0 },

ID TITLE, ZIL VOIDF(UIW _TITLE::New),

UIW TITLE:: className, 0 },

ID WINDOW, ZIL VOIDF (UIW_WINDOW: :New),

UIW WINDOW:: className, 0 },

ID END, ZIL NULLP(void), ZIL NULLP(ZIL ICHAR), 0 }

MOVIE1.CPP and P_MOVIE1.CPP are both compiled and linked to pro-
duce an executable. The makefile you will use to generate this application
depends on the type of compiler and operating system you are currently run-
ning. In this manual we will show a simplified Borland 4.0 Windows version
of our makefile.

# MOVIEl program makefile
make -fbtcpp400.mak windows (makes the Windows movie program)
# Be sure to update your TURBOC.CFG and TLINK.CFG files to include
the Zinc paths, e.g.:

#

#
#

---— Windows compiler options

-I.;C:\ZINC\INCLUDE;C:\BC4\INCLUDE
-L.;C:\ZINC\LIB\BTCPP400;C:\BC4\LIB

WIN CPP=bcc

WIN_LINK=tlink

WIN_RC=rc

WIN_CPP_OPTS=-c -dc -ml -Ol -x- -RT- -Vf -WE -w
WIN RC_OPTS=-k

WIN LINK OPTS=/c /C /Twe /x

WIN_OBJS=cOwl

WIN_LIBS=win zil mathwl import cwl

.Cpp.obw:

$(WIN _CPP) $(WIN CPP OPTS) -0$*.obw {$< }
———- Windows

windows: wmoviel.exe

Zinc Designer

77



Writing an Application

wmoviel.exe: moviel.obw p _moviel.obw
$(WIN_LINK) $(WIN_LINK OPTS) @&&!
$ (WIN_OBJS)+moviel.obwt+p moviel.obw

$*, ,$(WIN_LIBS),wmovie.def
!

$(WIN_RC) $(WIN RC OPTS) wmovie.rc $<

Take a moment to view the appropriate makefile information for this appli-
cation. (Makefiles for each compiler and environment supported by Zinc are
in this directory.)

Conclusion

The main components of our application are the P_ MOVIEL.DAT and the
P_MOVIE1.CPP and MOVIE1L.CPP files, which are compiled to produce
the movie application. When launched, the movie program loads MOVIE _
CONTROL from P_MOVIE1.DAT and then displays the information.

In the next chapter, we’re going to learn how to use Zinc Designer to design
the interface components of MOVIE.

78

Zinc Designer



wee  Designing Dialog
Windows

In this tutorial, we’re going to learn how to design dialog windows for our
movie application. We will not do anything with how the program works,
only how it looks. (Remember, in the first four tutorial chapters, we discuss
MOVIE’s architecture. We’ll fill in the holes in “Loading and Storing Data”
on page 127.)

Concepts

Zinc Designer 79



Designing Dialog Windows

Working with MOVIE2
Components of In Figure 1 on page 58, we discussed the components of the MOVIE appli-
MOVIE2 cation we’ve been working with in this series of tutorials. In this part of the

tutorial, we’ll be working with MOVIE2, the second component of
MOVIE. The diagram below shows the components we’re working on in
relationship to the other components of the tutorial. (The components we’re
not working with are grayed out.)

j_ol

Selection Information

80 Zinc Designer



Source files

Below is a table of source files we’ll be working with in this part of the tuto-
rial. We can find these files in /ZINC/TUTOR/MOVIE.

TABLE 5. Components of MOVIE2

Type of file ~ Name of file Description of file
User-pro- MOVIE2.CPP The main program
vided e MOVIE2.HPP Class definitions, identi-

fications, and messages
Designer- P_MOVIE2.CPP Code for tying Designer
generated objects to our program
a5 P_MOVIE2.HPP Identifications and help

contexts

P_MOVIE2.DAT Persistent object storage
What we’ll do

We will first complete the movie and help options located in the pull-down
menu. Then we will create the Movie Selection and Movie Information win-
dows, but without implementing any of their functionality.

But first, let's take a moment to discuss how we will learn how to create the
remaining items in our Movie Control Window.

For example, under the File option we created three items, About..., a menu
separator, and Exit. And we described in the last chapter how we created and
edited the information.

We will use the same process for the rest of our application, but we won’t
describe many of the basic operations, such as how to invoke the information
window, how to position the cursor in the fields, and how to select options
from the window button bar. If you get confused or lost during the tutorial,
take a few minutes to return to the previous tutorial, then examine the steps
used to edit the information. To help, we will supply numerous pictures that
show you the proper state of the edit objects.

Zinc Designer 81



Designing Dialog Windows

Finishing the Movie Control Window

Let’s take a few minutes to finish creating the interface of the main Movie

Control Window. First, open Zinc Designer. Then reload the Movie Control
Window.

1. Select File | Open.
2. Enter the filename
P_MOVIEL.DAT
and press OK.
3. Select Window | Load.
4. Then select MOVIE_CONTROL from the file list.

Now let's add items to the Movie options.

1. Double-click on the edit window.

2. Select the subobjects category.
3. Double-click on the pull-down menu item in the Directories list,
4. Double-click MOVIE_OPTION in the Directories list, then
5. Select Add four times. This process adds four items to the Movie option.
General | Subobjects | Poson | Advarced |
Objects: ~ Directories: 3 Bl
--- Support Objects --- MOVIE_CONTROL 11  Edit '
| -~ Normal Objects — PULL_DOWN_MENU -
FIELD_9 | 'EF MOVIE_OPTION T
; FIELD_10 FIELD_9
- FIELD_11 B FIELD_10 :{
FIELD_12 B rEw_11 f“s
B FIELD_12 -
L_g& ‘ umd ' |_I:l-e'p l 1Pop-up|lem |EI

We will associate the Create, Load, Store, and Delete text with the new

items in the object list. Edit the first option by double-clicking on the item.
Enter the text

&Create
and the name

CREATE OPTION

into the general information. Close this notebook and then invoke the second
item's notebook information. Enter

82

Zinc Designer



&Load. ..

as the text and
LOAD_OPTION

as the name. On the third item, enter
&Store

as the text and
STORE_OPTION

as the name. In the final object item, enter
&Delete...

as the text and

DELETE OPTION

as the name.
[ General Subobiject 1 Position { Advanced
Dbjects: Directories:
--- Support Objects - MOVIE_CONTROL E dit I
--- Normal Objects --- PULL_DOWN_MENU
CREATE_OPTION B MOVIE_OPTION Dele
DELETE_OPTION CREATE_OPTION
LOAD_OPTION DELETE_OPTION
STORE_OPTION LOAD_OPTION
STORE_OPTION
E|

Lok ] [ cocel || Hob | [Hropupiten

Zinc Designer




Designing Dialog Windows

Now move into the Help category. First, double-click the pull-down menu in
the Directories list, then double-click on HELP_OPTION.

General [ Subobj 1 Position [ Advanced |
Objects: Directories:
--- Support Objects --- MOVIE_CONTROL Edit I
--- Normal Objects - PULL_DOWN_MENU
¥F HELP_OPTION
EER sl Delete
ok J [concel | [ tob ] [Hropupitcn B

Add four pop-up items to the object's list by pressing the Add button four
times. The information we’ll add to these items is File, Movie, a line separa-
tor, and About Movie Catalog. Edit the items in the same manner as you did
the movie options, but enter the text as follows:

1. In the first item enter the text
File
and name
HELP FILE
2. In the second item enter the text
Movie
and the name
HELP MOVIE
3. In the third item delete all text to create a separator item, then enter
HELP SEP1
in the name field.
4. In the last item, enter
About Movie Catalog
in the text field, and
HELP MOVIE CATALOG
in the name field.

84 Zinc Designer



Save all the changes by pressing the OK button until you return to the main
edit window.

=] Movie Catalog System ==
File Movie Help

Your main Movie Control Window now has all the category and item infor-
mation needed for the pull-down menu.

Creating a tool bar

Now that we’ve created the interface of our application, we can move on to
creating a tool bar for the movie application. Create a tool bar by selecting
the tool bar item from the Window Editor’s button bar, and then by placing
the item inside the edit window.

=| Movie Catalog System -]~
File Movie Help

Add four buttons to the tool bar by selecting the button item from the Win-
dow Editor's button bar and by creating four buttons inside the movie win-
dow's tool bar.

=| Movie Catalog System -1~
File Movie Help

button | button | ibuttoni | button |

Zinc Designer 85



Designing Dialog Windows

Size each button in the tool bar to a width of 4 and a height of 1. Remember
that the size and position are indicated in the Window Editor's status bar.

=] Movie Catalog System

==

File Movie Help

Juttofuttofuttofutio]

Importing
bitmaps

Bitmap | Import from the Image Editor.

Rather than creating bitmap images, let's use the Image Editor's import fea-
ture. Bring up the Image Editor by double-clicking on its icon. Then select

=| _ File Selection

Filename: Directories:
Ip_movie.dat | c:\zil400\tutor\movie 0K I
mo 2B |
p.mo e .
p_moviel.dat [ =il400 =
p_movie2.dat = tutor
p_movie3.dat sesperE T s Help
p_movied.dat Emovie 00
p_movie5.dat
p_movieb.dat +

o Ak s
List Files of Type: Drives:
“.dat L__!] | e Iil

Select the item

P_MOVIE.DAT

86 Zinc Designer



from the filename field and press OK. Select each item in the object list by
moving to the item and clicking the left-mouse button while positioned over

the item. (The selected item will appear shaded in the list when it is
selected.)

il

Object Selection

Objectname: Directories:

[MOVIE_STORE | ~ui_BITMAP
[ movie_create =

Clmovie_delete £
Umovie load B
[ movie_store _

The bitmapped images are imported once the OK button is selected. (When
the Image Editor imports a bitmap image, the window's main status field will
show the image that is being imported. Once the import process is complete,
the storage selection window is removed from the display and control

returns to the Image Editor.) We can now view the bitmap images by select-
ing Bitmap | Load.

=| _ Object Selection
Objectname: Directories:
| | ~UI_BITHAP
[ movie_create =
1 movie_delete &=

[ movie_load

[ movie_store

The load procedure tells us that four bitmap images are available:
movie_create, movie_delete, movie_load, and movie_store. Return to the
Window Editor by removing the Load Window and then by minimizing the
Image Editor's Movie Control Window.

Zinc Designer 87



Designing Dialog Windows

Editing the tool We can now edit the information associated with our four tool bar buttons.

bar buttons The four buttons will be used to represent the create, delete, load, and store
options, respectively. Invoke the information notebook for the first button in
the tool bar. This will be designated CREATE_BUTTON.

Remove the default text of this button. Move down to the image field and
select the movie_create bitmap image from the combo box's pull-down list.
Enter the name of the field as CREATE_BUTTON. Choose the Auto sized
feature from the button’s option list. Save the changes by pressing OK.

General | Posiion | Geome | Advanced |
@ 1-state [no toggle) s
Text: | | |© 2-state fon/oif)
e R i
O Cell based
Image: |®movie_cteale H @Am-:lzed EWTEE
----- Depth —--
Name: [CREATE_BUTTON | O Flat
Help: ](none) Lg_‘ @ Normal 3-D ]
----- Action -
@ Action on UP-CLICK
[ ok J [ concel | [ Heb | [~ ,iononnowncicy  [®

Follow the same process for the next button by deleting the text, then by
selecting movie_delete as the button image, then by entering the name

DELETE BUTTON

G | 1 Position 1 Geometry | Advanced ]
@ 1-state [no toggle) had
Tesxt: I l (O 2-state (on/off)
S e R Ho
O Cell based
Image: I @ movie_delete |}J @ T umy
~~~~~ Depth --—---
Name: [DELETE_BUTTON | O Fat |
Help: [(none> L%‘ @ MNormal 3-D
----- Action -----
@ Action on UP-CLICK
ldDK J L_.EWEI] [_teb | () Action on DOWN-CI ICK ¥

88 Zinc Designer

Browsing the
window

Edit the next button so that it contains the movie_load image, named
LOAD_BUTTON.

General | Position | Geametry [Advanced]
| @ 1-state (no toggle] +
Text: | | |© 2-state (on/off

e B Height -----
Y —
= O Cell based

Image: | @l movie_load JE] ® Auto-sized
i ot o —
Name: [LOAD_BUTTON][O Fat
Help: |(none) J}] @ Normal 3-D j
~~~~~ Action -----
l HE I bt I Helo ' ® Act!on on UP-CLICK -

L Action on DOWN-C1ICK

The final button should contain the image movie_store and the name
STORE_BUTTON.

[ General 1 Paosition I Geometry | Advanced ]
@ 1-state [no toggle) +
Text: | 4] (& 2-state (on/off)
eE— Height -
e D O Cell zaxed
Image: | 8 movie_store J_!;I @ Auto-sized
—— Depth —
Name: [STORE_BUTTON ] |Onat
Help: |<none) Lt_] @ Normal 3-D ]
----- Action -
L-%K ] LQP"W' ] [_hew | gi:::: :: ::\5':?: ICK 2]

We now have all the presentation features for the Movie Catalog window.
Save these changes by selecting File | Save from the Window Editor.

Let's see what the Movie Catalog window looks like by selecting Window |
Test. At this point, the movie catalog system should appear on the screen.

Test Mode
Exit

=] Movie Catalog System [+]~
File Movie Help

Zinc Designer '7 89



Designing Dialog Windows

Take a minute to browse the window information. Under the File option you
should see the About... and Exit items as well as a menu separator.

=] Movie Catalog System [+]~
File Movie Help

About...

Exit

Under the Movie option, you should see the options Create, Load..., Store,
and Delete....

=] Movie Catalog System ME
File Movie Help
; Create

Load...

Store

Delete...

Under the Help option you should see the options: File, Movie, a menu sep-
arator, and About Movie Catalog.

=] Movie Catalog System [~]~
File Movie Help

File

Movie

About Movie Catalog

If we exited the Window Editor now, we could compile and run the same
code produced in the last section; it would present the same information we
just viewed in test mode. Recall that we invoked the Movie Information win-
dow by reading a UIW_WINDOW object. We have done nothing to modify
the operation of our application—just its interface.

Creating the Movie Selection window

Now that we’ve created the Movie Catalog window, let's create the Movie
Selection window. We just saved the Movie Catalog window, so clear it from
the screen by selecting Window | Clear. Then create another window by
selecting Window | Create. Remember, the Movie Selection window will be
used to select a movie from the catalog system. Therefore, we need a win-

90

Zinc Designer



dow that contains the title of the movie we want to select, a list that tells us
the available movie options, and three buttons that allow us to select a
movie, cancel out of the selection process, or to obtain help about the Movie
Selection window.

.=[ Movie Selection L'_];j

Title: | |

TS

Let's first change the title and name associated with the window that we just
created. In the general window notebook enter the title Movie Selection and
the name MOVIE_SELECTION.

General ] Subobjects | Position ] Advanced ]

----- Support Features ----- +
Border

Maximize Button
Minimize Button

[ System Button

[] Geometry Management
[] Vertical Scroll-Bar

[ Horizontal Scroll-Bar

Title: | Movie Selection

Minlcon: |7<none)

Lell |

Name: [MOVIE_SELECTION

L=l |

Help: [<none>

@ Default |
(o ] [ concet | [ Hew I;(‘ ) Dialon Ohiect ¢

Prepare the window by creating a prompt field for the title, a string field for
the title, a vertical list field for the movie selections, and three buttons for
OK, Cancel, and Help. Your edit window should look like this:

=] <untitled> [~]~

prompt: string

text ﬂ

]

button | [ button | [ ibutton:

Zinc Designer 91



Designing Dialog Windows

Change this window to be a dialog window by invoking the window's infor-
mation notebook, then by selecting Dialog object as the default from the
options list (located at the right-side of the notebook page.)

Change the text associated with the prompt to
Title:

Now, set the name of the prompt to be
SELECT_PTITLE

(The P represents “prompt.”) Next, edit the string field. Remove the default
text by pressing the <delete> key, then change the length of data to 64, and
change the name of the field to

FLD_SELECT TITLE

Change the name of the vertical list to
FLD_SELECT_SELECTION

Change the text of the first button to
&OK

and the name of the button to
SELECT_OK

Change the text of the second button to
&CANCEL

and the name to
SELECT_CANCEL

Change the text of the final button to
SHELP

and the name to

92 Zinc Designer



SELECT_HELP

=] <untitled> [=]-
Title: string
text -
+
0K LCancel Help!

Now let's modify the position and size of all the fields in the window. First,
size the Movie Selection window to be width 52 and height 9. Next, position
the title prompt to be at position 2,1. Refer to the size: and pos:, fields on the
status bar to validate the position and size of the window and its window
objects. Position the title string to be at position 8,1 with a width of 40. Posi-
tion the vertical list directly under the title field at 8,2 and size it to be of
width 40 and height 3. Position the OK button to be at position 8,6 with the
size of 12,1. Position the Cancel button to be at position 22,6 and size 12,1.
Move the Help button to position 36,6 with the size of 12,1. Your Movie
Selection window now looks like this:

=.| Movie Selection [=12]

Title: [ |

] [ conat | [ |

Save the information for this window by selecting Window | Store from the
Window Editor’s pull-down menu, then remove the window from the screen.

Zinc Desigher 93



Designing Dialog Windows

Creating the Movie Information window

94

Now that we’ve finished the Movie Selection window, let's create the Movie
Information window.

=

Movie Information =1~

Description: +

Title: | |

Copyright: CI Length (in minutes): l:l

Director: l I

Actors: l J

| Save ] Close ] | Help I

We
for

1:

"11 start out by describing how to create the prompt and field information
each item in the movie information record.

The Title Information field has a prompt with the text title and the name
INFO_PTITLE right justified at the location (5,1). The size of the title
should be (7,1).

The Title Information is a string field located at position (13,1) with
size (45,1). It has blank text a length of 128 and a name
FLD_INFO_TITLE.

The Copyright prompt is located at position (1,2) and has the text Copy-
right: and name INFO_PCOPYRIGHT.

The Copyright field is an integer field located at position (13,2) with the
size (12,1), value 0, and name FLD_INFO_COPYRIGHT.

The Length prompt is located at position (27,2) contains the text length
(in minutes):, and name FLD_PLENGTH.

The Length field is an integer field located at (46,2) with size (12,1), and
has the value 0, and name FLD_INFO_LENGTH.

The Director field has a prompt located at position 2,3 with size (10,1).
The text is Director:, and the name is INFO_PDIRECTOR.

The Director field is a string field located at position (13,3) with size
(45,1). The text is blank length 128, with the name
FLD_INFO_DIRECTOR.

The Actor prompt has the text Actors: and name INFO_PACTORS.

Zinc Designer



Updating the
source code

10.

1.

12.

13.

14.

15.

The Actor field is a string field located at position (13,4) with size (45,1).
It has blanked-out text and a maximum length of 128 and the name
FLD_INFO_PACTORS.

The Description prompt has the text description: and name
INFO_PDESCRIPTION.

The Description field is of type text and is located at position (13,5) with
a size of (45,3). It has no text, but it has a maximum length of 1024 and
identifying name FLD_INFO_DESCRIPTION.

The Save button is located at position (13,8) with size 12,1 and has the
text &Save, and the name INFO_SAVE.

The Close button is located at position (27,8) with size (12,1) and has the
text &Close with name INFO_CLOSE.

The Help button is located at position (41,8) with size (12,1) and has the
text &KHELP with name INFO_HELP.

We have now completed the creation of the Movie Information record. Save
this information by selecting File | Save from the Window Editor’s pull-
down menu, then exit the Designer.

We have now created and saved the interfaces of our three windows:
MOVIE_CONTROL, MOVIE_SELECTION, and MOVIE_INFOR-
MATION. Let's go back into our source code and change it so that the pro-
gram can display all three windows to the screen. We do this by adding two
additional window creation lines—one for the Movie Selection window, and
one for the Movie Information window.

// Include the appropriate directives.
#include <ui_win.hpp>

int UI_APPLICATION: :Main(void)
{
UI_APPLICATION::LinkMain();
// Add the Movie Control Windows and process user responses.
*windowManager
+ new UIW WINDOW("p movie2.dat~MOVIE CONTROL")
+ new UIW _WINDOW("p_movie2.dat~MOVIE_SELECTION")
+ new UIW_WINDOW("p_movie2.dat~MOVIE_ INFORMATION");
UI_APPLICATION::Control();
return (0);

Zinc Designer 95



Designing Dialog Windows

Now recompile and run the application. Your screen should have all three
windows that we created in Zinc Designer.

Movie Selection [~]-
|
Movie Information [~]=
Title: [ l
Copyright: CI Length (in minutes): l:l
Director: [ |
L Actors: | —|
Description: +

[ Save | [ Cose ][ How |

You can move through the windows and browse the information, but no con-
trol has been built into the application; we will do this in the next tutorial. To
exit the application, remove all three windows from the display.

Conclusion

In this chapter, we created MOVIE’s interface. In the next chapter, we will
create the menu options that we will connect later to member functions.

96 Zinc Designer



Chapter 5

Architecting the
Control

In this chapter, we’re going to examine how to connect menu options to
the functions that perform some action. While we do this, we’ll examine the
architecture needed to generate messages that cause things to happen in the
MOVIE program.

Zinc Designer 97



Architecting the Control

Working with MOVIE3

Components of
MOVIE3

In Figure 1 on page 58, we discussed the components of the MOVIE appli-
cation we’ve been working with in this series of tutorials. In this part of the
tutorial, we’ll be working with MOVIE3, the third component of MOVIE.
The diagram below shows the components we’re working on in relationship
to the other components of the tutorial. (The components we’re not working
with are grayed out.)

'L.l

Control architecture

98

Zinc Designer



Source files Below is a table of source files we’ll be working with in this part of the tuto-
rial. We can find these files in /ZZINC/TUTOR/MOVIE.

TABLE 6. Components of MOVIE3

Type of file Name of file Description of file
User-pro- MOVIE3.CPP The main program
videdfiles N 1OVIE3.HPP Class definitions, identi-

fications, and messages
Designer- P_MOVIE3.CPP Code for tying Designer
generated objects to our program
files P_MOVIE3.HPP Identifications and help

contexts

P_MOVIE3.DAT Persistent object storage
The Movie Control window

The first thing we’ll look at in this tutorial is the Movie Control window. Its
definition in MOVIE3.HPP contains several interesting things.

class MOVIE_CONTROL : public UIW_WINDOW
{
public:
MOVIE CONTROL(void);
virtual EVENT TYPE Event(const UI_EVENT &event);
private:
EVENT TYPE MovieCreate(const UI_EVENT &event);
EVENT TYPE MovieDelete(const UI_EVENT &event);
EVENT TYPE MovieLoad(const UI_EVENT &event);
EVENT TYPE MovieStore(const UI_EVENT &event);
bi
First, MOVIE_CONTROL derives from UIW_WINDOW, allowing
MOVIE_CONTROL to inherit all the properties of the UIW_WINDOW

class. Also, the Movie Control window’s overloaded constructor will call the
base class UIW_WINDOW constructor by default.

Zinc Designer 99



Architecting the Control

The constructor

In addition to an overloaded constructor, MOVIE_CONTROL also has an
Event( ) function. By defining Event() for MOVIE_CONTROL, it will
receive messages before UIW_WINDOW. MOVIE_CONTROL can pro-
cess the events itself, or dispatch the events to a child process, such as the

Movie Information window or the control selection. Or it can pass the infor-
mation to UIW_WINDOW.

MOVIE_CONTROL has four private member functions: MovieCreate( ),
MovieDelete( ), MovieLoad( ), and MovieStore( ). We’ll discuss these later
in the tutorial.

Let's examine the MOVIE_CONTROL constructor more closely.

MOVIE CONTROL: :MOVIE CONTROL(void) :
UIW _WINDOW("MOVIE CONTROL", defaultStorage)

{
// Center the window at the top of the screen.
windowManager->Center (this);
relative.bottom = relative.Height() - 1;
relative.top = 0;

}

It takes no arguments, but it loads the window from a .DAT file by calling
the base UIW_WINDOW class with the window name
MOVIE_CONTROL, and a pointer to the default persistent storage, which
we will examine in a moment. Next, the constructor centers the window in
the display by calling windowManager->Center( ), and moves it to the top
of the screen by resetting its relative.bottom and relative.top values.

Let's examine Main( ) to see what the definition of default storage is.

int UI_APPLICATION::Main(void)

{
// Fix linkers that don't look for main in the .LIBs.
UI_APPLICATION::LinkMain();
// Provide a general storage module.
UI_WINDOW_OBJECT::defaultStorage =
new ZIL STORAGE READ ONLY("p movie3.dat");

The UL WINDOW_OBJECT base class has a member variable called
defaultStorage. This variable is a global storage object that contains our
.DAT file, which is P MOVIE3.DAT. The default storage is initialized by
calling new ZIL_STORAGE_READ_ONLY with the argument
P_MOVIE3.DAT. This allows us not only to retrieve the Movie Control
window from the .DAT file, but the Movie Information and Movie Selection

100

Zinc Designer



Event handling

windows as well. Next, notice that the application creates a new
MOVIE_CONTROL window instead of a new UIW_WINDOW window.
Then it attaches the Movie Control window to the Window Manager.

Finally, the application sets the Window Manager screenID to the Movie
Control window’s screenID. This tells the Window Manager that even if
there are several windows on the display, the application should exit when
the Movie Control window is removed from the display.

In the previous tutorial, we looked at all three windows on the display at
once; to leave the application, we had to remove each window from the dis-
play until no Zinc windows remained. With this code, removal of just the
Movie Control window closes the application—even if we have several win-
dows on the screen.

The next important aspect of the Movie Control window is event handling.
But to cause the Movie Control window to respond to events, we must
decide what it must do when it receives those events. Here’s what the Movie
Control window must do:

1. Create, delete, load, or store movie records. (We’ve seen how this will
work with the pull-down menu and the bitmapped buttons.)

2. Exit when finished receiving user input.
The most efficient way to cause the Movie Control window to do these
things is to introduce six new messages into our system:

OPT_HELP

OPT_MOVIE_CREATE

OPT_MOVIE_DELETE

OPT_MOVIE_LOAD

OPT_MOVIE_STORE, and

a system message, S_CLOSE.
Zinc reserves the values 10,000 and above and -10,000 and below for user
events. In our case we will assign values of 10,000 and above to create,

delete, load, and store messages. And we will also provide a special message
for help. The values for messages are :

const ZIL_USER EVENT OPT HELP = 10000;
const ZIL USER EVENT OPT MOVIE CREATE= 10001;
const ZIL USER EVENT OPT MOVIE DELETE= 10002;
const ZIL USER EVENT OPT MOVIE LOAD = 10003;
const ZIL USER EVENT OPT MOVIE STORE = 10004;

Zinc Designer | 101



Architecting the Control

When our Movie Control window receives these messages, it will call differ-
ent member functions. As we already discussed, MOVIE3.HPP defines four
private member functions for MOVIE_CONTROL, which are
MovieCreate( ), MovieDelete( ), MovieLoad(), and MovieStore(). To
intercept these messages, we overload MOVIE_CONTROL’s Event()
function for MOVIE_CONTROL, and then check for one of these mes-
sages. (We’ll discuss help messages in the next chapter.)

EVENT TYPE MOVIE CONTROL::Event(const UI_EVENT &event)

{
// Check for special requests.

EVENT TYPE ccode = event.type;

if (ccode == OPT _MOVIE CREATE)
ccode = MovieCreate(event);

else if (ccode == OPT MOVIE_ DELETE)
ccode = MovieDelete(event);

else if (ccode == OPT MOVIE_LOAD)
ccode = MovieLoad(event);

else if (ccode == OPT MOVIE STORE)
ccode = MovieStore(event);

else
ccode = UIW WINDOW: :Event(event);

return (ccode);

}

If the Movie Control window receives one of these messages, it calls the
member function for that message.

In this tutorial we won’t worry about the controlling movie information and
movie selection. So in the MovieCreate(), MovieDelete(), and
MovieLoad( ) members, all that we will do is add a new UIW_WINDOW.

EVENT TYPE MOVIE CONTROL::MovieCreate(const UI_EVENT &event)

{
*windowManager + new UIW WINDOW('"MOVIE INFORMATION",

defaultStorage);
return (event.type);

}

In the MovieStore( ) member, we will simply return without performing any
action.

EVENT_TYPE MOVIE_CONTROL::MovieStore(const UI_EVENT &event)
{

return (event.type);

}

We’ll discuss deriving movie information and movie selection in the next
MOVIE tutorial.

102  Zinc Designer



Now that our source file has an underlying architecture with messages, we’ll
connect the Movie Control window to these messages.

Connecting messages

Connecting
messages to the
pull-down menu

Connecting
messages to the
Movie Control
window

In this section, we’ll connect the messages to the Movie Control window and
menu options. Invoke the Designer and load the Movie Control window.

=] Movie Catalog System [+]~
File Movie Help

Connect the messages to the pull-down menu, so that the program knows to
send the messages when the user selects those menu options. Invoke the win-
dow information notebook by double-clicking on the window. Then, in the
Subobjects page, double-click on the pull-down menu in the Directories
list. Then double-click on the MOVIE_OPTION object in the Directories
list. Now the screen should look like this:

General ! Subaobject: I Paosition | Advanced \
Objects: Directories:
--- Support Objects - MOVIE_CONTROL Edit I
--- Normal Objects - PULL_DOWN_MENU v
CREATE_OPTION B MOVIE_OPTION
DELETE_OPTION - CREATE_OPTION
B LoaD_oPTION =3 DELETE_OPTION
STORE_OPTION = Loap_opPTiON
=1 STORE_OPTION 5
(ot J [ concel || Hobo | [Hropupiiem E

Now connect messages to the Movie Control window. Editing each of the
movie options, enter a value, and then set the option so the value passes
through the system when the option is selected. Change the
CREATE_OPTION object first. Invoke the create option information note-
book and change the value on the general page to

Zinc Designer ’ 103



Architecting the Control

10001

and set the Send user message flag from Item features.

General | Subobiects | Posttion

I Geometry { Advanced

I

Text: l&Eleale !

Name: |CREATE_OPTION |
Help: |<none> E

([ox ] [concel ] [ tew ]

~~~~~ Item Features -

[] Mark as separator

[] Allow check-mark
Send user message
----- Sub-Menu Options -----
[] Alphabetical sorting

[] Don't wrap keystrokes
[] Select multiple children
----- Item Message -

® Normal operation

L) Send MAXIMIZE

+

Do the same thing with DELETE_OPTION by entering the value

10002

and setting the Send user message flag.

General | Subobiects | Posiion

T Geometry [Advanced

1

Text: [tDelete... |

* Name: [DELETE_OPTION |
Help: I(none) L%I

----- Item Features -

[[] Mark as separator

[] Allow check-mark
Send user message
----- Sub-Menu Options -
[] Alphabetical sorting

[] Don't wrap keystrokes
[] Select multiple children
----- ltem Message -----

@ Normal operation
S end MAXIMIZE

+

oK) [concel | [_Hew |

Enter the value

10003

104 Zinc Designeri

for LOAD_OPTION, then set the Send user message flag.

G I I Subobiects l Position | Geometry | Advanced !
----- Item Features --—-- B
[] Mark as separator -J

[] Allow check-mark

Text: [tLoad... |
Send user message
e 10003 e Sub-Menu Options -----
[] Alphabetical sorting
Hame: [LUAD_UPTIDN | = [] Don't wrap keystrokes
Help: [?none) Lﬂ [] Select multiple childrien
----- Item Message -----

@n 1

L-&E—-—l L_Q'ancel l I___ﬂ;eb l) Send uAvlu|;p +

Finally, set the value
10004

for STORE_OPTION and set the Send user message flag.

General | Subobjects | Position | Geomety | Advanced |

----- Item Features ----- b s

[] Mark as separator

Text Eﬁlore J [] Allow check-mark
1] Send user message

MEUCIT0004 B Sub-Menu Options -
[] Alphabetical sorting
[] Don't wrap keystrokes
[Select multiple children
----- Item Message -----
l @ Normal operation

) Send MAXIMIZE messane hd

Name: [STORE_OPTION
Help: l?nane)

[ox_] [Concel | [_Hew

el |

Save the changes by pressing OK.

Closing a Zinc automatically includes S_CLOSE. When we want to close a window or

window terminate an application, we can send the S_CLOSE message through the
system. If the current front window receives S_CLOSE, Zinc will remove the
window from the display or terminate the application.

Let's associate S_CLOSE with File | Exit in our pull-down menu. Invoke the
information notebook and move to File | Edit. In the information notebook,
enter the value

=11

Zinc Designer 105

Architecting the Control

Connecting
menu items to
functions

and set Send user message from the item features.

G 1 I Subobjects l Positiar { Geometry] Advanced |
----- Item Features ----- ks
[] Mark as separator
Téﬁt [E&xil i [Allow check-mark
Send user message
Va!qe: D ----- Sub-Menu Options -
: [Alphabetical sorting
Hame: IEXIT_I]PTI[]N I [] Don't wrap keystrokes
Help: ‘(none) L!J [] select multiple children
----- Item Message -----
L o] [[t

The value -11 corresponds to the S_CLOSE message. To view a list of logi-
cal and system events that we can connect to our user values, simply move to
the Message Editor and invoke the Help | Logical events or Help | System
events menu item from the pull-down menu.

=] , Message Editor B
Message Help

Index...

File
Message

System events
Logical events

About Message Editor

These help options list all supported Zinc messages and their values. When
we set the File | Exit value to -11, we are telling the item to send a -11 value
into the system, which it interprets as a message to close the window. Then
as the window closes, the Window Manager will close our application.

Now that we’ve connected the messages to the Movie Control window and
to the pull-down menu, we need to connect the Movie Control window's
pull-down menu items to the member functions. Each of the pull-down menu
options was marked as a “send message” item, which means any time the
user selects an option like Movie | Create, the option will create a message
and put it on the event queue. For example, when the user selects Movie |
Create, the option creates the value 10,001 and sends it to the Event Man-
ager’s event queue. Then our application will retrieve that event.

106

Zinc Designer

Finishing the
tool bar buttons

Processing
messages

What the Movie
Control
window’s
Event() does

Before we go back into the code and look at exactly how our application will
retrieve values, finish setting up the message system with tool bar buttons.
These buttons need the same information as the pull-down items.

Use the Create button as an example. Invoke the button information note-
book, then enter

10,001

into the value field. Then set the Send user message flag from the Settings
list.

General I Paosition | Geometry | Advanced |
R e el e S S e T T ST R Type - s
Text: | | @ Normal
(O Check-box
|ll|§931 I @ movie_create H _____ Seltings -
| Send user message
Name: [CREATE_BUTTON | |0 Set as default button
Help: |<nune> L%I """ State -
; @ 1-state [no toggle)
(O 2-state (on/off)
T T TN .

Do the same for the Delete, Load, and Store buttons by entering 10,002 for
delete, 10,003 for load, and 10,004 for store, and by setting Send user mes-
sage. Finally, connect the help contexts by entering the value 10,000 and set-
ting the Send user message for each of the help pull-down items. Save the
changes to the movie catalog system.

Let's review the code that processes these messages once again. In the func-
tion UL_APPLICATION::Main(), one line sends control to Zinc.

// Process user responses.
UI_APPLICATION::Control();

At run time, UI_APPLICATION::Control() passes messages to
MOVIE_CONTROL::Event()—system events, logical events, operating
system-specific events, or user-defined events. Movie | Create, Moviel
Delete, Movie | Load, and Movie | Store generate user-defined messages
that MOVIE_CONTROL::Event() will interpret.

Let's look at what MOVIE_CONTROL::Event() does.

EVENT TYPE MOVIE_ CONTROL::Event(const UI_EVENT &event)
{

// Check for special requests.

Zinc Designer 107

Architecting the Control

EVENT TYPE ccode = event.type;

if (ccode == OPT MOVIE_ CREATE)
ccode = MovieCreate(event);

else if (ccode == OPT MOVIE DELETE)
ccode = MovieDelete(event);

else if (ccode == OPT MOVIE LOAD)
ccode = MovieLoad(event);

else if (ccode == OPT MOVIE_STORE)
ccode = MovieStore(event);

else
ccode = UIW WINDOW::Event(event);

return (ccode);

}

First, it sets the control code, recognized as ccode in the file, which repre-
sents the message sent to our Movie Control window. When Event()
receives a message to which it doesn’t respond, it sends the information up
to UIW_WINDOW::Event(). But when the user selects Create, Delete,
Load, and Store, the program intercepts and processes the messages. To see
how this happens, let's first look at Movie | Create. When the user selects it,
it sends the OPT_MOVIE_CREATE message to the Movie Control window,
which calls the MovieCreate() member function. In turn, this function adds
a new Movie Information window to the Window Manager.

The same things happen when the user selects other options. When the user
selects the Movie | Delete option, it sends a message to the Movie Control
window, which calls MovieDelete(). In turn, this function adds a new
Movie Selection window to the Window Manager. When the user selects
Movie | Load, it also sends a message to the Movie Control window, which
calls the MovieLoad() function. Then this function adds a new Movie
Selection window. And when the user selects Movie | Store, it sends a mes-
sage to the Movie Control window, which calls MovieStore(). But unlike
the other member functions, MovieStore() doesn’t do anything right now—
we have not yet assigned it information or processing tasks. We will do so
later.

Notice that when the program called MovieDelete() and MovieLoad(),
both constructed a Movie Selection window. When the user selects Movie |
Delete, we will tell the Movie Selection window to delete a movie. When the
user selects Movie | Load, we will tell the Movie Selection window that we
wish to load a movie. In both cases, we need the Movie Selection window to
select the movie to delete or load.

108

Zinc Designer

Viewing the
application

We will discuss MovieDelete() and MovieLoad() in greater detail in the
next tutorial. But the important thing to learn in this tutorial is MOVIE’s
architecture, or specifically, that main control first goes to the Movie Control

window, which invokes the movie selection process.

With the changes we just made, we may now compile and run the MOVIE

application.

=l

Movie Catalog System

=l

File

Movie

Help

The main difference between the state of MOVIE in this tutorial and in the
previous one is that in this state, it has all the movie options. If we select
Movie | Create, Movie | Delete, or Movie | Load, we get additional infor-
mation. For example, if we select Movie | Create from the pull-down menu,

the Movie Information window appears on the screen.

= Movie Information [+]~
Title: | |
Copyright: l:] Length (in minutes): D
Director: | I
Actors: | I
Description: +

L__§__ave I l__glose

]

Help

Zinc Designer

109

Architecting the Control

If we select Movie | Delete or Movie | Load, the Movie Selection window
appears on the screen.

=| Movie Selection [+]~

Title: [|

: QKilL_Qaﬂcei‘H*lielp]

If we select File | Exit, the application exits.

Message flow

Now that we’ve compiled and run MOVIE, let’s examine the message sys-
tem to find out what’s going on under the hood. First, the movie catalog win-
dow appears on the screen because we have added a new Movie Control
window to the Window Manager.

// Add the Movie Control window.
*windowManager + new MOVIE CONTROL;

Second, when we select Movie | Create, the create object sends the value
10,001 through Zinc. The Movie Control window intercepts that message
and calls the MovieCreate() member function.

EVENT TYPE MOVIE CONTROL::Event(const UI_EVENT &event)

{
// Check for special requests.
EVENT TYPE ccode = event.type;
if (ccode == OPT_MOVIE CREATE)
ccode = MovieCreate(event);

MovieCreate() then constructs a new movie information window and adds
it to the screen.

EVENT TYPE MOVIE CONTROL::MovieCreate(const UI_EVENT &event)
{

110 Zinc Designer

*windowManager + new UIW_WINDOW('"MOVIE INFORMATION",
defaultStorage);
return (event.type);

}

The same process happens when we select Movie | Delete and Movie |
Load. For example, if we select Movie | Delete, the Movie Control window
intercepts the value 10,002. Then it processes this event and calls the
MovieDelete() member function.

Finally, when we select File | Exit, the option sends the value -11, Zinc’s
S_CLOSE message, through the system. The Window Manager, rather than
the Movie Control window, intercepts the message. In response, the Window
Manager deletes the movie catalog system window from the display. Since
this window is the Window Manager's main window, the application termi-
nates.

Conclusion

In this tutorial, we learned how to assign values to messages. We also
learned how to use messages to connect menu options to functions that cre-
ate, delete, load, and store movie records. In the next tutorial, we’re going to
define the architecture of the Movie Selection and Movie Information win-
dows.

Zinc Designer 7 1

Architecting the Control

112 Zinc Designer

Chapter 6

Deriving Support
Modules

In previous tutorials, we used the Designer to create windows and their
window objects, and looked at how to create source code that uses these win-
dows. In this tutorial, we’ll round out the MOVIE application’s architecture.
We’ll do this by creating two classes, MOVIE_SELECTION and
MOVIE_INFORMATION, and by connecting their messages to the Movie
Control Window and source code. We will also finish connecting the help
system to our application.

Zinc Designer 113

Deriving Support Modules

Working with MOVIE4

Components of
MOVIE4

In Figure 1 on page 58, we discussed the components of the MOVIE appli-
cation we’ve been working with in this series of tutorials. In this part of the
tutorial, we’ll be working with MOVIEA4, the fourth component of MOVIE.
The diagram below shows the components we’re working on in relationship
to the other components of the tutorial. (The components we’re not working
with are grayed out.)

r-—-—_-----—-

i
1
i
i
i
i
i
i
i
i
i
i
1
i
i
1
i
j
i
&

114

Zinc Designer

Source files

Below is a table of source files we’ll be working with in this part of the tuto-
rial. We can find these files in /ZINC/TUTOR/MOVIE.

TABLE 7. Components of MOVIE4

Type of file Name of file

Description of file

User-pro- MOVIE4.CPP
vided files MOVIE4.HPP

The main program

Class definitions, identi-
fications, and messages

Designer- P_MOVIE4.CPP
generated

files P_MOVIE4.HPP

P_MOVIE4.DAT

The Movie Selection window

Code for tying Designer
objects to our program

Identifications and help
contexts

Persistent object storage

Let's begin rounding out the MOVIE application’s architecture by working
on the Movie Selection window. To prepare it, we’ll go in to the Designer
and change a few of the options. By using the Designer to modify windows,
we’ll be making changes to the P_MOVIE4.DAT file, the container for the
Movie Selection and the Movie Information windows.

Zinc Designer

115

Deriving Support Modules

Changing its

We must change two things with the Movie Selection window, so open it for

information editing. First, in the information notebook for the main window, set the
object to a dialog window. Do this by selecting the dialog object option from
the general list in its information notebook.
General 1 Subobjects [Position | Advanced]
----- Type -—--- -
@ Default
Title:]Movie Selection [O Dialog l?biect
4 E (> MDI Dbject
Minlcon: l <none> !I ----- Interaction -
[] Alphabetical sorting j
Name: WDVIE_SELECTIUN] [[] Select multiple objects
Hel <no % [] Select on drag operation
e l(it JJ [Allow normal hotkeys
- Don't size
L—E—-J L‘Emcel I i Help | Ennn'l n:n\rP .4
The main difference between a dialog object and a normal window is how
they look. In most systems, the border of a dialog window is flat, whereas
the border for a normal window is three dimensional. In addition, most dia-
log objects are marked as nonsizeable modal objects, which means a user
cannot continue an application until he or she has entered a title name into
the Movie Selection and pressed OK or Cancel.
Assigning Let’s make the OK and Cancel buttons functional by entering a value and
messages to selecting a user message for each of these buttons.
buttons
116 Zinc Designer

First, let's change the information for the OK button by invoking the button
information notebook, then by changing the value of the button to 10,005.
(This is a new value that will correspond to an OPT_MOVIE_OK message,
defined in MOVIE4.HPP.) Then set the Send user message flag from the
options in the general list.

General 1 Paosition [Geometry 1 Advanced |
e et e e iy Type - ﬂ
Text: [20K | |@ Normal
{ Check-box
e l <none I_%] ----- Settings -
X Send user message
Mame: ISELECT_UK] [] Set as default button
Help: I(nune) B‘ """ State -
@ 1-state [no toggle)
(O 2-state (on/off)
W I—:C"—aﬂ‘-:sl——l ﬂe'p ----- Height ----- 3

Change information for the Cancel button by invoking the button informa-
tion notebook, by setting the Send user message flag, then by specifying the
value -11 in the value field in the notebook. (The value -11 corresponds to S_
CLOSE.)

Last, change information for the Help button using its information notebook.
Enter the value 10,000, which corresponds to the OPT_HELP value, and set
the Send user message flag in the settings list.

Now we have connected the buttons to messages. The OK button sends an
OPT_MOVIE_OK message, the Cancel button sends the S_CLOSE mes-
sage, and the Help button sends the OPT_HELP message.

We implement this, first by defining the option messages, then by deriving
MOVIE_SELECTION from UIW_WINDOW, and overloading the con-
structor and the Event() function.

const ZIL USER EVENT OPT HELP = 10000;
const ZIL USER EVENT OPT MOVIE CREATE= 10001;
const ZIL USER EVENT OPT MOVIE DELETE= 10002;
const ZIL USER EVENT OPT MOVIE LOAD = 10003;
const ZIL USER EVENT OPT MOVIE STORE = 10004;

const ZIL USER EVENT OPT MOVIE OK = 10005;
class MOVIE_SELECTION : public UIW_WINDOW

{

public:

MOVIE SELECTION(void);
virtual EVENT TYPE Event(const UI_EVENT &event);

Zinc Designer 117

Deriving Support Modules

The constructor

}i

Now that we’ve assigned messages to the buttons, let’s look at the construc-
tor code for the Movie Selection window. The constructor is similar to the
Movie Control Window’s constructor—we call the base UIW_WINDOW
class and pass MOVIE_SELECTION and the default storage as our param-
eters. In addition, just as in the Movie Control Window, we center the win-
dow on the display.

MOVIE_SELECTION::MOVIE_SELECTION(void) :
UIW_WINDOW("MOVIE SELECTION", defaultStorage)

{
// Center the window on the screen.
windowManager->Center(this);

}

In order to allow the Movie Selection window to respond to messages, we
must overload MOVIE_SELECTION::Event(). Once overloaded, the
Event() function will intercept messages that the base UIW_WINDOW
would otherwise receive. Event() will respond when the user presses the
Help, OK, and Cancel buttons. The following code does this:

EVENT TYPE MOVIE SELECTION::Event(const UI_EVENT &event)
{
// Check for special requests.
EVENT TYPE ccode = event.type;
if (ccode == OPT HELP)
helpSystem->DisplayHelp(windowManager, helpContext);
else if (ccode == OPT MOVIE_OK)
eventManager->Put (S _CLOSE); // Close the window.
else
ccode = UIW _WINDOW::Event(event);
return (ccode);

}

When the user pushes the Help button, Event() intercepts OPT_HELP.
Then the help system calls DisplayHelp(), which brings up a help window.

When the user pushes the OK button, Event() intercepts OPT_MOVIE_OK,
and a movie will be loaded or deleted. Since we’re implementing architec-
ture and not functionality, for now, we’ll just pass the S_CLOSE message to
the Event Manager. The Window Manager will process this message and
will remove the Movie Selection window from the display.

Earlier, we assigned the S_CLOSE message to the Cancel button. When the
user pushes the Cancel button, the Window Manager intercepts the message
and removes the window from the display.

118

Zinc Designer

Here’s the old code that invoked the Movie Selection window—this came
from our tutorial that discussed the MovieDelete() and MovieLoad() mem-
ber functions.

EVENT TYPE MOVIE_CONTROL::MovieDelete(const UI_EVENT &event)
{
*windowManager + new UIW_WINDOW("MOVIE_ SELECTION",
defaultStorage);
return (event.type);

}

EVENT TYPE MOVIE CONTROL::MovieLoad(const UI_EVENT &event)
{
*windowManager + new UIW_WINDOW("MOVIE_ SELECTION",
defaultStorage);
return (event.type);

}

The new MOVIE_SELECTION adds a Movie Selection window to the
Window Manager in MovieDelete() and MovieLoad(), instead of in UIW_
WINDOW?’s constructor. This allows MOVIE_SELECTION, not
MOVIE_CONTROL, to process the information. We will see the benefits
of this in the next chapter, when we begin implementing storage.

EVENT TYPE MOVIE CONTROL::MovieDelete(const UI_EVENT &event)
{

*windowManager + new MOVIE SELECTION;

return (event.type);

}

EVENT TYPE MOVIE CONTROL::MovieLoad(const UI_EVENT &event)

{
*windowManager + new MOVIE_SELECTION;
return (event.type);

}

Zinc Designer 119

Deriving Support Modules

Movie Information

Changing its

Now that we’ve modified the Movie Selection window, we can modify the
Movie Information window—and we’ll do it like we did Movie Selection.
We’ll derive a new window class called MOVIE_INFORMATION. Then
we’ll overload its Event() function, then intercept messages sent by the
Movie Information dialog window.

Launch the Designer and open the Movie Information window to change its

information information.
We’ll change several of its flags, as well as the values of its buttons. Let’s get
started by invoking the general window information notebook. Change the
window to be a dialog object by selecting the Dialog Object flag from the
general window object features list.
General 1 Subobjects | Pasition [Advanced |
s 2%] - Support Features - +
[Border
Title: IMovie Information l Meimcs Bulon
iR [X] Minimize Button
Minleon: | <none> N [System Button
[Geometry M
‘Mame: |MIJVIE_INFIJFIMATIEIN l [Vertical Scroll-Bar
Help: |<nnne> [E.I [] Horizontal Scroll-Bar
B T e - Type ===
O Default
ok J [comcel | [_Heb] |G nistoa ot y
Next, change the Save button information by invoking the information note-
book for the button. Once invoked, enter the value
10,005
120 Zinc Designer

which corresponds to the OPT_MOVIE_OK option. Then set its flag to Send
user message by selecting that option from the options list.

General 1 Pasition v Geometry T Advanced]
; cEeaa o . Type - 2
Text: |&Save] @ Normal

Vi > Radio-button

: (O Check-box

Image: 1 <none> —Ig ---- Settings -

Send user message
Name: |INFO_SAVE | |0 set as default button

~ Help: [(none) L!-I ----- ﬁtale -----

- @ 1-state [no toggle)

(O 2-state (on/off)

[T T T e v

Next, change the value of the Close button to
-11

which corresponds to S_CLOSE. Then set its flag to Send user message by
selecting that option from the options list.

General 1 Fostion 1 Geometry | Advanced 1
. ;t}'t sHetnvA] Type - +
Text: [4Close @ Normal :
voe: [11__] e
(> Check-box
Image: , <none> M Seltings -
[Send user message
Name: [INFO_CLOSE [Set as default button
~ Help: |<none> I_!] """ Slale """
o 1 73 @ 1-state [no toggle]
1 (O 2-state (on/off)
I 0K I Cancel ' | Help I _____ Heinht —-eee &

Finally, change the Help button’s value to

10000

Zinc Designer 121

Deriving Support Modules

Movie
Information
definitions

The Event()
function

Then set its flag to Send user message by selecting that option from the
options list.

General] Pasition | Geometry | Advanced |
R, e - Type 4
Text: [tHelp] @ Normal
Aol Radio-button

(O Check-box

J_t_l ----- Settings -

(X Send user message
Name: [INFO_HELP] | Set as default button

Help: |<none> o] | State -
] u @ 1-state [no toggle)

Image: 1 <none>

(O 2-state (on/off)

ldOK | I_E"“‘“"] [Hew || Weinht <o ¥

In MOVIE4.HPP, MOVIE_INFORMATION derives from UIW_WIN-
DOW.

class MOVIE INFORMATION : public UIW WINDOW

{
public:
MOVIE_ INFORMATION(void);
virtual EVENT TYPE Event(const UI_EVENT &event);

}i

MOVIE4.CPP contains Movie Information’s constructor code and its
Event() function. The constructor is nearly the same as Movie Selection’s
constructor.

MOVIE_INFORMATION: :MOVIE INFORMATION(void) :
UIW WINDOW('"MOVIE INFORMATION", defaultStorage)

{

// Center the window on the screen.
windowManager->Center (this);

}

MOVIE_INFORMATION::Event() differs slightly from MOVIE_
SELECTION::Event(). Just like Movie Selection, it intercepts the OPT _
HELP message and calls the help system. But it also processes the OPT
MOVIE_STORE message, which has a value 10,005, and which tells the
Event() function to store the record. We’ll implement how it stores the
record in the next tutorial, though we’ll take care of some other functionality
in this tutorial.

EVENT TYPE MOVIE INFORMATION::Event(const UI_EVENT &event)
{

122

Zinc Designer

Help system,
persistence
architecture

// Check for special requests.

EVENT _TYPE ccode = event.type;

if (ccode == OPT HELP)
helpSystem->DisplayHelp(windowManager, helpContext);

else if (ccode == OPT MOVIE_ STORE)

{
eventManager->DeviceState(E_MOUSE, DM WAIT);

// save storage till later.
eventManager->DeviceState(E_MOUSE, DM VIEW);
}

else
ccode = UIW _WINDOW::Event(event);
return (ccode);

}

When the Event() function receives the OPT_MOVIE_STORE message, it
stores the information to disk. But since a storage operation may take some
time, we should give the user some information about the operation’s status.
To give the user this information, we call the Event Manager’s
DeviceState() function to tell the mouse to display a “wait” cursor while the
Event() function will store a record in the data file. After the record is
stored, we tell the mouse cursor to display a “view” cursor, which informs
the user that he may continue using the application.

The Event() function need not handle the S_CLOSE message; it can pass it
to the base UIW_WINDOW::Event() function, which processes the mes-
sage directly.

Now that we’ve added architecture for passing a storage message, we need
to add one additional piece of code to Main().

// Provide a general storage module.
static ZIL ICHAR _fileName[] = "p movied.dat";
UI_WINDOW OBJECT::helpSystem = new UI_HELP_ SYSTEM(_fileName);
UI_WINDOW_OBJECT::defaultStorage = new
7IL STORAGE READ ONLY(fileName);

This code generalizes Movie Information’s data file, assigning its name to a
parameter called _fileName. Also, it creates a new UI_HELP_SYSTEM,
the default system that displays a window whenever the user requests help.
Finally, it creates read-only storage for the window by calling the constructor
with the same filename.

Zinc Designer 123

Deriving Support Modules

Testing our
handiwork

Save these changes to the Movie Information and Movie Selection windows,
and add the changes to create Movie Information and Movie Selection
classes. Go ahead and compile MOVIE4. Then run the executable to exam-
ine the features.

=| Movie Catalog System B
File Movie Help

During execution, most features of the movie catalog system window are the
same as in previous tutorials. The main addition is that the window’s help
buttons now bring up a general help window. (We’ll further refine the help
system in “Refining the help system” on page 165.)

The options work like they did in our last tutorial—Create brings up the
Movie Information window, and Delete and Load both bring up the Movie
Selection window. We’ll implement the Store option in the next tutorial.

After creating a new Movie Information record, selecting Help brings up the
help system. Selecting Close or Save, however, removes the Movie Informa-
tion window from the display. The Save button doesn’t save anything yet. As
we discussed earlier, we’ll connect the Save button to the storage module in
the next tutorial.

If we select Movie | Delete, the Movie Selection window appears on the dis-
play.

=| : Movie Selection : [+]~

Title: []

[ok | [Cancel | [Hew |

Selecting the Help button brings up the help window. And since we have not
implemented all of the features of the OK button, pressing OK or Cancel
doesn’t yet close the Movie Selection window.

124

Zinc Designer

Conclusion

In this tutorial, we’ve created MOVIE_SELECTION and MOVIE_IN-
FORMATION classes that encapsulate and localize the Movie Selection
and Movie Information windows. Though the Movie Control Window archi-
tecture still controls the overall application, these windows now respond to
events.

In the next tutorial, we’ll begin implementing the next major component of
MOVIE—reading and writing records.

Zinc Designer 125

Deriving Support Modules

126 Zinc Designer

- LOAdING and Storing
Data

‘ ~ e’ve reached a point in the tutorials where we can fill in the pieces of
our architecture. Up to now, we’ve used the Designer to create windows that
present information to the screen; we’ve also discussed the architecture of
the window objects. Now our program has many holes; but with our archi-
tecture finished, we can fill in those holes. This tutorial shows that we can
design the architecture of our programs and defer filling in the holes until
later in the programming process.

Zinc Designer 127

Loading and Storing Data

Here, we’ll examine the code for reading and storing the movie data, as well
as for managing movie data. We’ve already written a large portion of
MOVIE, so as we read this tutorial, we’ll see the benefits of the architecture
we set up (and deferred) in previous tutorials, which now load and store, and
manage information efficiently and understandably.

First, we’ll look at the groundwork for implementing storage, the definitions
of MOVIE_SELECTION and MOVIE_INFORMATION. Then we’ll
disassemble the implementations piece by piece to learn how they work. In
these implementations, we’ll pay close attention to the communication
between the Movie Control Window, the Movie Selection window, and the
Movie Information window. We’ll also examine loading and storing records
using a .DAT file.

Working with MOVIES

Components of
MOVIE5

In Figure 1 on page 58, we discussed the components of the MOVIE appli-
cation we’ve been working with in this series of tutorials. In this part of the
tutorial, we’ll be working with MOVIES, the fifth component of MOVIE.

128

Zinc Designer

The diagram below shows the components we’re working on in relationship
to the other components of the tutorial. (The components we’re not working
with are grayed out.)

Zinc Designer 129

Loading and Storing Data

Source files

Below is a table of source files we’ll be working with in this part of the tuto-

rial. We can find these files in /ZINC/TUTOR/MOVIE.

TABLE 8. Components of MOVIES

Type of file Name of file

Description of file

User-pro- MOVIES.CPP
vided files

The main program

MOVIES.HPP Class definitions, identi-
fications, and messages
MOVIE.DAT User data storage
Designer- P_MOVIES.CPP Code for connecting
generated Designer objects to our
files

P_MOVIES.HPP

Laying the ground work for storage

program

Identifications and help
contexts

Let's start filling in the holes by looking at MOVIES.HPP. At the top is the
definition for MOVIE_CONTROL. Its public section contains the con-
structor and the Event() function we’ve discussed at in previous tutorials.
Its private section contains functions MovieCreate(), MovieDelete(),

MovieLoad(), and MovieStore().

class MOVIE CONTROL : public UIW_WINDOW

{

public:
static ZIL STORAGE * dataFile;
static ZIL ICHAR _movieName[64];
MOVIE_CONTROL(void);
~MOVIE CONTROL(void);

virtual EVENT TYPE Event(const UI_EVENT &event);

private:

EVENT TYPE MovieCreate(const UI_EVENT &event);
EVENT TYPE MovieDelete(const UI_EVENT &event);
EVENT TYPE MovieLoad(const UI_EVENT &event);
EVENT TYPE MovieStore(const UI_EVENT &event);

bi

130

Zinc Designer

The Movie
Control window

The Movie
Selection
window

This tutorial has a new member function, the destructor. It also contains two
static members, ZIL_STORAGE * daraFile and ZIL_ICHAR
_movieName[64]. The _dataFile member stores movie record information,
and the _movieName member stores the name of the current movie record.

NOTE: The ZIL._STORAGE data file is not a true database. We are using it
in this tutorial for simplicity. Zinc data files are built for persistence, not data
storage; the methods in this tutorial work for simple data storage and
retrieval, but not for advanced database operations. But later in the tutorial,
we’ll show where we could bolt up a third-party database to MOVIE.

The next piece of code defines a new message called
OPT_RESET _SELECTION, which will allow individual Movie Selection
items to communicate with the Movie Selection window.

MOVIE_CONTROL will work a little differently from objects in previous
tutorials; it will do more than mere file management. We also add more code
to all options so that they do specific things.

MOVIE_SELECTION is much the same as in the last tutorial, except for a
new private member called request, which will identify the type of request
MOVIE_SELECTION received. The request can be either
OPT_MOVIE_LOAD, which causes the class to load a new record, or
OPT_MOVIE_DELETE, which causes it to delete a record.

class MOVIE SELECTION : public UIW_WINDOW
{
public:

MOVIE_ SELECTION(ZIL STORAGE READ ONLY *file,

ZIL USER EVENT request);

virtual EVENT TYPE Event(const UI_EVENT &event);
private:

ZIL USER _EVENT request;
bi

We will also pass to our constructor the data file and type of request that we
want the MOVIE_SELECTION to perform. The file will be a pointer to the
library catalog, and the request will be either OPT_MOVIE_LOAD or
OPT_MOVIE_DELETE. To expand the definition from previous definitions
of MOVIE_SELECTION, this window will display all of the movies cur-
rently available in the database, then respond to the Movie Control Window,
telling it what type of movie needs to be loaded or deleted.

Zinc Designer 131

Loading and Storing Data

The Movie
Information
window

MOVIE_INFORMATION is also similar, except for two new member
functions, Load() and Store(). Load() gets a specific record title from the
database. The first argument of Load() is the name of the record that we
will be loading, and the second is the data file.

class MOVIE_ INFORMATION : public UIW_WINDOW
{
public:
MOVIE INFORMATION(ZIL ICHAR *name = ZIL NULLP(ZIL ICHAR));
virtual EVENT TYPE Event(const UI_EVENT &event);
virtual void Load(const ZIL ICHAR *name, ZIL STORAGE READ ONLY *file,
ZIL STORAGE OBJECT READ ONLY *object =
7IL_NULLP(ZIL_STORAGE OBJECT READ ONLY),
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI ITEM *userTable = ZIL NULLP(UI_ITEM));
virtual void Store(const ZIL_ ICHAR *name,
ZIL STORAGE *file = ZIL NULLP(ZIL STORAGE),
7IL_STORAGE OBJECT *object = ZIL NULLP(ZIL STORAGE OBJECT),
UI ITEM *objectTable = ZIL NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL NULLP(UI_ITEM));

ki

Store() works much the same way, except that it stores movie information
to our data file. Again, the first parameter is the name of the record that we
want to store, and the second parameter is a pointer to the data file.

Writing the load and store functionality

Opening and
closing the data
file in the
constructor

We’ve already entered all of the information in the .DAT file, so now we
need only work with the source files. Let's start by implementing the part of
the Movie Control Window’s constructor and destructor that will open and
close the data file.

MOVIE CONTROL::MOVIE CONTROL (void)
UIW WINDOW("MOVIE CONTROL", defaultStorage)
i
// Give the window a unique searchID.
searchID = ID MOVIE CONTROL;
// Center the window at the top of the screen.
windowManager->Center(this);
relative.bottom = relative.Height() - 1;
relative.top = 0;

132

Zinc Designer

The Event()
function

// Initialize the data file.
_dataFile = new ZIL STORAGE("movie.dat",
UIS_OPENCREATE | UIS READWRITE);

}

The constructor opens the data file MOVIE.DAT with read and write
access. The MOVIE_CONTROL destructor saves the data file, then deletes
the data file object.

MOVIE_ CONTROL: :~MOVIE CONTROL(void)
|
// Save the data file.
_dataFile->Save();
delete _dataFile;

}

Deleting the data file object closes the file and preserves all the information
that we’ve saved during the MOVIE’s execution.

The Event() function works exactly as in the previous tutorial—it intercepts
messages and dispatches them to the proper member function. As a brief
reminder,

1

LA I

OPT_HELP is handled by the help system when we call
helpSystem->DisplayHelp().

OPT_MOVIE_CREATE is dispatched to MovieCreate().
OPT_MOVIE_DELETE is dispatched to MovieDelete().
OPT_MOVIE_LOAD is dispatched to MovieLoad().
OPT_MOVIE_STORE is dispatched to MovieStore().

EVENT TYPE MOVIE_ CONTROL::Event(const UI_EVENT &event)
{
// Check for special requests.
EVENT TYPE ccode = event.type;
if (event.type == OPT HELP)
helpSystem->DisplayHelp(windowManager, helpContext);
else if (ccode == OPT MOVIE_CREATE)
ccode = MovieCreate(event);
else if (ccode == OPT MOVIE DELETE)
ccode = MovieDelete(event);
else if (ccode == OPT MOVIE_LOAD)
ccode = MovieLoad(event);
else if (ccode == OPT MOVIE_STORE)
ccode = MovieStore(event);
else
ccode = UIW _WINDOW: :Event(event);
return (ccode);

Zinc Designer

133

Loading and Storing Data

MovieCreate()

MovieDelete()

Now that we remember how Event() dispatches messages to member func-
tions, let's examine each of the member functions, starting with
MovieCreate(). We won’t change MovieCreate() much from the previous
tutorial—here, too, we create a new movie information window and attach it
to the Window Manager.

EVENT TYPE MOVIE CONTROL::MovieCreate(const UI_EVENT &event)
{

*windowManager + new MOVIE INFORMATION;

return (event.type);

}

Adding a new Movie Information window displays the window on the
screen with all information blank. Also, MOVIE_INFORMATION will
handle its own storage.

The MovieDelete() code is similar to that in the previous tutorial, except
that we have two new components. The first component checks to see if a
movie record is active. If so, it deletes it from the data file by calling
_dataFile->DestroyObject(), with the movie name as the parameter. Then
it resets the movie name for the next time it’s called.

EVENT TYPE MOVIE_CONTROL::MovieDelete(const UI_EVENT &event)
{

if (_movieName[0])

dl
_dataFile->DestroyObject (_movieName) ;
_movieName[0] = '\0';

}

else

*windowManager + new MOVIE_SELECTION(_dataFile,
OPT MOVIE DELETE);
return (event.type);

}

MOVIE_SELECTION will set _movieName when the user presses OK
after choosing a movie from the list. We will look at that a little later in the
tutorial.

For now, let's work on the second piece of MovieDelete(). This code is sim-
ilar to that in the previous tutorial, except that it passes in a pointer to the
data file in addition to the type of request.

EVENT TYPE MOVIE_ CONTROL::MovieDelete(const UI_EVENT &event)
{

134

Zinc Designer

MovieLoad()

if (_movieName[0])

{
_dataFile->DestroyObject(_movieName) ;
_movieName[0] = '\0';

}

else

*windowManager + new MOVIE_SELECTION(_dataFile,
OPT_MOVIE DELETE);
return (event.type);

}

In this function, the request will be OPT_MOVIE_DELETE. Recall that in
the Movie Control Window, Event() had a case for
OPT_MOVIE_DELETE, which called MovieDelete() with the original
event, event.type = OPT_MOVIE_DELETE.

else if (ccode == OPT_MOVIE DELETE)
ccode = MovieDelete(event);

Here, we call MOVIE_SELECTION and request that we want to use the
Delete operation instead of the Load operation.

Let's now look at the MovieLoad() member function. It works like
MovieDelete(), only it makes a different request.

First, MovieLoad() checks the movie name. If it exists, it loads it from the
data file by creating a new movie information record, by assigning it a valid
movie name, then by attaching it to the Window Manager. Then it resets the
movie name, so that the next time MovieLoad() is called, it has a fresh
name field.

EVENT TYPE MOVIE_ CONTROL::MovieLoad(const UI_EVENT &event)
{

if (_movieName[O0])

{
*windowManager + new MOVIE_INFORMATION(_movieName);
_movieName[0] = '\0';

}

else

*windowManager + new MOVIE SELECTION(_dataFile,
OPT_MOVIE LOAD);
return (event.type);

}

But if no movie name exists, then MovieLoad() opens the Movie Selection
window using the _dataFile pointer and the request OPT_MOVIE_LOAD.

EVENT_TYPE MOVIE CONTROL::MovieLoad(const UI_EVENT &event)

Zinc Designer 135

Loading and Storing Data

MovieStore()

{
if (_movieName[0])
{
*windowManager + new MOVIE INFORMATION(movieName);
_movieName[0] = '\0"';
}
else

*windowManager + new MOVIE SELECTION(_dataFile,
OPT_MOVIE_LOAD);
return (event.type);

}

This tells MOVIE_SELECTION that we requested a movie for loading,
rather than for deleting.

The type of request MOVIE_SELECTION receives is important. Earlier,
we said we can call MOVIE_SELECTION’s Delete() or Load() opera-
tion. Upon completion, MOVIE_SELECTION will tell the Movie Control
Window whether to delete or to load a new movie. (We’ll examine this in
detail when we examine the MOVIE_SELECTION class.)

At any given time, the Window Manager will have at least the Movie Con-
trol Window on the screen. It may also have one or more Movie Selection
windows. MovieStore() finds the first window that matches the movie
name, and then stores the information out to the data file.

In the previous tutorial, MovieStore() was stubbed out. Now, in keeping
with the mission of this tutorial, we’ll fill in the holes and write code to store
the movie record. This code will look at all the windows on the screen to see
if any are of type MOVIE_INFORMATION. If so, they are stored to disk.

EVENT TYPE MOVIE CONTROL::MovieStore(const UI_EVENT &event)
{
UI_WINDOW OBJECT *window =
windowManager->Get ("MOVIE INFORMATION");
if (window)
window->Store(ZIL NULLP(ZIL_ICHAR), _dataFile);
return (event.type);
}

136

Zinc Designer

The Movie

Control window

The Movie
Selection class

Now that we’ve discussed what happens in the header file, let's review what
the Movie Control Window is doing.

First, the constructor creates or opens a new or existing data file.

Then, when it receives create, delete, load, or store requests, it calls the
appropriate member function.

The member function MovieCreate() creates a new Movie Information
record. However, the member functions MovieDelete() and
MovieLoad() are more complex. We can call them in one of two differ-
ent circumstances—when a movie name is present, or when one isn’t.

Finally, MovieStore() stores out the first window that it finds that
matches the string id MOVIE_INFORMATION. These members form the
major components of the control of the MOVIE application.

Let's now examine the functionality of MOVIE_SELECTION. Here’s an
overview of what it does.

1. It creates and displays a Movie Selection window.
2. Then it lists all movies in the catalog data file.

3. When created, the Movie Control Window specifies an operation, either
delete or load.

4. Once the user presses OK, MOVIE_SELECTION sends a message that
tells the Movie Control Window whether the OPT_MOVIE_DELETE or
OPT_MOVIE_LOAD operation is requested, and also sets the movie
name.

else if (ccode == OPT MOVIE OK)
!
Get (FLD_SELECT TITLE)->Information(I_COPY TEXT,

MOVIE CONTROL:: movieName);
eventManager->Put (S _CLOSE);// Close the window.
eventManager->Put (request);// Send response to the main

// control.
}

Now MOVIE_SELECTION’s constructor has a new section that loads
movie information. One of the first lines in the section is a constructor of an
event.

UI_EVENT addEvent(S_ADD OBJECT);
The event, S ADD_OBJECT, communicates with the vertical list inside the

Movie Selection window. It tells it to add to itself the individual movie
names, which are its items.

Zinc Designer 137

Loading and Storing Data

The next line calls the member function Get() with the field identifier
FLD_SELECT _SELECTION.

UI_WINDOW OBJECT *1list = Get(FLD_SELECT SELECTION);

With the Designer, we assigned FLD_SELECT_SELECTION to the vertical
list.

Get() calls MOVIE_SELECTION and asks for a field that matches this
identification. This will be the vertical list where we present the movie
records. Next, we use FindFirstObject() to find every record inside the
data file.

ZIL ICHAR *entry = dataFile->FindFirstObject(_allObjects);

The next several lines continue to find data records until we’ve run out of
information in the file.

for (; entry; entry = dataFile->FindNextObject())
if (strcmp(entry, _currentDirectory) &&
strcmp(entry, _parentDirectory))

{
addEvent .windowObject = new UIW BUTTON(O, 0, 30, entry,
BTF_NO TOGGLE | BTF_NO 3D | BTF_SEND MESSAGE,
WOF_NO_FLAGS, ZIL NULLF(ZIL USER FUNCTION),
OPT RESET SELECTION);
list->Event (addEvent);

}

We create a new list entry for each movie record by calling the
UIW_BUTTON constructor and by passing the name of the movie. Then
we set up the button to send a user message by setting the BTF_SEND-
_MESSAGE request and by setting our request as OPT_RESET-
_SELECTION.
addEvent.windowObject = new UIW BUTTON(O, 0, 30, entry,
BTF_NO TOGGLE | BTF_NO 3D | BTF_SEND_MESSAGE,

WOF_NO FLAGS, ZIL NULLF(ZIL USER FUNCTION),
OPT RESET SELECTION);

Finally, we add the button to the list by calling list->Event() with the mes-
sage S_ADD_OBJECT.

list->Event (addEvent);

The Event() function. Now that we’ve introduced MOVIE_SELECTION’s
constructor, let's look at its Event() function. When the user presses OK,
MOVIE_SELECTION receives the message OPT_MOVIE_OK. Handling

138

Zinc Designer

that request, Event() gets the information from the window’s title field,
sends a delete or load request to the Movie Control Window, and then closes
the Movie Selection window.

else if (ccode == OPT_MOVIE_ OK)
{
Get (FLD_SELECT TITLE)->Information(I_COPY_ TEXT,
MOVIE CONTROL:: movieName);
eventManager->Put (S_CLOSE);// Close the window.
eventManager->Put (request);// Send response to the
//main control.

}

These three lines of code expose much of Zinc's architecture. In the first line,
we get information from our MOVIE_SELECTION window by calling the
Get() function with our field identifier of FLD_SELECT_TITLE, and by
making the request of /_ COPY_TEXT. Then we pass in the Movie Control
Window movie name.

Get (FLD_SELECT TITLE)->Information(I_COPY TEXT,
MOVIE CONTROL:: movieName);

This tells the selected title field that we want to copy the text currently in its
field to _movieName. Then we put an S_CLOSE message into the Event
Manager. As discussed in a previous tutorial, this message is sent through
the Event Manager, picked up by the system. And since the selection win-
dow is the top window on the display, Window Manager will close the selec-
tion window.

This is why we copy the movie information to _movieName before we put
the S_CLOSE in the Event Manager. Once our selection window is closed, it
will be destroyed. So if we passed messages in a different order, we would
delete the information before we copied it.

The last thing we do is put the load or delete request on the event queue.
Now the Movie Control Window will pick it up, since it’s the first window
on the screen after our window is removed.

eventManager->Put (request); // Send response to the main
// control.

The selection reset command. The final piece of code that we need to exam-
ine is the OPT_RESET _SELECTION command. Each button sends this com-
mand whenever the user selects a movie from the list.

else if (ccode == OPT_RESET SELECTION)

{
7I1, ICHAR *title;

Zinc Designer 139

Loading and Storing Data

The Movie
Information
class

event.windowObject->Information(I GET TEXT, &title);
Get (FLD_SELECT TITLE)->Information(I SET TEXT, title);
}

When the program receives the OPT_RESET_SELECTION command, it
gets the text from the current item and inserts it into the title field. When a
button sends the OPT _RESET SELECTION message, it also includes a
pointer to itself inside of the event.windowObject variable. This is where we
get the text for the title field, using the I_GET_TEXT request.

event.windowObject->Information(I_GET TEXT, &title);

Finally, setting the title selection with the text, we get the title field from our
window, and copy the movie title with the command I_SET_TEXT.

Get (FLD_SELECT TITLE)->Information(I_SET TEXT, title);

This code updates the window, displaying the new title in the title field.

Summarizing Movie Selection. MOVIE_SELECTION might seem compli-
cated, so let’s review what it does so we can keep a clear picture in our
minds. In the constructor, we pass the data file and the request, either
OPT_MOVIE _LOAD or OPT_MOVIE _DELETE. Then we traverse the data
file, looking for all available movie records inside the vertical list.

In the Event() function we look for two messages, OPT_MOVIE_OK and
OPT_RESET SELECTION. When it receives OPT _MOVIE_OK, it sets the
_movieName variable name. Then it sends a response to the Movie Control
Window, telling it that we’ve completed the request. Finally, we reset a
movie selection inside the movie list by sending the
OPT_RESET _SELECTION message, and getting the information text from
the current window object. Then it sets the selected title in the title field.

Now that we’ve reviewed MOVIE_SELECTION, the last code we’ll need
to write in this tutorial is MOVIE_INFORMATION. Its definition is sim-
ple, but there are many new pieces in the Load and Store operations.

The constructor. Let's start by looking at the constructor. When we call the
constructor we pass in a name argument. The name is the actual name of the
movie record that we want to load or create. Then if we have a name, we
load the record information. The Movie Control Window will either call the
constructor with NULL to create a new movie record, or it will call the con-
structor with the valid movie name.

MOVIE INFORMATION::MOVIE INFORMATION(ZIL ICHAR *name) :
UIW WINDOW("MOVIE INFORMATION", defaultStorage)

140

Zinc Designer

In

// Center the window on the screen.
windowManager->Center (this);
// Load the record information.
if (name)
Load(name, MOVIE_CONTROL:: dataFile);
}

Event(), we only look for the additional request of

OPT_MOVIE_STORE. In this case, we call the Store() member function to
pass a NULL name and a pointer to the actual data file.

EVENT TYPE MOVIE_ INFORMATION::Event(const UI_EVENT &event)
{
// Check for special requests.
EVENT TYPE ccode = event.type;
if (ccode == OPT HELP)
helpSystem->DisplayHelp(windowManager) ;
else if (ccode == OPT_MOVIE STORE)
Store(ZIL NULLP(ZIL_ICHAR), MOVIE CONTROL:: dataFile);
else
ccode = UIW WINDOW::Event(event);
return (ccode);

}

We need not associate the actual name with Store(), because the window's
title field contains the name of the movie.

The Load() function. Now that we’re done with the constructor, let's look at
the Load() function. Load() creates the storage record and loads the data in
two steps. First, it creates the record by constructing a load object called
Z1L._STORAGE_OBJECT_READ_ONLY, and by passing the data file
handle and the load name.

ZIL STORAGE_OBJECT READ ONLY lObject(*file, name, 0);

This code opens a record in the data file. Then it loads its information with
the overloaded Load() function.

lObject.Load(&sData, MAX LENGTH); // title.

Get(FLD INFO TITLE)->Information(I_SET TEXT,
sData);

1Object.Load(&iData); // copyright.

int copyright = iData;

Get (FLD_INFO COPYRIGHT)->Information(I SET VALUE,
©right);

10bject.Load(&iData); // length.

int length = iData;

Get (FLD_INFO LENGTH)->Information(I_SET VALUE,

Zinc Designer W 141

Loading and Storing Data

&length);

lObject.Load(&sData, MAX LENGTH); // director.

Get (FLD_INFO DIRECTOR)->Information(I_SET TEXT,
sData);

1lObject.Load(&sData, MAX LENGTH); // leads.

Get (FLD_INFO_LEADS)->Information(I_SET TEXT,
sData);

lObject.Load(&sData, MAX LENGTH); // description.

Get (FLD_INFO_DESCRIPTION)->Information(I_SET TEXT,
sData);

In this code, we use a 16-bit integer and character array overloads for the
Load() function. Zinc automatically defines many overloads for the Load()
function. Here is a list of some of them:

virtual int Load(ZIL_INT16 *value);

virtual int Load(ZIL_UINT16 *value);

virtual int Load(ZIL_INT32 *value);

virtual int Load(ZIL_UINT32 *value);

virtual int Load(ZIL_UINT8 *value);

virtual int Load(ZIL_INT8 *value);

virtual int Load(void *buff, int size, int length);
virtual int Load(ZIL ICHAR *string, int length);
virtual int Load(ZIL ICHAR **string);

Once we’ve loaded the record’s information, we set the appropriate field
inside our movie information record. First, we load the information for the
movie's title by calling object.Load() and by passing the pointer to sData,
with the maximum length of the read buffer.

lObject.Load(&sData, MAX LENGTH);
Then we set the FLD_INFO_TITLE information to the loaded title.
Get (FLD_INFO TITLE)->Information(I_SET TEXT, sData);

We do similar type calls for the copyright, length, director, actors, and
description, though the copyright information is an integer.

1l0Object.Load(&iData);

For the length, we load an integer value.
1Object.Load(&iData);

For the director field, we load a string.
lObject.Load(&sData);

For the actors and actresses, we also load a string.

10bject.Load(&sData);

142

Zinc Designer

Finally, for the description field, we again load a string.

lObject.Load(&sData);

Above, we load information from a .DAT file used as a flat-file database, but
we could load it from a third-party database instead. However, the focus of
this tutorial is not how to use a third-party database, but how to build an
application by architecting it first and implementing it later. The reason we
even mention third-party databases? This is where Zinc and third-party data-
bases intersect. If you were to exceed the scope of this tutorial and store
movie information in a third-party database, this is where you would load
that information.

The Store() function. The Store() operation mirrors the Load() operation,
but we create and store movie information rather than load it. This code gets
the record name from the window title.

if (!name || !name[0])
Get (FLD_INFO_TITLE)->Information(I_GET TEXT, &name);

The next line creates a new object and gives us read and write privileges.

ZIL STORAGE OBJECT sObject(*file, name, O,
UIS CREATE | UIS READWRITE);

Next, we store the record’s information, first getting the data from the field,
then storing the information. For example, the title field gets the information
from FLD_INFO_TITLE, and calls sObject.Store(), with sData as its
parameter. Subsequently, we do the same for the copyright, length, director,
actors and actresses, and description fields.

Get (FLD_INFO TITLE)->Information(I_GET TEXT,
&sData);

sObject.Store(sData); // title.

int copyright;

Get (FLD_INFO COPYRIGHT)->Information(I_GET VALUE,
©right);

iData = (ZIL INT16)copyright; // copyright.

sObject.Store(iData);

int length;

Get (FLD_INFO LENGTH)->Information(I_GET VALUE,
&length);

iData = (ZIL INT16)length; // length.

sObject.Store(iData);

Get (FLD_INFO DIRECTOR)->Information(I_GET TEXT,
&sData);

sObject.Store(sData); // director.

Get (FLD_INFO LEADS)->Information(I GET TEXT,
&sData);

Zinc Designer 143

Loading and Storing Data

Summarizing
the Movie
Information
class

sObject.Store(sData); // leads.

Get (FLD_INFO DESCRIPTION)->Information(I_GET TEXT,
&sData);

sObject.Store(sData); // description.

Below is a representation of the composition of files in the movie catalog
library:

- African Queen

MOVIE.

DAT \

Vertigo

MOVIE_INFORMATION might seem complicated, so let’s summarize
what it does so we can keep a clear picture in our minds. If we pass a name
to MOVIE_INFORMATION’s constructor, it loads the information from
the data file; but if we pass it a NULL, it creates a new movie record.
Event() only checks for the OPT_MOVIE_STORE message in Event(). If it
receives the message, Event() calls Store(), which stores the movie record.

Admiring our handiwork

We have now filled in MOVIE’s holes. Having architected it in the earlier
tutorial, we were able to implement storage and management in this tutorial
without any hassles. This hassle-free implementation shows that we can
write a properly designed program—that is, a program that functions by
passing messages between objects—by creating the architecture first, and
implementing the main functionality later.

Zinc Designer

Go ahead and compile and run it.

=] Mavie Catalog System EE
File Movie Help

E IR

Once it’s running, select one of the movie operations.

Movie | Create works as in previous tutorials, but now we can enter infor-
mation into the title, copyright, length, director, actors, and description
fields, and save the information by pressing Save.

Movie | Delete brings up the Movie Selection window. Clicking on an item
in the list updates the window’s title field—our list item tells the window to
update the title field. If we press OK, the button sends the OPT_MOVIE_OK
message to the Movie Selection window. The window then resets the movie
catalog system's movie name, and sends the message for the movie catalog
to delete or load a movie.

Movie | Load also brings up the Movie Selection window. Selecting Bridge
on the River Kwai, The, from the list brings up the record for Bridge on the
River Kwai, The in a Movie Information window.

=| Movie Information |~]2]
Title: (Blidge on the River Kwai, The —I
Copyright: Length [in minutes):
Director: [David Lean —|
Actors: [William Holden, Alec Guinness —I
Description: | Psycological battle of wills combined with *

high-powered action sequences make this a
blockbuster.

[Save | [_Close | [_Hew |

We can view or change the information inside this record and then save the
changes by pressing Save. We can cancel and close the window by selecting
Close.

Our movie catalog system is nearly complete. Take a few minutes to play
with it, then exit the application by selecting File | Exit.

Zinc Designer 145

Loading and Storing Data

Conclusion

This tutorial showed how we could write a program by architecting it
first and implementing the main functionality later. Understanding the con-
nections between the .DAT file, the windows, the data file, and the source
code sends us well on our way to understanding complex applications.

146

Zinc Designer

Chapter 8

Making Movie
Robust

In the last tutorial, we described the construction of the movie application.
In this tutorial we will make the movie application more robust by including
an exit function, adding geometry management, including an error system
with error checking, and by beefing up the help system. The addition of
these features will combine creating new windows in Zinc Designer with
adding functionality in our code.

Zinc Designer 147

Making Movie Robust

Working with MOVIE6

Components of
MOVIE6

In Figure 1 on page 58, we discussed the components of the MOVIE appli-
cation we’ve been working with in this series of tutorials. In this part of the
tutorial, we’ll be working with MOVIES®, the sixth component of MOVIE.
The diagram below shows the components we’re working on in relationship
to the other components of the tutorial. (The components we’re not working
with are grayed out.)

Error system

Help system I

I
I
I
I
1
I
i
I
I
I
4 i
I
I
i
H
i
I
1
|
|

148

Zinc Designer

Source files

Below is a table of source files we’ll be working with in this part of the tuto-
rial. We can find these files in /ZZINC/TUTOR/MOVIE.

TABLE 9. Components of MOVIEG6

Type of file ~ Name of file Description of file
User-pro- MOVIE6.CPP The main program
skl MOVIE6.HPP Class definitions, identi-
fications, and messages
MOVIE.DAT User data storage
Designer- P_MOVIE6.CPP Code for tying Designer
generated objects to our program
files P_MOVIE6.HPP Identifications and help
contexts
P_MOVIE6.DAT Persistent object storage

Adding features to the Movie Control window

Minimize icon

Let's start by adding four features to the Movie Control window—a mini-
mize icon, an exit window, a status bar, and a help option.

To add a minimize icon to the Movie Control window, enter Zinc Designer,
open P_MOVIEG6.DAT, and then invoke the Image Editor.

= Image Editor [~]~
Edit Bitmap Icon Mouse Help

R4 il =1 IR

left
~ right-
| screen-|

:

Import the icon from the P_MOVIE.DAT file by
1. selecting Icon | Import, then by
2. selecting P_MOVIE.DAT, then by

Zinc Designer 149

Making Movie Robust

3. selecting the icon entitled movie_icon.

=| Resource, Import...

Objectname: Directories:

[movie_icon | ~ui_icon [__g___x]
= ASTERISK =

Beeiewon T |

Help

Once the icon is imported into the P_MOVIEG6.DAT file, we can load the
Movie Control window. Associate the Movie Icon with the Movie Catalog
System window by invoking the window's information notebook and select-
ing the movie_icon from the MinIcon list.

General l Subobjects] Position l Advanced]
----- Support Features - ki &
Border e

I Maximize Button

Title: |Movie Catalog System
L [Minimize Button

M @ maovie_ican * System Button
[] Geometry Manag
Name:]MUVIE_CUNTRUL] [Vertical Scroll-Bar
Help:] nones IEI [[] Horizontal Scroll-Bar
Cmnan e e — Type -
2 @® Default
e | I_Q"’""e' | [e |) Dialoa Nhiect ¥

150 Zinc Designer

Exit window

Save the change by pressing OK, then save the window by selecting Win-
dow | Store. The minimize icon is now associated with the movie catalog
system and will appear when the Movie Control window is minimized. To
view this feature select Window | Test then select the minimize button from
the catalog system window.

Test Mode
Exit

Movie Catalog
System

Now let's associate an exit window with our application. The exit window
will contain text that states that pressing OK will close the application. We
will also attach an icon and two buttons, OK and Cancel, and modify the
title to read Exit Application.

=| Exit Application
0 This will close the application.
0K I LCancel l

Create a window and modify the following:
1. Enter the new title
Exit Application
2. Enter the name
EXIT APPLICATION
into the Name field, then

3. Deselect the maximize and minimize options from the support features.

Zinc Designer 151

Making Movie Robust

4. Change the window's style by selecting Dialog Object, Don't size, and
Modal from the options list.

General 1 Subobjects [Position 1 Advanced 1
. @ Dialog Dbject ks
(MDI Dbiject
Title: [Exil Application | ----- Interaclfon .
i [] Alphabetical object sorting
Minlcon: | <none> [E‘ [] Select multiple objects
[] Select on drag operation
MName: I]ZXIT_APPLICATII]N | [[] Allow normal hotkeys :]
Help: [<none> B Don't Size
[] Don't Move
: K Modal
lﬁ [—Eamel l I——ﬂ-eh I Locked 3

Save the changes, then create an icon field and place it at position (1,1).
Enter the information notebook for the new icon field. When Zinc creates a
new .DAT file, it automatically inserts five default icons into the file. These
include the application, asterisk, exclamation, hand, and question icons. To
use the asterisk icon, select it from the Image combo box.

General l Position] Geometry | Advanced]

----- Action -----
@ Action on UP-CLICK
| > Action on DOUBLE-CLICK

Z
=
m
3
@
=~
14

Name: [FIELD_1

Help: I <none>

ok] [cancel | [Hew |

By default, the icon image does not have a title and is not selectable by the
user. We will keep the default information associated with this icon.

Now create a string field at position (7,1) and give it a size of (35,1). Edit the

information by bringing up the string information notebook and typing in the
text

This will close the application.

152 Zinc Desiigner

Change the default length to 64 characters, then change the mode of interac-
tion on the advanced page to be View only and Noncurrent.

G | 1 Position 1 Geometry I Advanced]
----- Input Format -----
® Normal
T =) Lower-case
Text:]Thls will close the application. [
= = [Upper-case
Leoqth) Password (%)
----- Input Conversion -----
Name: IFIELD_Z l [] Spaces to underscores
Help: [<none> = [J Automatically highlight data

[ox] [cancet | [Hew]

Now create the two buttons that will have the OK and Cancel options. Place
the OK button at position (9,2) with size (12,1), and place the Cancel button
at position (24,2) with size (12,1). Change the information associated with
the OK button by invoking the information notebook, entering the text

&OK

in the text field, changing the value to
1,000

for the value field, and by setting the flags Send user message and Set as
default button. Save the changes, then edit the Cancel button. Change the
text by entering the string

&Cancel

and then the value
-11.
Then set the Send user message flag. (S_CLOSE has the value -11.) Save the

information for the exit window by selecting Window | Store, then File |
Save. Then exit the application.

We must do three things to connect an exit function to the source code. First,
we need to define the exit function in one of our classes. Since this is a con-
trol operation, we will define Exit in the class MOVIE_CONTROL.

class MOVIE CONTROL : public UIW WINDOW

{
public:

private:

Zinc Designer 153

Making Movie Robust

static EVENT TYPE Exit(UI_DISPLAY *, UI_EVENT MANAGER *,
UI WINDOW MANAGER *windowManager);

Next, we need to set the Window Manager’s exit function to point to our exit
function.

windowManager->exitFunction = MOVIE CONTROL::Exit;

This tells the Window Manager that it must call our exit function before it
actually exits the application. This gives our application final control to tell
whether we should continue or exit. We will display one additional window
to confirm the exit process. Finally, we define the actual
MOVIE_CONTROL::Exit() function.

EVENT_TYPE MOVIE CONTROL::Exit(UI_DISPLAY *,
UI_EVENT MANAGER *, UI WINDOW MANAGER *windowManager)
{
// Read the exit window.
UI ERROR STUB::Beep();
UIW_WINDOW *window = new UIW WINDOW("EXIT APPLICATION", defaultStorage);
windowManager->Center (window) ;
*windowManager + window;
return (S_CONTINUE);
}

The steps in this process are:

1. Sound the bell on the computer,

Load in the exit application window,
Center the window on the display,
Attach the window to the display, and

Return the message S_CONTINUE. This message tells the Window Man-
ager we want to continue our application.

2
3.
4.
5

When we run the application with these changes, and select File | Exit, the
exit application window appears on the screen.

=[Exit Application
0 This will close the application.
l OK I Lancel I

154

Zinc Designer

We can continue with our program by selecting Cancel or we can quit by
selecting OK. When we select OK, the final exit message is sent to the Win-
dow Manager, our application windows are removed from the screen, and
control returns to the operating system.

Status bar Now, let's return to the Designer to add a status bar to the Movie Control
window. In the Designer, load in MOVIE_CONTROL from the resource
file. Select the status bar object from the button bar, then place the object in
the movie catalog system window.

=] Movie Catalog System [~]~
File Movie Help

Size the window to be one cell taller— to (60,5)—so that all the information
fits inside the window. Place a prompt inside the status bar at position (1,1).
Then create and place a string object and stretch the object so that it fits
across the status bar.

=[Movie Catalog System EE
File Movie Help

prompt: |string

Change the name and text associated with the movie prompt by invoking the
prompt information notebook and entering the text

Movie:

with name

Zinc Designer 155

Making Movie Robust

STATUS PMOVIE TITLE.

G] l Position T Geometry I Advanced |

 Text: [Movie: 4]: .

Name: [STATUS_PMOVIE_TITLE I

i - i

Change the name of the string object by invoking the string information
notebook and changing the Name field to

STATUS MOVIE TITLE

giving it no default text. Then change the length to 128. When we run our
application, this field will be changed any time we load in a new movie
record, or if we have multiple records on the screen and change the focus
from one movie record to another.

Let's see how this is done by saving the window, exiting the Designer, and
viewing the new code in P_MOVIE6.CPP.

Here’s the design of the status bar:

1. The Movie Control window actually controls the presentation of the sta-
tus bar.

2. Each of the movie information windows will send a message to the
Movie Control window to update the status bar information.

The Movie Control window updates the status bar from Information()
when it receives the information request I_UPDATE_STATUS.

void *CONTROL WINDOW::Information(ZIL INFO REQUEST request,
void *data, ZIL OBJECTID objectID)
{
if (request == I_UPDATE_ STATUS)
{
Get (STATUS_MOVIE TITLE)->Information(I_SET TEXT, _movieName);
_movieName[0] = '\0';
}
else
data = UIW _WINDOW::Information(request, data, objectID);
return (data);

156

Zinc Designer

}

This request is sent to the Movie Control window any time we receive an
S_CURRENT or S_NON_CURRENT message in the MOVIE_INFORMA -
TION::Event() function.

else if (ccode == S CURRENT || ccode == S NON CURRENT)

{
ccode = UIW _WINDOW: :Event (event);

UI_WINDOW OBJECT *window =
windowManager->Get (“MOVIE CONTROL”) ;
if (window && ccode == S_CURRENT)

{
Get (FLD_INFO TITLE)->Information(I_COPY TEXT,

MOVIE CONTROL:: movieName);
window->Event (I_UPDATE STATUS, ZIL NULLP(void));
}
}

Compile and run the application again to see the status bar change.

Error handling Now let's look at how we can beef up the movie catalog’s record informa-
tion. Launch the Designer and load the movie information window. The
main things that we want to change in this record are the copyright date,
length, and code to ensure that we have a valid title.

The copyright date is changed by entering the copyright field information
window and specifying a valid range for the date. In our case let's enter the
range in years from 1900 to 2020. This is done by moving to the range field,
and entering

1900..2020
G | 1 Pasition { Geomety | Advanced |
~~~~~ Input Conversion -----
[X] Automatically highlight data

Range: [1900..2020 |

Name: |FLD_INF[]_I:[] PYRIGHT |
Help: [( none> I:_!]

e T

Zinc 7Designer 157



Making Movie Robust

Now when the user enters a date outside of this range, an error window will
appear on the screen, indicating that they have entered a copyright date that
is outside of the years 1900 to 2020.

Next, let's change the length of the movie to be a minimum of 5 minutes and
a maximum of 5 hours. This is done by invoking the length field information
notebook and by entering the range

5..300

where 300 is (5 x 60) minutes.

G | 1 Pasition | Geomelry | Adyanced |

----- Input Conversion -----
Automatically highlight data

Range: [5..300 |

Name: [FLD_INFO_LENGTH |
Help: I(none) L&_l

| 0K l Qamﬁ I LEdP l

These two changes add validation for the copyright and length.

To insure a valid title, we must go to the source code. Save the changes to the
movie information window, then exit the Designer. We will display an error
any time the Store operation is called and we do not have a name for the
title. This is done by checking the name argument for NULL.
if (!name || !name[0])
errorSystem->ReportError (windowManager, WOS NO_ STATUS,
"Sorry, cannot save the movie without a name.");

If an invalid name is entered, we call the error system with the message
Big Time Movie Error

The final thing that we need to do is to actually invoke Zinc Application
Framework's error system. This is done by attaching a new error system to

the base UI_ WINDOW_OBJECT::errorSystem member.

UI_WINDOW_OBJECT::errorSystem = new UI_ERROR_SYSTEM;

If we recompiled the application and launched MOVIE®6, we could test the
title, copyright, and length error handling by typing invalid data into any of
these fields.

158

Zinc Designer



Adding geometry management

Movie Selection

Individual
objects

Let's now beef up the movie selection by adding geometry management.
Geometry management is a programming option where we can tie window
objects to a specific position of its parent window or to a side of the window,
so the object moves or stretches when we size the window. Let's first look to
see how we can size a window and have the vertical list and buttons move
appropriately.

After you load the movie selection window, bring up its information note-
book. To turn on geometry management, select the Geometry management
option from the support features. At this time, we will also turn off the Dia-
log Object option, which we turned on in an earlier tutorial—doing so will
allow us to resize the window. (Dialog windows cannot be sized in some
environments.) Turn this option off by selecting the Default option in the
Type section of the options list.

G [ 1 Subobiects £ Position { Advancad |
' t o e S Support Features ----- bt
: Border
¥4 e i
Title: |Movie Selection rlaxlmlze:u;tont,:
: 2| Minimi utton
Minlcor: | snonex E System Button
Geometry Management
Name: [MOVIE_SELECTION | | Vertical Scroll-Bar
Help: l{none) L_:_] ] Horizontal Scroll-Bar
_____ Type -
O Default .
J L@ Dialna Nhiect 3

[ox ] [ cancet | [ Hew

Once we have turned on the window’s geometry management, we can turn
on the geometry management for individual objects. We want to turn on
geometry management for the OK, Cancel, and Help buttons, as well as for
the vertical list and string that contains the name of our movie title.

Zinc Designer 159



Making Movie Robust

The goal behind geometry management is to allow us to size the window to a
larger size and have the buttons follow the window border at the bottom, and
to have the list and title fields follow the window and grow when the win-
dow grows larger on the bottom right side.

=] Movie Selection [+]~

Title:

oK | [_Comcet | [ Hew |

= Movie Selection [+ l -~

Title:

R TS T

Do this by attaching items to the vertical list, the title field, and to each of the
buttons. Let's start by attaching geometry to each of the buttons. First,
choose the OK button. To attach geometry management, we will need to do
change the coordinates for our button to be mini-cells, and create the attach-
ments on the Geometry page of our information notebook.

160

Zinc Designer



The minicell coordinates are contained in the second column of numbers on
the Position/Size group. Choose this coordinate scale by selecting the mini-

cell bitmap button.

General [ Poson | Geomety |  Advanced |
s e e el
™ o | s = B
o oEmE

I EK ' LCancel I Help I

The reason that we want to change the type of coordinate is so that it will
align more closely with the bottom of the window. If we were to attach on
cell boundaries, the buttons and the vertical list would collide with the bor-

der.

Now, move to the Geometry page. Attach the button to the bottom of the
window by selecting the bottom attachment located on the bottom-left por-

tion of the geometry page.

General f Paosition [

o relative

| 0K l ]__Eancel

3
o--anone | %
¥

Help |

Geometry I Advanced ]

 Constraint Features

offset: |7
options: |[] stretch +
D opposite
[] hz-center =
= *

anchor: [MOVIE_SELECTION [#

[ Size Restrictions
[12_] <= widthc=
1 <= height <= |1

Zinc Designer

161



Making Movie Robust

Choose an absolute coordinate for attachment by selecting absolute from

the combo box.

Geometry l  Advanced |

General 1 Positian

 Constraint Features

offset: |7
options: |[] stretch ﬂ
[] opposite
[] hz-center
— +

anchor: |MOVIE_SELECTION .

[ Size Restrictions

<= width <=

[1 ] <=height<= [1

| ok | gancel l |

An absolute attachment is like connecting a physical wire from our object to
the parent window. And attaching a relative constraint is like attaching a
spring from our object to the window.

We are now working in mini-cell coordinates, so in the constraint features,
under offset, we want to enter a mini-cell value that represents appropriate
space between the bottom of the window and our button. Here, let's set the

mini-cell coordinate to 4.

General | Posilion

Goomety | dumeed |

 Constraint Features

offset:

options: |[] stretch £
[] opposite

+

anchor: |MOVIE_SELECTION :I

 Size Restrictions

<= width <=

I 0K l Léancel 1 | Help I

[1 ] <=height<= [1

Save these changes by pressing OK. We have now attached the constraint to
our OK button. Follow the same process to attach the Cancel and Help but-
tons to the bottom of the window. Remember, first change the coordinates of
each object to mini-cell, then change the geometry management to absolute
bottom attachment, with a mini-cell offset of 4.

162

Zinc Designer




Test these geometry management constraints by sizing the edit window on
the screen. Notice that when enlarging the window, the buttons move down
with the window.

.=.| Movie Selection =]~

Title: | |

0K I L__C__ancel I | Help |

Change the geometry for vertical list by entering the vertical list informa-
tion notebook and moving to the Geometry page. With this object we can
keep cell coordinates. Attach an absolute bottom constraint to the vertical
list and enter an offset of 2. This means that the vertical list will move within
two cells of the bottom of the window. Next, set the stretch feature in the
Constraint Features options list so that it will grow when the window
grows, and shrink when the window shrinks.

General | Subobjects | Position [ G ty ] Advanced il
[ Constraint Features
oot
options: slretch’ *
[ opposite
] hz-center 1

anchor: [MOVIE_SELECTION :]
[ Size Restrictions |
<= width <=
| 0K lL_gancel ][ Hep | | [& | <=height<= [4

We should also add a right constraint to our vertical list so that it will grow
on the right side if we size the window. This is done by selecting an absolute
constraint on the right side and by once again entering the offset value of 2.
Allow stretching of the width by selecting the stretch option from the
options list.

Zinc Designer 163



Making Movie Robust

We have now attached geometry with the vertical list. When the window
grows from either the right or the bottom the vertical list will stretch with the
window.

Let's complete the geometry management by selecting the title field, moving
to the geometry page and adding an absolute constraint on the right side.
Enter an offset of 2 and select the stretch option.

General 1 Position [ Geometiy 1 Advanced |
 Constraint Features
otse
options: |[X] stretch +
[ opposite

|

anchor: [MOVIE_SELECTION [#]
Size Restrictions ]
. <= width <=
[ ok ] [ Cancel | | Hep ] |[[1 | <=heighte= [1

We have now tied constraints to the title field, the vertical list, and all of our
buttons. Save the changes and exit the application. You can now test this fea-
ture by recompiling and running the application. As you invoke the movie
application and load the movie selection window, notice how you can size
the window and see the buttons, vertical list, and title stretch with the size of
the window.

164 Zinc Designer



Refining the help system

This tutorial’s final area of emphasis is to include context-specific help.
Recall that we connected general help to our application by introducing the
message OPT_HELP, and then connecting it with each of the pull-down help
items and the Help buttons located at the bottom of the information and
selection windows.

General 1 Pasition | Geometry [ Advanced
----- Type - 2
Text: [tHelp @ Normal
b > Radio-button
) Check-box
Image: ' <none> L!j ,,,,, Settings -

Send user message
Name: ISELECT_HELP [] Set as default button

|
Help: |<none> - SR
l u @ 1-state (no toggle)

T T :

To specify context-sensitive help, we associate help contexts with pull-down
items and dialog windows, then call the help system with the appropriate
help context in our code. The Designer allows us to connect help contexts to
pull-down items and dialog windows.

Let's look at how to import the help contexts. Launch the Designer and open
the P_MOVIE6.DAT file.

Import all the help contexts from P_ MOVIE.DAT by calling the Help Edi-
tor, then by selecting the Context | Import option from the pull-down menu.

=] Help Editor [+~
Context Help
Import...
Export...

Create...
Load...
Store
Store As...

Clear
Clear All
Delete...

Zinc Designer 7 165



Making Movie Robust

Select the file P_MOVIE.DAT for importing, then select all of the help con-
texts from the resource list.

=] Object Selection
Objectname: Directories:
[HELP_MOVIE_SELECTION | ~UI_HELP
© HELP_ABOUT i =

© HELP_ABOUT_MOVIE &=

© HELP_FILE

© HELP_GENERAL
© HELP_MOVIE

© HELP_MOVIE_EDIT
© HELP_MOVIE_FILE

i

We now have a full set of help contexts from which to choose. The names of
the imported help contexts are associated directly with the type of help we
will be identifying, except that each help context has the prefix HELP_.

Item help Let's start the association by:

1:

2 U

minimizing the Help Editor,

loading the Control Window,

bringing up the control window's information notebook,
bring up the window’s Subobjects page,

moving to the pull-down menu’s directory,

moving to the FILE_OPTION directory,

moving down to the first help item, ABOUT_OPTION, located under
the File option.

General ;[ Subobiject: ] B Position i' & Advanced
Objects: Directories:

--- Support Objects - MOVIE_CONTROL Edit l

- Normal Objects - FIELD_2

ABOUT_DPTION & FILE_OPTION
FILE_SEP1 == ABOUT_OPTION

B4 EXIT_oPTION FILE_SEP1

B exit_oprion

4

| 0K I Cancel I Help ! IPop»up ltem

166 Zinc Designef




Open the item's information notebook, then choose the HELP_ABOUT
option from the help field.

G 1| ] Subobijects ! Position | Geometry ! Advanced |
IS R e AR R TR ] - Item Features - ﬂ
[] Mark as separator K
it |&Aboulm I [] Allow f:heck-malk
Send user message
Mghonio000 e - Sub-Menu Options -
/ [ Alphabetical sorting
Name: [ABOUT_OPTION | |CJ Don't wrap keystrokes
Help: lEHELP_hBUUT :Li_] [ Select multiple children
----- Item Message -----
®N ' :
L—-Q.K-_J L_‘_[;_ancel ' L_éelp I O Send MAXIMIZE +

Press OK to save the changes.

Now associate the remaining menu items with these help contexts:
HELP_MOVIE_FILE with the File menu item
HELP_MOVIE_EDIT with the Edit menu item
HELP_ABOUT_MOVIE with the About Movie Catalog... menu item

Dialog help Now let's connect help for the selection and information dialog windows. We
want to associate help with the general dialog window, then make sure the
system calls it when the user presses the system help key while a field in the
dialog window is current, or when the user selects the Help button in a dia-
log window.

We specify the help context by bringing up the window's information note-
book, then by selecting the appropriate help context. The following help
contexts correspond with our dialog windows:

HELP_MOVIE_SELECTION with the selection dialog.
HELP_MOVIE_INFORMATION with the information dialog.

The source code does not require any modification. Remember, we intercept
the OPT_HELP message and call the help system with a variable helpCon-
text.

EVENT TYPE MOVIE SELECTION::Event(const UI_EVENT &event)
{
// Check for special requests.
EVENT _TYPE ccode = event.type;
if (ccode == OPT_HELP)
helpSystem->DisplayHelp (windowManager,
event.windowObject->helpContext) ;

Zinc Deggner 167



Making Movie Robust

General
application help

Run time

The variable helpContext is the identification number of the help we want to
display. By default, helpContext is defined to be HELP_CONTEXT_NONE.
We now have changed the values for the information and selection windows
to HELP_MOVIE_INFORMATION and HELP_MOVIE_SELECTION.

We must make a final help connection in the source code; we must specify
HELP_GENERAL in the second argument of the help system's constructor.

UI_WINDOW_OBJECT::helpSystem = new UI_HELP_ SYSTEM(_fileName,
HELP_GENERAL) ;

Specifying this argument causes invokes HELP_GENERAL any time we call
the help system and where no other help is available. For example, if we had
just launched MOVIE and pressed the help key, the application would dis-
play the general help window.

We have now connected help to various parts of our application. Take a few
minutes to recompile and view the application with the added help informa-
tion.

Conclusion

In this tutorial we have looked at several ways in which we can beef up our
application. There are many things that we can do to the application that
involve: modifying the windows in Zinc Designer, creating new windows,
and modifying the source code.

Through all of our modifications, we have worked the architecture of our
program and the overall design of our code. We have simply added new fea-
ture points where we can either bring up a new window or add options using
the Designer that help our windows look better.

Since we’re finished with this section, you may want to think of additional
ways to strengthen MOVIE to enhance or improve its strength.

168

Zinc Designer



wmes (z€NErating an
Internationalized
Application

‘ ~ e have now covered a lot of territory with the movie application. We
need to address one final component—globalizing MOVIE. Here, we will
examine the Message Editor, discuss importing locale and language informa-
tion, introduce delta storage, and finally, learn to use Unicode with our appli-
cation.

Kéy

Concepts

Zinc Designer 169



Generating an Internationalized Application

Working with MOVIE7
Components of In Figure 1 on page 58, we discussed the components of the MOVIE appli-
MOVIE7 cation we’ve worked with in this series of tutorials. In this part of the tuto-

rial, we’ll be working with MOVIE7, the seventh and last component of
MOVIE. (MOVIET7 is exactly equivalent to MOVIE, which we compiled
and ran in the first MOVIE tutorial.) The diagram below shows the compo-
nents we’re working on in relationship to the other components of the tuto-
rial. (The components we’re not working with are grayed out.)

0 Globalization

Selection Information

170 Zinc Designer



Source files

Below is a table of source files we’ll be working with in this part of the tuto-
rial. We can find these files in /ZINC/TUTOR/MOVIE.

TABLE 10. Components of MOVIE7

Type of file Name of file Description of file
User-pro- MOVIE7.CPP The main program
videdfiles  N1OVIET.HPP Class definitions, identi-
fications, and messages
MOVIE.DAT User data storage
Designer- P_MOVIE7.CPP Code for tying Designer
generated objects to our program
files P_MOVIE7.HPP Identifications and help
contexts
P_MOVIE7.DAT Persistent object storage
Message Editor

Let's start by looking at the conversion of internal strings in our application.
Recall the error message that indicated that the application could not save a
movie record without a movie title. When we write applications for multiple
languages and locales, we cannot use embedded strings written in English.
In addition to the store error message already in the application, we will
implement three more error messages: one for movie delete, one for movie
load, and one for movie selection.

To internationalize this portion of our program we need to create these
strings using abstract names. The way this is done in Zinc is by using the
Designer to construct a message table that has a number identifier and a
string that can be stored and loaded to and from disk.

Construction of a message table is accomplished through the Message Editor
module of the Designer. In our application we will create a message table
and then associate four strings with four unique identifiers. We’ll create the

Zinc Designer 171



Generating an Internationalized Application

identifiers ZMSG_STORE_ERROR, ZMSG_LOAD_ERROR, ZMSG _
DELETE_ERROR, and ZMSG_NAME_ERROR. Let's add these messages to
our data file. Start the Designer and invoke the Message Editor.

= Message Editor [~]~
Message Help

Create a new message table by selecting Message | Create.

=| i 3 __ <untitled>

Edit

Delete

GEEE

Move Down

S | [oene ]

Add four messages to the table by selecting Add four times.

=] _ <untitled>
0 ZMSG_0 <undefined> Edit l
0 ZMSG_0 <undefined>
0 ZMSG_0 <undefined>
0 ZMSG_0 <undefined>

: L_S_wre I |Slolegs...| I_Qlose I | Help I

172

Zinc Designer



To edit any item, click on it and press Edit, or double-click it.

=| M ge Information
Message: <undefined> l

StinglD:  |ZMSG_0 |

ok | [ _cance ] Help |

The message information window has three components: message, num-
berID, and stringlID. The message field is the message we want to display.
The numberID field contains a programming number that will be associated
with the message. The stringID is a #define variable that identifies in code
what our numberID will be.

Edit the four embedded movie string messages to see exactly how the mes-
sage information is correlated. Do the following to create the information for
a Store( ) error:

1. Select the top message item and enter:

Store error: cannot save the movie without a name into the
field.

2. Enter the value
1
into the numberID field.
3. Enter the string
ZMSG_STORE ERROR
into the stringlD field.

=| Message Information

Message: Store error: cannot save the movie withoul

StinglD:  [ZMSG_STORE_ERROR |

ok | [ _cane | Help |

Press OK to save the changes.

Zinc Designer 173



Generating an Internationalized Application

Now create a message for the Load( ) error. Select the second item, then in
the message field, enter the text

Load error: cannot find the specified movie "%s"."
In the numberlD field enter the value

2
and in the stringlD field enter the string

ZMSG LOAD ERROR.

=| Message Information

Message: [Load error: cannot find the specified movi|

StinglD:  [ZMSG__LOAD_ERROR |

r 0K l L___gam:el I | Help ]

For the Delete( ) error, enter the message,

Delete error: cannot find the specified movie "$%s"."
In the numberID field, enter the value

3
In the stringID field enter the string

ZMSG_DELETE_ERROR

=| Message Information
Message: IDeIele ernror: Cannot find the specified m0'|
StringlD: |ZM5670ELETE‘ERHDR ]

| 0K I Cancel l | Help I

The final message occurs when no name has been entered into the selection
window. Edit this message and enter the message text

Name error: a name must be specified to complete the operation.
In the numberID field, enter the value

4

174

Zinc Designer



and in the stringlD field, enter the string

ZMSG_NAME_ERROR

=] Message Information
Message: [Name error: A name must be specified to cl
StinglD:  [ZMSG_NAME_ERROR |
ok | Cancel | [ Help |

We now have four messages in the message table. Store them by selecting
Store As... and entering the name MSG_TABLE. Press OK to save the
changes.

When we save the P_MOVIE7.DAT file, the Designer saves four const val-
ues in the P_MOVIE7.HPP file.

#ifdef USE_MSG_TABLE

const ZIL NUMBERID ZMSG STORE ERROR = 0x0001;
const ZIL NUMBERID ZMSG LOAD ERROR = 0x0002;
const ZIL NUMBERID ZMSG_DELETE ERROR = 0x0003;
const ZIL NUMBERID ZMSG NAME ERROR = 0x0004;

#endif

The #ifdef USE_MSG_TABLE entry allows us to choose whether we want
to include the message table information. If we define USE_MSG_TABLE,
then the four messages will be included in our application. The four mes-
sages contain the values 1,2,3, and 4. The name associated with each number
is the text we entered when editing each message item. For example, the
store error has the line ZMSG_STORE_ERROR = 0X0001.

When we replace strings in an application, we need to specify the constant
identifier that corresponds to the message we want to display. So we replace
the embedded string with a constant value. Let's see how we replace the
strings in MOVIE.

We define an error message table by declaring _errorMsgTable in the Movie
Control Window as a static member.

class MOVIE CONTROL : public UIW WINDOW
{
public:

static ZIL_ICHAR * pathName;

static ZIL ICHAR *_ exitName;

static ZIL STORAGE * dataFile;

*7;Zinc Designer | 17_5



Generating an Internationalized Application

static ZIL STORAGE READ ONLY *_intlStorage;
static ZIL ICHAR _movieName[64];
static ZIL _LANGUAGE *_errorMsgTable;

Now let's look at MOVIE7.CPP. The first thing that we need to define when
we use the message table and its string identifiers is the variable USE_MSG _
TABLE.

// Include the appropriate directives.
#include <ui win.hpp>

#include "movie7.hpp"

#define USE MOVIE CONTROL

#define USE MOVIE SELECTION

#define USE MOVIE INFORMATION

#define USE_MSG_TABLE

#include "p movie7.hpp"

Next, initialize the message table by creating a new object of class ZIL_
LANGUAGE, and by passing in the table name and the storage file where
the message table is located.

_errorMsgTable = new ZIL LANGUAGE(_tableName, _intlStorage);

We are now ready to use the message table in our application. The first
occurrence will be in the MovieDelete( ) function. We make a call to _error-
MsgTable->GetMessage() and pass the identifier ZMSG_DELETE. -
ERROR. This call returns a pointer to the requested string.

if (! dataFile->FindFirstObject(_movieName))
i
ZIL_ICHAR *message = MOVIE CONTROL:: errorMsgTable->
GetMessage (ZMSG_DELETE_ERROR) ;
errorSystem->ReportError (windowManager, WOS NO STATUS,
message, _movieName);

}

The call to GetMessage( ) abstracts our string, so that we can identify a
number instead of a string with the actual message. The message is then
passed to the error system.

Now let's look at the message associated with MovieLoad( ).

if (! dataFile->FindFirstObject(_movieName))
{
ZIL ICHAR *message = MOVIE_CONTROL::_errorMsgTable->
GetMessage (ZMSG_LOAD ERROR) ;
errorSystem->ReportError (windowManager, WOS_NO_ STATUS,
message, movieName);

176 Zinc Designer



The GetMessage( ) call is just like MovieDelete( ), except that the message
identifier is ZMSG_LOAD_ERROR. This causes the program to read the
Load error: message instead of the Delete error: message.

The MOVIE_SELECTION::Event( ) and MOVIE_
SELECTION::Store( ) error message retrieval is just like MovieDelete( )
and MovieLoad( ), except that the message identifier will correspond to the
appropriate error message.

EVENT TYPE MOVIE SELECTION::Event(const UI_EVENT &event)
{

if (!MOVIE CONTROL:: movieName[0])
{
ZIL ICHAR *message = MOVIE CONTROL::_ errorMsgTable->
GetMessage (ZMSG_NAME_ERROR) ;
errorSystem->ReportError(windowManager, WOS_NO_STATUS,
message) ;

void MOVIE INFORMATION::Store(const ZIL ICHAR *name,
ZIL STORAGE *file, ZIL STORAGE OBJECT *, UI_ITEM *, UI_ITEM *)
£

if (!name || !name[0])
{
ZIL ICHAR *message = MOVIE CONTROL::_ errorMsgTable->
GetMessage (ZMSG_NAME ERROR) ;
errorSystem->ReportError (windowManager, WOS_NO STATUS,
message) ;

¥

In addition to placing the error messages in a message table, we also placed
the names of the windows we created in the Designer in a message table. We
won’t need to change these names if we change languages, but placing them
in a message table ensures Unicode compatibility.

We’ll begin discussing Unicode in a moment. Right now, all we need
remember is that we need to remap hard-coded strings to define the message
in the Message Editor, then to replace the code with the embedded string
with the appropriate message identifier. In a moment we will look at how we
can change this message table to different languages without changing the
executable.

Zinc Designer 177



Generating an Internationalized Application

Using multiple languages

Replacing
language strings

Now let's look at the method used to associate multiple languages with an
application. We’ll first look at the so-called ISO languages, deferring Uni-
code until later in the chapter.

To replace Zinc library language strings with ISO language strings in an
application, import the language strings from a preexisting language file.
Now, we’ll import the French and German languages into P_MOVIE7.-
DAT. Open the language component by opening the Defaults Editor.

=] Defaults Editor : [+]=
Language Locale Help

Import...
Export...

Create
Load...
Store
Store As...

Clear
Clear All
Delete...

Take a moment to browse through the P_MOVIE.DAT file to see the vari-
ous languages that we have imported. To do this, open the P_MOVIE.DAT
file using File | Open, and select Language | Load in the Defaults Editor.

=| Resource, Load...
Objectname: Directories:
[ | ~ZIL_INTERNATIONAL oK ]
@l de =
ar >

178

Zinc Designer



Changing locale
information

To select French, select the object item marked fr from the object list.

Day | Morth | Time | Date | Int | Num | Real | Sys. | Time | Win | Erer | Help |
short days: abbreviated days: long days: 0
[T [T Dimanche
Lun Lun. Lundi
Mar Mar. |Mardi
Mer . |Merc. ~ |Mercredi
Jeu - [Jeu. |Jeudi
Ven | |Vend. - |Vendredi
Sam | |Sam. | |Samedi

The information notebook of the fr language object shows Zinc’s default
string information. By importing the object, we can retrieve all the strings
that appear in this notebook translated into French, including the date,
month, am/pm specifiers, date, integer strings, number, real, system values,
time, window messages, error and help messages.

By browsing through the available languages, we will find several Unicode
languages, including ja (Japanese), and ko (Korean). These will display cor-
rectly only in Unicode.

In addition to language, we also find support for locale information. Locale
information stores data for specific geographic locations. To view locale
information, select Locale | Load. To view the information for France, select
the FR option.

Date ]  Number j Time } Cunency

- s Default Formats --—-- bt
: P I [] Short alphanumeric day
[] Alphanumeric day-of-week

[ Short alphanumeric month

date: %d/%mI %Y O] Aph A
date/time:  [%d/Zm/ZY ZH:ZM:25 | |[] Shont year
[] Format upper-case +

stoe | [ StoreAs | [ Close | [ Defaut | Help |

Locale information includes items such as date, number, and time formats,
as well as currency symbols. Like languages, certain locales like JP and KR
will work only in Unicode.

Zinc Designer 179



Generating an Internationalized Application

Importing
language and
locale

Setting
language and
locale at run time

Now import languages and locales to MOVIE. Select File | Open, and
choose P_MOVIE7.DAT. Then select Language | Import from the
Defaults Editor. Again select P_MOVIE.DAT file, then mark the fr and de
options, the French and German languages, from the object list. Then select
OK.

=] Object Selection
Objectname: Directories:

[FR | ~ZIL_INTERNATIONAL
a ca + E

& da (=
&l de
el
& en
a es
&
an

HI%

<l

Now import the French and German locales. Select Locale | Import, the
choose P MOVIE.DAT. Then select the French and German locales FR and
DE, and press OK.

=| Object Selection
Objectname: Directories:
|FR j ~ZIL_INTERNATIONAL
& AT =
@A e
& CN
& DE
& DK
& ES
& Fl
&R =

We now have imported the language and locale information for France and
Germany. View this information in the P_MOVIE7.DAT file by selecting
Language | Load or Locale | Load and by selecting the appropriate lan-
guage or locale extension. Save the changes by selecting File | Save and then
exit the Designer.

Importing library language and locale information does not require recom-
piling source. To change the default language and locale in command-line
environments, simply type in

180

Zinc Designer



set ZINC LANG=fr FR

The set argument tells the operating system to create a new environment
variable called ZINC_LANG. Then when we assign it the value fr_FR, we
associates with it the French language and locale—the first two letters are
the language (fr), and the last two letters the locale (FR).

When we initialize Zinc, the language and locale libraries look for the envi-
ronment variable ZINC_LANG. If they find that variable, they locate the lan-
guage and locale information, if any, from the appropriate .DAT file. Here,
we have associated the French language and French locale with our P_
MOVIE7.DAT file. Setting the ZINC_LANG environment variable tells
Zinc to use the French language and locale.

If we now run the application, the system button, the error messages, and any
default Zinc information will appear in the French language. For example,
launch MOVIE, then generate an error by selecting Movie | Create and
entering in the copyright field the year 3000. An error message appears on
the screen because 3000 is outside the valid range. The error message, how-
ever, appears in French.

—| Error

Le nombre 3000 n'est pas dans l'intervalle 1900..2020.

The system button also supports multiple languages. If you select the system
button, the French words for restore, maximize, minimize, move, size, and
close appear on the pull-down menu. (This only happens in environments
that support multiple languages concurrently).

- Systeme de Catalogue de Films H -
ide

Di

Minimiser

Fermer

We can do the same thing with German by entering

set ZINC_LANG=de DE.

Zinc Designer 181



Generating an Internationalized Application

Delta storage

Enabling delta
storage in the

Now that we’ve imported languages and locales, change the movie windows
and their message strings.

To restore the US language and locale to the system, enter the line

set ZINC LANG=en_ US

We’ll change and save the window and message information with a tech-
nique called delta storage. Delta storage allows us work with a core set of
data, retrieve it, enter any differences of various languages or locales, and
save only the changes—not a new copy—to a different file. To see how,

enter the Designer.

Select the File | Preferences option in the Window Editor.

DeSIQner =| Window Editor Preferences
Presentation Minicell
@ Image buttons Width: E:I -
O Image buttons with text Height: 7 |10
Delta Storage File Options
Current: |<na file> | Backups (0..9): E’
Pathname: | T Default Extension:
Extension: | ] whiite HPP [
start I end ’ Write CPP [
Save I Close | Help ]
In the Pathname field, enter the string
P_MOVIE7.fr
In the Extension field enter
fi
182 Zinc Designer




and select Start.

=| Window Editor Preferences
[ Presentation  Minicell
@ Image buttons Width: 7
o Image buttons with text Height: |1 z
[ Delta Storage File Options
Current: I(nu file> | Backups (0..9): ICI
Pathname: [PﬁM[]VIE?.h ‘ Default Extension:
Extension: ‘7 4’ wiite HPP [
start I end wiite CPP - [
Qave I glose I | Help I

We have now opened the delta storage component of P_MOVIE7.DAT.
Now we will save any changes we make to existing objects in P_
MOVIE7.FR instead of the main file, P MOVIE7.DAT.

To change the strings of the movie catalog system, open the Window Editor
and read the following table to substitute the French equivalents of each
string for the English string. For instance, change the string Movie Catalog
System to Systeme de Catalogue de Films.

TABLE 11. String equivalents

English

Movie Catalog System

File

Movie

Help

About

Exit

About Movie Catalog

Create
Delete
Load

Store

French

Systeme de Catalogue
de Films

Fichier
Film

Aide
Concernant
Sortie

Concernant le Cata-
logue de Films

Creer
Supprimer
Charger

Archiver

Zinc Designer

German

Filmverwaltungspro-
gramm

Datei
Film
Hilfe
Info
Beenden

Produktinformation

Anlegen
Loschen
Laden

Speichern

183



Generating an Internationalized Application

TABLE 11. String equivalents

English

Movie Selection
Title

OK

Cancel

Movie Information

Copyright

Length (in minutes)
Director

Actors

Description

Save

Close

French

Selection d’un Film
Titre

OK

Annuler

Informations sur le
Film

Droits d’ Auteur
Duree (en minutes)
Directeur

Acteurs
Description
Sauvegarder

Fermer

German

Film Auswahl
Titel

OK

Abbruch

Film Information

Copyright

Dauer (in Minuten)
Regisseur
Schauspieler
Beschreibung
Speichern

Schliefen

Once the strings have been changed, we can save them to the delta file by
selecting Window | Store—now the delta storage contains the French equiv-
alents of the original English strings.

184

Zinc Designer




We can do the same for the Movie Selection and Movie Information win-
dows. Their French equivalents are shown below:

=| Selection de Films =1
Titre:
Affair to Remember, An +
Casablanca
Fiddler on the Roof

Field of Dreams

Gone With the Wind

It Happened One Night
Hioh Moon

[ ok | [_aonuler | [ Aide |

== Information sur le Film | '] -

Tiue:r ]
Droits d'Auteul:D Duree (en minutes) E:l
Direc!em:,ﬁ |
Acteurs: l

Description: +

+

Sauvegarder I I Fermer I [ Aide ]

Once we have saved the all the delta changes, finish by entering the Prefer-
ences window and selecting Close from the Delta Storage group.

Zinc rDesi'g;eT 185



Generating an Internationalized Application

Now we’ve finalized the changes for these windows. We can do the same
thing to the German windows, but with the delta file P_MOVIE7.DE.
Here’s what the Movie Catalog, Movie Selection, and Movie Information
windows look like in German.

=] Filmverwaltungsprogramm [+]~
Datei Film Hilfe

= Film Auswahl [ 'l -

Titel:

Affair to Remember. An 4+
Casablanca

Fiddler on the Roof
Field of Dreams
Gone With the Wind

It Happened One Night Y
Hinh Mann

ok | [[abbuch | [ Hite |

- Film Information ' R
Titel: | |
Copyright: l:l Dauer (in Minuten) D
Regisseur: | |

Schauspieler:

Beschreibung: +

[_Speichem | [ Schlieten | | Hife |

186 Zinc—Designer




Enabling delta
storage in the
source code

The Message Editor works like the Window Editor, only without delta stor-
age. Open either the P_MOVIE7.FR or P MOVIE7.DE delta file, and
import the original message table from P MOVIE7.DAT. Load the message
table by selecting Message | Load. Change the information associated with
each message by invoking the item’s editor and changing the message field.

Inf ti

o
g

Message: IEneul d'Enregistrement: Ne peut pas sauvl
StinglD:  [ZMSG_STORE_ERROR ]

| _.D=K l L__Q_ancel l | Help !

Once all the changes have been made to the message table, store the infor-
mation to the delta file by selecting Message | Store. Finally, we can change
help context information the same way, by opening the delta file, invoking
the Help Editor, importing the original help contexts from P_
MOVIE7.DAT, selecting Context | Load, changing the information, then
by selecting Context | Store.

We have now changed the language information associated with our Mes-
sage Catalog System window, the Movie Selection window, the Movie Infor-
mation window, the message table, and the help contexts. Save all these
changes by selecting File | Save.

We switch languages at run time exactly as we did earlier, by setting the
ZINC_LANG environment variable.

set ZINC LANG=fr FR

Now that we’ve saved our changes in the Designer, we need to enable delta
storage in the source code. Doing so requires five changes.

First, for each window constructor, we supply an extra parameter that gives
the delta storage object to the appropriate window. For example, the Movie
Control window originally took a pathname and supplied the default storage.
Now the Movie Control window calls the UIW_WINDOW constructor
with the pathname supplied twice, once for the original window name, and
once for the delta window name, the language extension, a pointer to the
default storage, and a pointer to the delta storage.

MOVIE CONTROL: :MOVIE_CONTROL(void) :

Zinc Designer 187



Generating an Internationalized Application

UIW _WINDOW(_ pathName, _pathName, ZIL_NULLP(ZIL_ ICHAR),
defaultStorage, _intlStorage)

We follow the same process for the Movie Selection and Movie Information
constructors, and the constructor for the exit window.

MOVIE SELECTION::MOVIE SELECTION(ZIL_STORAGE_ READ ONLY
*dataFile, ZIL USER _EVENT _request) :
UIW_WINDOW(_pathName, _pathName, ZIL NULLP(ZIL_ICHAR),
defaultStorage, MOVIE CONTROL::_ intlStorage)

MOVIE INFORMATION::MOVIE INFORMATION(ZIL_ICHAR *name)
UIW_WINDOW(_pathName, _pathName, ZIL NULLP(ZIL_ICHAR),
defaultStorage, MOVIE CONTROL::_ intlStorage)

EVENT TYPE MOVIE CONTROL::Exit(UI_DISPLAY *,
UI_EVENT MANAGER *, UI_WINDOW MANAGER *windowManager)
{
// Read the exit window.
UI ERROR STUB::Beep();
UIW _WINDOW *window = new UIW WINDOW(_exitName, _exitName,
ZIL NULLP(ZIL_ICHAR), MOVIE CONTROL::defaultStorage,
_intlStorage);

The original windows are stored in the .DAT file, and a directory identified
by language contains the delta storage. When we run the application, our
defaultStorage pointer will point to the original window in the data file, and
the _intlStorage pointer will point to the differences contained in the lan-
guage directory.

// Set up strings used to open general and delta storage
// files.
static ZIL_ICHAR fileName[] =
{ o, Em, Tet, e, e L 3
static ZIL ICHAR _extension[] = { 'd','a','t', 0};
ZIL ICHAR _intlFileName[32], _baseFileName[32];
strcpy(_intlFileName, fileName);
strcat(_intlFileName, languageManager.defaultName);
strcpy(_baseFileName, fileName);
strcat(_baseFileName, _extension);
// Create error and help systems.
UI_WINDOW OBJECT::errorSystem = new UI_ERROR SYSTEM;
UI WINDOW OBJECT::helpSystem =
new UI_HELP SYSTEM( baseFileName);
// Open general storage file which contains original windows.
UI_WINDOW OBJECT::defaultStorage =
new ZIL STORAGE READ ONLY(_baseFileName);
// Open delta storage file.
MOVIE_CONTROL:: intlStorage =
new 2ZIL STORAGE READ ONLY(_intlFileName);

188

Zinc Designer



The only code change required for the help context or error message strings
involves opening the delta storage file.

UI_WINDOW_OBJECT::helpSystem =
new UI_HELP_SYSTEM(_intlFileName);

_errorMsgTable = new ZIL LANGUAGE(_tableName, _intlStorage);

Remember, we associated constant values with the help and the messages, so
the identifying number is still the same. Only the string in the delta file has
changed.

Unicode

Naming Unicode
strings

As the coup de grace to this series of tutorials, we’ll make MOVIE Unicode
compatible.

In a Unicode-compatible application, each letter gets two bytes of informa-
tion instead of one.

Almost all of our string information is contained in .DAT files, which are
Unicode compatible by design; Zinc will automatically convert 8-bit values
into 16-bit values if the application is running in Unicode mode. The only
things that we need to replace to make them Unicode compatible are the def-
initions for filenames and class names. These will always remain the same,
no matter what language we are using.

We can create Unicode-compatible strings one of two ways. The first way is
to use a message table as discussed in this chapter. We can put most strings
in a message table, but we still need to create a few in our source code that
will specify the name of the .DAT file containing the message table and the
name of the message table itself. We can’t put these in a .DAT file. Instead,
we need to make them 16-bit Unicode values instead of 8-bit values.

Unfortunately, at present, most compilers do not support the naming of Uni-
code strings easily. We get around this is by comma delimiting each charac-
ter in the name. Here, we need to replace the base filename, the extension for
the base file, and the name of the message table.

Zinc Designer 7 189



Generating an Internationalized Application

The way to internationalize these is to pull out the embedded string and
make it either a static variable or a static member of a class. Here, in
MOVIE7.CPP, we make it a static variable. For instance, we now have a
static, global variable called _msgTableName that contains the name of the
message table.
static ZIL ICHAR _msgTableName[] =
{'m','s,'G'," ','T','A",'B','L','E',0 };

UI_APPLICATION::Main( ) contains two more static variables, one for
the .DAT file name and one for the .DAT file extension.

static ZIL ICHAR _fileName[] =
{ 'p','_',‘m','o','V',‘i','e','7',""0 };
static ZIL ICHAR _extension[] = { 'd','a','t"', 0};
The other strings we need to make into static variables are the names of the
window resources in the .DAT file, which are loaded from the message table
and stored in static member variables.

// Initialize static name strings.
MOVIE_CONTROL:: pathName =
_nameMsgTable->GetMessage (ZMSG_CTRL_PATH NAME);
MOVIE CONTROL:: exitName =
_nameMsgTable->GetMessage (ZMSG_CTRL EXIT NAME);
MOVIE SELECTION:: pathName =
_nameMsgTable->GetMessage (ZMSG_SEL_PATH NAME) ;
MOVIE SELECTION:: allObjects =
_nameMsgTable->GetMessage (ZMSG_SEL ALL NAME);
MOVIE INFORMATION:: pathName =
_nameMsgTable->GetMessage (ZMSG_INFO PATH NAME);

Changing these strings in the source code or loading them from a message
table allows us to compile our application for Unicode. We can see the
advantage of running in Unicode by running the DOS executable—with
Unicode, we can retrieve the Korean and Japanese language information in
our DOS application. In addition, we can run the application under environ-
ments other than DOS with multiple languages running concurrently, as long
as the operating system supports that language in its font set.

190

Zinc Designer



Conclusion

We made MOVIE portable and internationalized following several steps.
First, we removed all language-dependent, embedded strings. For instance,
in our application, we replaced the load, delete, movie selection, and store
error strings with identifiers. Then we included the language and locale
information for French and German languages. We converted our screen
information by moving to each window, translating the information and sav-
ing it out to a new a file for the desired language or locale. Next, we changed
the message tables. Finally, we changed the help contexts.

If the program is architected properly, globalizing an application is easy.
Once the program is globalized, we can translate all the data without touch-
ing the executable. This means that to port our program to additional lan-
guages and locales, we need only send the interface strings to a translator
and include the results with the program—without touching the executable.

This is the end of the MOVIE tutorial, as well as the end of our tutorial sec-
tion. The next section is a reference concerning the different functionality of
Zinc Designer.

Enjoy Zinc!

Zinc Designer 191



Generating an Internationalized Application

192 Zinc Designer



section three

Zinc Designer
reference

Zinc Designer 193



194 Zinc Designer



Chapter 10

File Options

The File category options control the general operations of Zinc Designer

files. Selecting File causes the following menu to appear:

=] 180 - Window Editor - <no file> [+]=
File Edit Window Object Help
gew... = [= = R EIEE]
Open... — - o
Save || ts ElEI e f——l’ II
Save As... e e
Close pos: } place object:
Delete... size: ! !
Preferences...
Exit

Zinc Designer

195



File Options

New

Filename

List Files of Type

Directories

The New... option allows you to create a new file. Selecting it causes a win-
dow similar to the following to appear:

= , File, New...

Filename: Directories:

[ | enzil400vdesign
i Ee *
(= zil40o

= design
2 direct
£ file
£ help *
List Files of Type: Drives:

= dat E co (E]

If you want to create a new file for an application, enter the name for the new
file here. If you do not include an extension yourself, a .DAT extension will
be automatically attached to the name when the file is actually created.

Other files that belong to the current directory—all of the type designated by
the List Files of Type field—are shown in the scrollable list below the File-
name field. If one of these files is selected and the OK button is pressed, you
will be asked if you want to overwrite the existing file. (For information on
opening a previously created file, see the description of the Open option
below.)

This field determines the type of files, based on the file extension, to list in
the Filename field. Clicking on the arrow button reveals the other types of
files available. Selecting one of these extensions causes the files of that type
to be displayed in the Filename list. Selecting the *.* extension causes all
files in the current directory to be displayed.

The current directory is shown below the Directories prompt. Your file will
be saved to this directory. Since this item is not selectable, if you want to
make a different directory the current one, it must be done by selecting a new
directory from the list below the current directory prompt. This list displays
other available directories of the current drive, the current directory being
highlighted and child directories shown below the current one and parent
directories above.

196

Zinc Designer



Drives

OK

Cancel

Help

This field displays the current drive. Clicking on the arrow button reveals the
other drives that are available on your system. Selecting a drive causes the
files and directories on that drive to be displayed in their respective fields.

Selecting this button causes a file to be created which will be given the name
entered at the Filename prompt. If creation of the file is successful, the New
window will close and the title bar of the control window will be updated to
include the name of the current file. If no information has been entered
within the New window and the OK button is selected, you will receive an
error message.

Selecting this button causes the window to close without executing any
changes.

Additional information about creating new files appears when this button is
selected.

Open

The Open... option allows you to open a previously created file. Selecting it
causes a window to appear that is similar to the New window:

=| File, Open...
Filename: Directories:
B | c:\zil400Ndesign
Ee h.i
= zil400 Cancel
P> design
1 direct Help
2 file
T help +
List Files of Type: Drives:
*.dat IE | [ L!J

Zinc Designer 197



File Options

Filename

List Files of Type

Directories

Drives

OK

Cancel

Help

To open an existing file, either enter the name at the Filename prompt, or
select it from the list below, and the name of the file will automatically
appear at the prompt.

Other files that belong to the current directory—all of the type designated by
the List Files of Type field—are listed in the scrollable list below the File-
name field. As mentioned above, selecting one of these files causes the
name to appear in the Filename field. Double clicking on a name listed in
the files list will cause that file to be opened immediately.

This field determines the type of files, based on the file extension, to list in
the Filename list. Clicking on the arrow button reveals the other types of
files available. Selecting one of these extensions causes the files of that type
to be displayed in the Filename list. Selecting the *.* extension causes all
files of the current directory to be displayed.

The current directory is shown below the Directories prompt. Your file will
be saved to this directory. Since this item is not selectable, if you want to
make a different directory the current one, it must be done by selecting a new
directory from the list below the current directory prompt. This list displays
other available directories of the current drive, the current directory being
highlighted and child directories shown below the current one and parent
directories above.

This field displays the current drive. Clicking on the arrow button reveals the
other drives that are available on your system. Selecting a drive causes the
files and directories on that drive to be displayed in their respective fields.

Selecting this button causes the file specified at the Filename prompt to be
opened. If the open procedure is successful, the window will close and the
title bar of the control window will be updated to include the name of the
current file. If the file entered at the Filename prompt does not exist, or if no
information has been entered, you will receive an error message at this time.

Selecting this button causes the window to close without executing any
changes.

Additional information about opening existing files appears when this button
is selected.

198

Zinc Designer



Save

Selecting the Save option causes the current file to be saved in its present
condition. If the file has not been named, the Save As window will appear so
that you can give the file a name. (See the Save As section for details on how
to save a file for the first time.)

Upon every save operation, Zinc Designer automatically creates a .DAT file,
which contains the binary information associated with the objects saved in
the application. In addition, the following files are created by default but can
be bypassed by changing the information contained in File | Preferences:

a .CPP file, which contains the definition for _objectTable, an array that
provides the functions needed to load objects saved to disk, as well as the
definition for _userTable, an array of function access points for user call-
back and compare functions.

an .HPP file, which contains the numeric identifications (identified using
the text entered for the object’s name) unique to each field or help con-
text.

one or more .BK# (backup) files, specified in File | Preferences.
(NOTE: Only one backup file is created per Designer session and only if
a previous .DAT file existed.)

Zinc Designer 199



File Options

Save_As

Filename

List Files of Type

Directories

Save As... is usually used to either save a file that has not been previously
named or to save the current file under another name. Selecting it causes a
window to appear that is similar to the New and Open windows:

= File Selecti

Filename: Directories:

| | enzil400vdesign

test.dat = e +

= zil400 _Cancel

= design
£ direct
£ file
T help ¥

List Files of Type: Drives:

= dat Ig IEI

4l

Enter a name for the file at the Filename prompt, or select it from the list
below, and the name of the file will automatically appear at the prompt. If
you do not include an extension yourself, a .DAT extension will be automat-
ically attached to the name when the file is actually created. A new file will
be created under that name with the current modifications, if any.

Other files that belong to the current directory—all of the type designated by
the List Files of Type field—are listed in the scrollable field below the File-
name field. As mentioned above, selecting one of these files causes the
name to appear in the Filename field. Double clicking on a name listed in
the files list will cause a window to appear that asks if you want to overwrite
the existing file.

This field determines the type of file, based on the file extension, to list in
the Filename field. Clicking on the arrow button reveals the other types of
files available. Selecting one of these extensions causes the files of that type
to be displayed in the Filename list. Selecting the *.* extension causes all
files of the current directory to be displayed.

The current directory is shown below the Directories prompt. Your file will
be saved to this directory. Since this item is not selectable, if you want to
make a different directory the current one, it must be done by selecting a new
directory from the list below the current directory prompt. This list displays

200

Zinc Designer



Drives

OK

Cancel

Help

other available directories of the current drive, the current directory being
highlighted and child directories shown below the current one and parent
directories above.

This field displays the current drive. Clicking on the arrow button reveals the
other drives that are available on your system. Selecting a drive causes the
files and directories on that drive to be displayed in their respective fields.

Selecting this button causes the file to be saved under the name entered at the
Filename prompt. If the save operation is successful, the Save As window
closes.

If you have entered a file name that already exists, a modal window will
appear, indicating such. If you select the Yes button of this window, the cur-
rent information replaces the previous information of that file, and both the
modal window and the Save As windows close. Selecting the No button sim-
ply closes the modal window and allows you to enter information again in
the Save As window.

If no information has been entered within the Save As window and you
select the OK button, the window will close and no other action will take
place.

Selecting this button causes the window to close without executing any
changes.

Additional information about saving files appears when this button is
selected.

Close

Selecting the Close option causes the screen to be cleared and the current file
to close. The title bar of the control window will be updated immediately to
read P_TEMP.DAT, which is the default Designer file.

Zinc Designer 201



File Options

Delete

Filename

List Files of Type

Directories

The Delete... option allows you to delete a file. Selecting it causes a window
similar to the following to appear:

=| File, Delete...
Filename: Directories:
I J c:\zil400\design
Ee: +
(= zil400 -
= design
3 direct
I file
T help 3
List Files of Type: Drives:

= dat E } c: EI

i

To delete a file, either enter the name at the Filename prompt, or select it
from the list below, and the name of the file will automatically appear at the
prompt.

Other files that belong to the current directory—all of the type designated by
the List Files of Type field—are listed in the scrollable field below the File-
name field. As mentioned above, selecting one of these files causes the
name to appear in the Filename field. Double clicking on a name listed in
the files list will cause that file to be deleted immediately.

This field determines the type of file, based on the file extension, to list in
the Filename field. Clicking on the arrow button reveals the other types of
files available. Selecting one of these extensions causes the files of that type
to be displayed in the Filename list. Selecting the *.* extension causes all
files of the current directory to be displayed.

The current directory is shown below the Directories prompt. Your file will
be saved to this directory. Since this item is not selectable, if you want to
make a different directory the current one, it must be done by selecting a new
directory from the list below the current directory prompt. This list displays
other available directories of the current drive, the current directory being
highlighted and child directories shown below the current one and parent
directories above.

202

Zinc Designer



Drives

OK

Cancel

Help

This field displays the current drive. Clicking on the arrow button reveals the
other drives that are available on your system. Selecting a drive causes the
files and directories on that drive to be displayed in their respective fields.

Selecting this button causes a modal window to appear which is similar to
the following:

=| __ File, Delete...

Delete file "WINDOW .DAT"?

The purpose of this window is to make sure that you want to delete the file.
If you select the OK button, the file indicated at the Filename prompt is
deleted, and both the confirmation window and the Delete window close. If
you choose the Cancel button, the file is not deleted and just the modal win-
dow closes.

If the name of the current file is entered, or if the file entered does not exist,
you will receive an error message when the OK button is selected.

If no information has been entered within the window, selecting OK causes

an error message to appear.

Selecting this button causes the window to close without executing any
changes.

Additional information about deleting files appears when this button is
selected.

Zinc Designer | 203



File Options

Preferences

Presentation

Delta storage

The Preferences... option allows you to change the default settings of Zinc
Designer. These settings are saved in the ZINC.CFG file. Selecting Prefer-
ences causes a window similar to the one below to appear:

=l ] __Window Editor Preferences :
. rPresentation MMinicell———————
@ Image buttons Width: l:] 7
O Image buttons with text Height: |1 /|10
Delta Storage rFile Options—™ ]
Current: |<no file> l Backups (0..9): D
Pathname: L \ Default Extension:
] wiite PP [X]
J[end__] wiite PP [X]

Extension:

This field contains the options for the presentation of objects on the button
bar.

Image buttons. Allows only images to be displayed on an object button.

Image buttons with text. Allows both images and text to be displayed on an
object button.

This group gives you access to delta storage, which allows you to save only
the changes of the current file to another file. This feature is very useful in
some situations, such as when translating an application to another language,
where the fields do not change but the text must be replaced. Instead of
copying the original file and having two complete copies, delta storage
allows you to keep the original as the master file and another file that only
contains the alterations (e.g., the translated text) made to that master file.
The resulting saved memory can be significant when compared to maintain-
ing two complete files.

The Delta Storage group contains the following fields:

Current. Displays the path name of the delta file. This field is not editable.
When no delta file is open, it displays <no file>.

204

Zinc Designer



Minicell

File options

Pathname. Designates the name for the delta file. When no delta file is open,
this field is blank.

Extension. Designates the subdirectory where the delta object will be stored.
For example, entering the extension me causes the object to be stored in the
\delta\me directory of the current file.

Selecting the start button causes the delta file designated at the Pathname
prompt to be opened. Any modifications made to the current file thereafter
will be saved to the delta file only—the current, or original, file will remain
exactly as it was when it was last saved before the delta file was opened.

Selecting the end button causes the delta file designated at the Pathname
prompt to be closed. Thereafter, any changes to the current file will actually
be saved to that current, or original, file.

The Start and End buttons work independently of the three main buttons of
the Window Editor Preferences window. For example, when you select the
delta storage Start button, you are immediately in delta storage mode, even
if you subsequently select the main End button of the preferences window.

While you have opened a delta file and not yet closed it, a (D) appears on the
control window's title bar to the right of the file name. This serves as a
reminder that all changes are being saved to the delta file instead of to the
actual original file.

This field allows you to set the default minicell ratios. The default minicell
width and height are 1/10 of a cell.

This group contains options for file backups, file extensions, and files to
save. The options are:

Backups. Enter in this field the number of backups that you would like the
designer to maintain. Each backup file will be saved under the same name as
the main file but with an extension that indicates the backup number of the
copy. For example, a file with the name of TEST.DAT will have a backup
copy called TEST.BK1 if only 1 is entered at the prompt<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>