

Zinc Designer

Zinc® Application Framework™
Version 4.0
Zinc Software Incorporated
Pleasant Grove, Utah

Copyright © 1990-1994 Zinc Software Incorporated
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3
or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license is included in the section entitled "GNU
Free Documentation License".

Preface

With Zinc Designer, Zinc offers the tightest integration available
between an interactive design tool and the supporting class library.

Most Windows developers use a resource tool to help create their program
interface. Resource tools are language- and library-dependent by design, and
therefore they are inadequate to access all the features of a given class
library. This inadequacy results in a fragmented approach to application
development, with isolated user functions and nonspecific documentation.
Consequently, the application developer is saddled with the sometimes pain
ful details of integrating code with both the class library and the resource
tool. In contrast, the seamless integration of Zinc Designer and Zinc Appli
cation Framework contrasts sharply with this a la carte approach.

As remarkable proof that Zinc's class library is flexible and robust, Zinc
built the Designer completely with Zinc objects. The equally remarkable
result is that with the Designer, you can work visually with Zinc objects
and with all other features of the library as well. You simply drag windows
and window objects from the menu or button bar, and drop them on the

Zinc Designer v

Preface

screen. And since Zinc Designer allows us to work with Zinc objects, we can
port all our Zinc Designer output to all compilers and operating platforms
that Zinc supports.

This approach contrasts sharply with that taken by traditional resource
builders and source-code generators. These tools lock developers into API,
platform, and language dependencies, which hinder flexibility.

Zinc Designer provides a better way. Let's look at how you can use this pow
erful tool to expand your horizons.

To help you do this, we've divided this book into four sections: introduction,
tutorials, reference, and appendices. The introduction provides a guided tour
of the Designer, explaining how to access its functionality and features. The
tutorials, based on an application called MOVIE, provide a detailed expla
nation of how to build a complex application with the Designer. The refer
ence documents each option and window of the Designer, explaining what
each does and how to use it. And the appendices section explains how to
build the Designer and its components, making it easy to add in components
later.

Conventions used in this book

This manual uses the following conventions:

TABLE 1. Conventions

Italics

Bold

Constant
width
text

c:

identify arguments, variables, and pointers in function and
method prototypes.

identifies file and directory names, and Zinc class and member
function names.

identifies programming examples and command line or shell
output.

is the command line DOS prompt, which you can access from
inside Windows

vi Zinc Designer

section one

Preface

Conventions used in this book vi

Zinc Designer introduction

v

1 Introducing Zinc Designer 3

Running Zinc Designer 4
The button bar 7
The status bar 7
Help 8

How to start 8

Creating a simple window 9
Creating the resource window and its objects 9

Information inside ofobjects 11
Prompt information 12
String information 15
Button Information 16
Spin control Information 16

Creating lists and grouped objects 17
List information 19
Group Information 22

Creating advanced window objects 22
Button bar Information 24
Subobject Information 24

Using the Edit command 26

File options 30

Zinc Designer vii

viii

2 Zinc DesignersSupport Editors 33

Image Editor 34
Main components 34

Learning to use the Image Editor 35
Drawing an ellipse 36
Filling the bitmap 37
Creating an icon image 39
Drawing a bounding rectangle 40
Viewing the stored images 41
Associating the icon with the window 44

Help Editor 45
Creating a help context 45
Connecting the help context to the help system 47

Message, Defaults, and String Editors 49
Browsing the Defaults Editor 50
Browsing the Message Editor 51
Browsing the String Editor 51

Exiting the Designer 53

Zinc Designer

section two Zinc Designer tutorials

3 Writing an Application 57

Movie components 58

Running the MOVIE application 60
Running the program in its fInished state 60

Working with the program 62
Movie Selection 62
Movie Infonnation 62
Movie Create 63
Movie Delete 64

Application components 65
MOVIE.HPP 65
MOVIE.CPP 67

Writing MOVIE] 's Movie Control Window 67
Components of MOVIEl 68
Source fues 69
Creating the window 69
MOVIEl.CPP 75
P_MOVIEl.CPP 76
Makefile 77

Conclusion 78

Zinc Designer ix

4 Designing Dialog lVindows 79

Working with MOVIE2 80
Components of MOVIE2 80
Source fues 81

What we'll do 81

Finishing the Movie Control Window 82

Creating a tool bar 85
Importing bitmaps 86
Editing the tool bar buttons 88
Browsing the window 89

Creating the Movie Selection window 90

Creating the Movie Information window 94
Updating the source code 95

Conclusion 96

5 Architecting the Control 97

x

Working with MOVIE3 98
Components ofMOVIE3 98
Source files 99

The Movie Control window 99
The constructor 100
Event handling 101

Connecting messages 103
Connecting messages to the pull-down menu 103
Connecting messages to the Movie Control window 103
Closing a window 105
Connecting menu items to functions 106

Zinc Designer

Finishing the tool bar buttons 107
Processing messages 107
What the Movie Control window's Event() does 107
Viewing the application 109

Message flow 110

Conclusion 111

6 Deriving Support Modules 113

Working with MOVIE4114
Components of MOVIE4 114
Source files 115

The Movie Selection window 115
Changing its infonnation 116
Assigning messages to buttons 116
The constructor 118

Movie Information 120
Changing its infonnation 120
Movie Infonnation definitions 122
The Event() function 122
Help system, persistence architecture 123
Testing our handiwork 124

Conclusion 125

7 Loading and Storing Data 127

Working with MOVIES 128
Components ofMOVIES 128
Source files 130

Laying the ground work for storage 130

Zinc Designer xi

The Movie Control window 131
The Movie Selection window 131
The Movie Information window 132

Writing the load and store functionality 132
Opening and closing the data file in the constructor 132
The Event() function 133
MovieCreate() 134
MovieDelete() 134
MovieLoad() 135
MovieStore() 136
The Movie Control window 137
The Movie Selection class 137
The Movie Information class 140
Summarizing the Movie Information class 144

Admiring our handiwork 144

Conclusion 146

8 Making Movie Robust 147

xii

Working with MOVIE6148
Components of MOVIE6 148
Source flies 149

Adding features to the Movie Control window 149
Minimize icon 149
Exit window 151
Status bar 155
Error handling 157

Adding geometry management 159
Movie Selection 159
Individual objects 159

Refining the help system 165
Item help 166

Zinc Designer

Dialog help 167
General application help 168
Run time 168

Conclusion 168

9 Generating an Internationalized
Application 169

Working with MOVIE7 170
Components of MOVIE7 170
Source fues 171

Message Editor 171

Using multiple languages 178
Replacing language strings 178
Changing locale information 179
Importing language and locale 180
Setting language and locale at run time 180

Delta storage 182
Enabling delta storage in the Designer 182
Enabling delta storage in the source code 187

Unicode 189
Naming Unicode strings 189

Conclusion 191

Zinc Designer xiii

section three Zinc Designer reference

xiv

10

New 196
Filename 196
List Files ofType 196
Directories 196
Drives 197
OK 197
Cancel 197
Help 197

Open 197
Filename 198
List Files ofType 198
Directories 198
Drives 198
OK 198
Cancel 198
Help 198

Save 199

Save As 200
Filename 200
List Files ofTyre 200
Directories 200
Drives 201
OK 201
Cancel 201
Help 201

Close 201

Zinc Designer

File Options 195

Delete 202

Filename 202
List Files of Type 202
Directories 202
Drives 203
OK 203
Cancel 203
Help 203

Preferences 204

Presentation 204
Delta storage 204
Minicell 205
File options 205
OK 206
Cancel 206
Help 206

Exit 206

11

Object 210

General page 211
Position page 213
Geometry page 214
Advanced page 218
Subobjects page 220

Cut 222

Copy 222

Paste 222

Delete 223

Move 223

Zinc Designer

Edit Options 209

xv

xvi

Size 223

Group 223
Edit Group page 224
Subobjects page 224
Position page 225
Geometry page 225
Advanced page 225

Ungroup 225

12

Import 228

Export 230

Create 232

Load 233

Store 234

Store As 235

Clear 236

Clear All 236

Delete 237

Test 239

Zinc Designer

Window Options 227

13

General page 243
Position page 245
Geometry page 246
Advanced page 250
Subobjects page 252

14

String 256
General 256
Position 257
Geometry 257
Advanced 257

Formatted string 258
General 258
Position 260
Geometry 260
Advanced 260

Text 260
General 261
Position 262
Geometry 262
Advanced 262

Date 262
General 263
Position 265
Geometry 265
Advanced 265

Time 266
General 266

Zinc Designer

Object Options 241

Input Objects 255

xvii

xviii

Position 268
Geometry 268
Advanced 268

Bignum 269

General 269
Position 270
Geometry 270
Advanced 271

Integer 271
General 271
Position 272
Geometry 272
Advanced 272

Real 273

General 273
Position 274
Geometry 274
Advanced 274

15

Button 276
General page 276
Position page 279
Geometry page 279
Advanced page 279

Radio button 279
General page 280
Position page 283
Geometry page 283
Advanced page 283

Check box 283

Zinc Designer

Control Objects 275

General page 284
Position page 286
Geometry page 287
Advanced page 287

Horizontal slider 287
General page 288
Position page 289
Geometry page 289
Advanced page 289

Vertical slider 290
General page 290
Position page 291
Geometry page 292
Advanced page 292

Combo box 292
General page 293
Subobjects page 294
Position page 294
Geometry page 294
Advanced page 294

Spin control 295
General page 295

Pull-down item 296
General page 297
Subobjects page 298
Position page 298
Geometry page 298
Advanced page 298

Pop-up item 299
General page 299
Subobjects page 301
Position page 301
Geometry page 301
Advanced page 301

Zinc Designer xix

xx

16

Horizontal list 304
General page 304
Subobjects page 306
Position page 306
Geometry page 306
Advanced page 306

Vertical list 307
General page 307
Subobjects page 308
Position page 309
Geometry page 309
Advanced page 309

Tool bar 309
General page 310
Subobjects page 311
Position page 311
Geometry page 311
Advanced page 311

Pull-down menu 312
General page 312
Subobjects page 313
Position page 313
Geometry page 313
Advanced page 313

Zinc Designer

Selection Objects 303

17

Prompt 316
General page 316
Position page 316
Geometry page 316
Advanced page 317

Group 317
General page 317
Subobjects page 318
Position page 318
Geometry page 318
Advanced page 319

Icon 319
General page 319
Position page 320
Geometry page 320
Advanced page 320

Status bar 321
General page 321
Subobjects page 322
Position page 322
Geometry page 322
Advanced page 322

Notebook 322
General page 323
Subobjects page 323
Position page 324
Geometry page 324
Advanced page 324

Table 324

General page 327
Subobjects page 328
Position page 328

Zinc Designer

Other Objects 315

xxi

xxii

Geometry page 328
Advanced page 328

Subwindow 329
General page 329
Subobjects page 332
Position page 333
Geometry page 333
Advanced page 333

18

Index 336

File 336

Edit 336

Window 336

Object 336

About Window Editor 337

19

Control window layout 339
The menu bar 340
The button bar 342
The color bars 342

Edit 342
Grid 342
Roller Size 343
Pattern 343
Erase 344

Zinc Designer

Help Options 335

Image Editor 339

Cut 344
Copy 344
Paste 344
Delete 344
Group 344
Ungroup 345

Bitmap menu options 345
hnport345
Export 347
Create 349
Load 349
Store 350
Store As 351

Clear 352

Clear All 352

Delete 353

Icon menu options 354
hnport355
Export 357
Create 358
Load 359
Store 360
Store As 360

Clear 361

Clear All 362

Delete 362

Mouse menu options 364
hnport364
Export 366
Create 368
Load 368
Store 369
Store As 370

Zinc Designer xxiii

xxiv

Clear 371

Clear All 371

Delete 372

Help menu options 373
INDEX 374
FILE 374
EDIT 374
BITMAP 374
ICON 374
MOUSE 374
About Image Editor 374

Bitmap creation window 375

Icon creation window 377

Mouse cursor creation window 380

Zinc Designer

20

Context 384

Import 384
Export 386
Create 388
Load 389
Store 390
Store As 390
Clear 391
Clear All 392
Delete 392

Help 393
Index... 393
File 393
Context 393
About Help Editor 394

21

Message 396

Import 396
Export 398
Create 400
Load 401
Store 402
Store As 403
Clear 404
Clear All 404
Delete 405

Help 406
Index... 406
File 406

Zinc Designer

Help Editor 383

Message Editor 395

xxv

xxvi

Message 406
System events 406
Logical events 406
About Message Editor 406

The message edit window 407
Message 407
NumberID 407
StringID 407
OK 407
Cancel 407
Help 407

22

Language 410
Import 410
Export 412
Create 414
Load 414
Store 415
Store As 416
Clear 417
Clear All 417
Delete 418

Locale 419
Import 420
Export 422
Create 423
Load 424
Store 425
Store As 425
Clear 426
Clear All 426
Delete 427

Zinc Designer

Defaults Editor 409

Help 428
Index... 428
File 429
Language 429
Locale 429
System events 429
Logical events 429
About Language Editor 429

The language window 429
Common buttons 429
Day 430
Month 430
Am 431
Date 432
Integer 433
Number 433
Real 434
System button 435
Time 436
Window 436
Error 437
Help 438

The locale window 438
Common buttons 439
Date 439
Number 441
Time 443
Currency 444

Zinc Designer xxvii

xxviii

23

Original 448
Current 448
Page 448
Character table 448
OK 448
Cancel 449
Help 449

Zinc Designer

String Editor 447

section four Zinc Designer appendices

24 Building the Designer 453

The Designer components 453

Compiling the components 455
DOS, Windows, OS/2, Motif, Curses, NEXTSTEP 455
Macintosh 455

Zinc Designer xxix

xxx Zinc Designer

section one
Zinc Designer
introduction

Zinc Designer 1

2 Zinc Designer

Chapter 1 Introducing Zinc
Designer

Zinc Designer is an interactive design tool that allows us to create and
edit components of user interfaces in Zinc programs, including windows and
window objects, images and icons, help prompts and windows, strings used
by our application, and application language and locale default information.
In this chapter we will learn the basics of using Zinc Designer.

Basics of using Zinc Designer

Using the Window Editor

Creating and editing objects

Zinc Designer 3

Introducing Zinc Designer

4

Running Zinc Designer

Zinc Designer runs on all environments supported by Zinc Application
Framework including: DOS, Windows, OS/2, Macintosh, OSF/Motif,
Curses, and NEXTSTEP. The Designer is located in the /ZINCIBIN direc
tory and has the name DESIGN.EXE or ?DESIGN.EXE, where the ques
tion mark indicates the environment. For example, the OS/2 designer is
called ODESIGN.EXE. To launch Zinc Designer in most operating environ
ments (i.e., DOS, Motif, NEXTSTEP, and Curses) that use command lines,
simply type

C:> design <Enter>

For Windows, type

C:> wdesign <Enter>

For Windows NT, type

C:> ndesign <Enter>

For Unicode, type

C:> udesign <Enter>

For OS/2, type

C:> odesign <Enter>

In environments with a graphical user interface, such as Macintosh, double
click on the Zinc Designer icon. If you have trouble launching Zinc
Designer, please see Getting Started with Zinc Programming for more infor
mation on how to run an application.

Zinc Designer has five main components:

• the Window Editor;

• the Image Editor;

• the Help Editor;

• the Message Editor; and

· the Defaults Editor.

Zinc Designer

Only the Window Editor should appear as a full window on the screen at
startup-all other editors should be visible as minimized icons at the bottom
left portion of the screen. In this chapter, we'll discuss the Window Editor,
and leave the other editors for the next chapter.

, place object:
F==~~

II
Image Ed~OI

liJ ; 8)
Help Editor Messa e Editor Defaults Editor__~~~__

The Window Editor has four visible areas: title, pull-down menu, button bar
and status bar. Each of these areas is described below.

The title area is located at the top of the window. It contains information
about the Window Editor as well as the name of the file we are working on.

The menu bar is located just below the title bar at the top of the window. It
contains the options necessary for Zinc Designer file operations and for cre
ating window resources. Selecting some menu items causes an action to take
place immediately, while selecting others causes a related window to appear,
from which more options are available. Menu items that cause another win
dow to appear are distinguished by ellipses (oo.). A brief explanation of each
menu item follows:

File. This menu consists of options that control the creation of files and
allow exiting from the Designer. The selectable items on this menu are:

· ~ew .

· Qpen .

· Save

· Save As...

· !:lose

· !!elete...

· ~references..., and

· E~it.

Zinc Designer 5

Introducing Zinc Designer

6

Edit. This menu consists of options that edit or control the operation and pre
sentation of objects within an application. The edit options are:

· Object...

· Cut

· !:,opy

· faste

· I!elete

· Move

· ~ize

· !iroup, and

· !Ingroup.

Window. This menu consists of options that control the creation of window
resources within the current file. The selectable items are:

· Import .

· ;Export .

· !:,reate

· Load...

· ~tore

· Store As...

· Clear

· Clear All

· I!elete..., and

· lest....

Object. This menu presents the objects, divided into four groups, that can be
created with the Designer. The four groups presented in the first level puB
down menu are:

· Input

· Control

· Selection, and

· Other.

Selecting one of these items causes another menu to appear which contains
the actual window objects of that group.

Zinc Designer

The button bar

The status bar

Help. This menu provides a list of the following selectable help contexts:

· Index...

· .Eile

· Edit

· Window

· Qbject, and

· About Window Editor.

All of these menu items are discussed in more detail later in this book.

The button bar presents some of the available window objects within Zinc
Designer. It is designed to allow you to easily select these items with a
mouse and then attach them directly to your current resource window. When
one of the objects is selected, its name appears in the place object field on
the status bar, where it remains until it is attached to a window, or until
another object is selected from the button bar. The object is attached to a
resource by positioning the mouse cursor on the desired location and click
ing the mouse button.

The button bar is not available in text mode.

The status bar displays some information about the current object and about
the state of the current process. The following fields are present:

type. Indicates what the current object is.

name. Displays the string identification of the current object.

pas. Indicates the position, in cell coordinates, of the current object. If the
current object is attached to a parent window, its position is relative to that
parent window.

size. Indicates the size, in cells, of the current object (width by height).

place object. Indicates the object that has been most recently selected from
the button bar (or from the Object options menu) that is ready to be placed
on a resource window.

Zinc Designer 7

Introducing Zinc Designer

Help

8

In addition to the four major areas, we can request help at any time by select
ing Help from the pull-down menu or by pressing the system-dependent key
that invokes the help system «FI> under DOS and Windows, for example).

How to start

Once you have entered Zinc Designer and the Window Editor, the following
steps can be followed for creating a basic application:

1. Open a new file for the application by selecting ,Eile I~ew... Select the
drive and directory to which the file is to be saved, and enter a name for
the file at the Filename prompt. If all of the information is correct, select
the QK button.

2. Create a new resource by selecting Window I ,Create. A generic window
that can be moved and sized will appear on the screen.

3. Attach the desired objects to the window:

· Select the objects with the mouse directly from the button bar, or select
them from the Qbject menu options.

· Position the cursor in the window at the desired location and press the
left mouse-button.

4. Edit the objects:

· Call the information notebook by double clicking on the object itself, or
double click on the resource window and then select the object (by dou
ble-clicking on its name) from within the Subobjects folder.

· Change the default information by positioning the cursor on a field,
pressing the left mouse-button, and entering the new information. Flags
are toggled by clicking on the associated option.

Notice that there are several different folders in which default informa
tion is listed. You can change folders by clicking on the tab of the desired
folder. When all of the necessary information is entered for the object,
select the QK button of the current folder.

5. Save the current window resource by selecting Window IStore As...
Enter a name for the window at the Name prompt. Select the QK button
to close the Store As... window and store the resource.

6. Save the current file by selecting ,Eile I.save.

Zinc Designer

Creating the
resource window
and its objects

7. Test the resource by selecting Resource IJest... and interacting with the
objects. When you are done testing it, select the Exit Test button.

8. To add other resources to the current file, repeat steps 2 through 7.

Creating a simple window

Let's familiarize ourselves with the some of the window objects that can be
created using Zinc Designer. First, we'll create a simple window. Then we'll
add a prompt object, a string field, a button field, and a spin control object.

Create a resource window by selecting Window 1!:reate from the pull
down menu. Once selected, a medium-sized window will appear at the cen
ter of the screen. This window has a border, maximize and minimize buttons,
a system button, and a title.

=>1 <untitled>

Let's place the prompt object on the window. Here's how:

1. Move the mouse cursor over the Prompt object in the button bar.

2. Select the prompt's bitmapped button by pressing the left mouse-button.
Notice that once you select Prompt, the status bar has the word Prompt
in the place object field.

3. Place the new prompt object in the resource window by moving the
mouse cursor over the resource window, and then

Zinc Designer 9

Introducing Zinc Designer

4. Click the left mouse-button on the desired location.

=-1

plOmpt

<untitled>

Follow the same procedure to create a string object. The string object's bit
mapped-button is located on the top-left part of the button bar.

Select the string's button, then place the object by clicking the left mouse
button inside the resource window.

=-1

prompt

Istring

<untitled>

Select a button object for placement in the window.

Create and place it by selecting the button's bitmapped-image from the but
ton bar, and then by clicking the left mouse-button at any position inside the
resource window.

=-1

prompt:

Istring

<untitled>

button

10 Zinc Designer

The final object that we will create is a spin control. The spin control is
located on the second line of the button bar and is the first bitmapped button
you see.

Place the spin control anywhere inside the resource window.

=1

prompt

1siring

<untitled>

10

button

Creating and placing window objects using the Designer is simple, but it is
not the only method. Later, we will discuss some of those ways.

Information inside ofobjects

Each object has information, such as default data, location, and settings,
encapsulated inside of it. We can view or edit this information by double
clicking the object, which shows its information in notebook form. The
information notebook contains information unique to that object on its first
page, and generic information on its subsequent pages.

Zinc Designer 11

Introducing Zinc Designer

Prompt
information

For example, if we double-click on the prompt object, the prompt's informa
tion notebook appears:

General 1 Position I Geometry I Advanced

12

Text Iprompt

OK I I Cancel I I Help

The prompt information notebook contains four pages. They are:

· General

· Position

· Geometry; and

· Advanced

Let's first examine the General page.

General. The General page contains only information associated with the
prompt, namely the prompts Text and Name. You should see the word
prompt: in the Text field. This is the default text that is connected with our
prompt when we create and place it on the resource window. Near the second
field you should see the title Name. This associated data field contains the
programming name of our prompt object, in our case, FIELD_I.

Zinc Designer

Position. The Position page is presented when we click the left mouse-but
ton over the Position tab.

General I Position Geometry I Advanced

Position/Size---------,

[gJ~ ill]
column: c=J c=J~

line: c=J c=J rc=J
width: c=J c=J~

height: c=J c=J rc=J

I OK I I Cancel I I Help I

[io~~.~:r I [gJ I
---=--==--

[
nellb.n I
IEJIO:O--=--==--

[
Alignment I

_[E=:J [EJ C3J

Position has four areas of interest: Position/Size, Border, Region, and
Alignment. Position/Size contains several buttons, prompts, and numbers.
Each number describes the location and position of the prompt on the
resource window, including pixel, mini-cell, and cell coordinate information.
The Border area tells us whether the object will be drawn with a surround
ing border. The Region area controls how the object uses its region; whether
it expands to fill the space of its parent or uses the position and size informa
tion shown in the Position/Size area. The Alignment area tells us whether
the text is left, center, or right justified within the field's region.

General Position Geometry Advanced

OK Cancel I I Help

Constraint Features
offset: 15 I ...

options: o stretch ~o opposite ,....
o hz-center '--,

,., +
anchor: I<untitled> I~
Size Restrictions------,
~ <=width<= ~

~ <=height<= ~

Geometry. This page has three main object groups. The first group, located
at the top-left portion of the notebook page, defines the object's geometry
constraints. The top-right portion of the notebook page allows us to modify
the constraint information identified by the first region. The bottom-right

Zinc Designer 13

Introducing Zinc Designer

14

portion of the notebook page contains information that restricts the prompt
object's height and width within its parent window. We will discuss geome
try management in greater detail during a future tutorial.

General T Position I Geometry T Advanced]
NumbedO: 11 I ----- Interaction ----- ~

Callback: 1 I[]
~

@ Non-selectable
UserObject: 1 I

UserFlags: 10 1 ----- Data Settings -----

UserStatus: 10 I
Derived Name: I(None) Il!)

----- Miscellaneous -----

I OK I I I;.ancel I I Help I '---,
+

-

Advanced. This page contains the object's advanced features and data
options. In brief, it provides a place for user information-where we can
change the programming, or identification, number associated with our
object-and a list that contains many advanced features and options, useful
when programming advanced objects. We'll examine more features associ
ated with this page in later tutorials.

Now let's exit the prompt's information notebook. One way to exit the
prompt notebook is to select the QK button. Besides exiting the notebook,
this saves the data we changed when viewing the notebook pages. We can
cancel the operation without saving changes by pressing !:ancel.

Further, if we need help with any of the pages in the notebook, we could
press Help, which would cause the Designer to display a help window sensi
tive to the context of the application. This means if we press the Help button
in the advanced page, we will receive help on the advanced portion of our
object. Similarly, if we press Help on the general section of the notebook,
help information will be presented for the object's general features.

Let's leave the prompt information notebook by pressing !:ancel.

Zinc Designer

String
information

Let's look at the information notebook for the string object. Invoke the string
information notebook by double-clicking on the resource window's string
object.

General l Position r Geometry I Advanced

----- Input Format -----

@Normal
.~.-

Text: 1string I
o Lower-case

o Upper-case
Length: 132 I o Password (....)

----- Input Conversion -----

Name: IFIELD_2 I o Spaces 10 underscores

Help: I(None) IiJ o Automatically highlight data

I OK I I Cancel I I Help I

The general page of the string object contains the same ~ame and lext field
that were visible on the prompt's general information page. In addition, how
ever, new Length and Help fields appear on the page. The notebook's Text
field shows the default data for our string object. The Length field indicates
the maximum length of text that can be entered into our string. The default
value for string data is 32 characters. The Name field, as described for the
prompt object, is the string identifier associated with our object, in this case
a string. The Help field contains the help context name to associate with our
string object. This field will be described later in this tutorial.

The right side of the general page lists many formats that can be selected
with our string object. These formats include: normal input, lowercase,
uppercase, and password. In addition, we can convert spaces to underscores
when we edit the field or we can highlight the string data when we begin
editing the string data. We will discuss these features more extensively in
later tutorials. For now, we just want to become familiar with the location of
the fields on the notebook.

Take a few minutes to browse through these pages and to examine the infor
mation associated with string objects. Once you have finished browsing this
notebook press the Cancel button.

Zinc Designer 15

Introducing Zinc Designer

Button
Information

Spin control
Information

16

Let's now look at the button object and its associated information.

General 1 Posilion I Geometry I Advanced 1

----- Tvpe ----- ~
Text: IbuUon I

@ Normal I-

Value: 10 I o Radio-buUon

Image: I ~
o Check-box

(None) ----- SeUings -----

D Send user message

Name: IFIELD_3 I D Sel as defaull buUon

Help: IINone) IiJ ----- Slale -----

@ 1-slale (no loggle)
--

I I 1 I 1 I o 2-slale Ion/off) --,OK !;.ancel Help
-----I-Ip;nht ----- +

The button object has text, value, image, name, and help fields, as well as
many button flags. All of these features can be selected to change the opera
tion and appearance of a button on the screen. In time, you will find that
most of these features are beneficial to your programming efforts. Take a
moment to view this information.

The final object whose information we will look at is the spin control object.

1
-

f TGeneral Position Geometry Advanced

Tvpe: Ig Integer ~ Edit..

Della: 11

Name: IFIELD_4 1
Help: I<none> IiJ
OK Cancel I I Help

The bottom two fields Name and Help look like fields from the other objects
that we created. However, the Type, Edit, and Delta fields are unique to spin
controls. By default, the spin-control object contains a 16-bit integer value,
but its information notebook allows us to change its default data type to a
date, time, real, or bignum type.

Zinc Designer

We've accessed the information associated with our prompt, string, button,
and spin control objects. Each object contains unique information on its first
information notebook page, and generic information on its subsequent note
book pages. We've also created a simple window with simple objects, which
we'll use as a springboard to learn new parts of the Designer.

Creating lists and grouped objects

We just learned how to use the Designer to access the information associated
with certain window objects. Now we're going to learn how to use the
Designer to create lists and groups. Move the simple window we just created
to the bottom of the screen, and create another window by selecting Window
I !:reate from the pull-down menu. Another untitled window will immedi
ately appear on the screen.

We will create two objects for this window using the drag-and-drop capabil
ity of Zinc Designer. To create the vertical list using drag and drop, do the
following:

1. Move to the vertical list button on the button bar.

2. Click down on the left mouse-button, then, while holding down the left
mouse-button

3. Drag the object to the resource window.

4. Release the left mouse-button.

Zinc Designer automatically places the object inside the resource window.

<untitled>

Zinc Designer 17

Introducing Zinc Designer

18

Now let's do the same with a group object. Click down on the group's button,
drag the object to the resource window, and release the left mouse-button.
This places the group object.

0;;;;;;0 <untitled> I...J·

D
Let's now look at some other ways that objects can be created and placed
into lists and groups. First, recall how we created and placed objects in the
first simple window. We selected an object by clicking the left mouse-button
while positioned over the object's button on the button bar. Let's do this now
with a string object; click on the string button, release it, then move the
mouse cursor over the list object and reclick the left mouse-button. This
places a string object inside of the list.

At this point, we could go back to the string button, reclick the button from
the button bar and reclick inside the list. This would allow us to slowly cre
ate and place string objects in the list-but Zinc Designer offers a faster way
of creating and placing additional string objects. This method simply
requires us to click the right mouse-button while positioned inside a resource
window. When you click the right mouse-button the place object field on
the status bar updates to reflect that a new string object can be added. When
we click the left mouse-button, the place object goes away, but the string
appears in our list. We can place another string object by simply reclicking
the right-mouse and then clicking the left mouse-button inside the list.

Another way to create objects-this one a little slower but more intuitive for
finding objects if we are not familiar with the Designer-is with the pull
down menu. The Object menu item has several object categories-Input,
!:,ontrol, Selection, and Qther-which contain groups of particular object
types. Though we can also access these objects through the button bar, object
categories allow us to more easily find the objects we want. For instance, the

Zinc Designer

Input category contains all the objects related to inputting information;
objects including string, formatted string, text, date, time, bignum, integer,
and real input objects.

=1 ISO - Window Editor - <no file> I"J~
file £dit ~indow Q.bject tlelp

gIB~rTIl~IQIG Input String
IJControl Formatted StringO]J ~ ~=ILlleJ~[Selection Text
l-

ather Date 1-

object IUIW_'i/INDO'if pos: 12-22 Time-- -
slringlD: I<untitled> size: 150.7 Signum

Integer =

Real

Getting back to object creation, now add a set of radio buttons to the group
object by clicking on the Object pull-down menu. Then move down to the
Control item and select Radio Button from the pop-up menu. Now the
words Radio Button appear in the place object field.

type: IGroup

name: r-IFI-EL-D-_2--

pos: 126.0

size: '--120-.-5---

place object

~ Radio Button

List information

We can now place a radio button inside our group object by moving the
mouse cursor over the group object and by clicking the left mouse-button.

Place three more radio buttons inside your group by doing any of the follow
ing:

Selecting a radio button from the pull-down menu in the Object cate
gory,

Selecting the radio button image from the button bar, or by

• Clicking the right mouse-button to reactivate the radio-button place
object.

Group

o radio-bullon

o radio-bullon

o radio-bullon

o radio-bullon

Let's look at one more Zinc Designer feature through the list information
notebook. Move the mouse cursor over the list object and double-click with
the left mouse-button. At this point the vertical list notebook appears. Notice

Zinc Designer 19

Introducing Zinc Designer

the same four categories that we had with the simple objects, namely: Gen
eral, Position, Geometry, and Advanced. In addition, however, we now
have a new category called Subobjects. Select the subobjects page by click
ing the Subobjects tab with the left mouse-button. There are four areas in
the subobjects notebook page. The first is called Objects, the second Direc
tories, the third is a group of support buttons, and the fourth is a combo box,
located on the bottom-right portion of the page.

General I Subobjects lr__p,,-,-os.....:itio.....:n_--'----'-G"-'-eo.....:me'-'try'----L----'-CA.....:dv-=.an-=.ce:..::.d-----'.,

Objects:

:::.. ~.~.'>.~.I:l~~ ..~.b.j.~~ts:::
llDII NUMID_VT_SCROLL

--- Normal Objecls ---

g FIELDJ

g FIELO_8

Directories:

WINDDW

B FIELD_1

Edit

Add

Delete

I Move Up

IMoveDownl

OK Cancel I I Help
l.....:l::I_B_u_tto_n ---'~

20

Let's first look at the items in the objects list. The first item in the list is an
image of a scroll bar with the word NUMID_VT_SCROLL. In addition, the
list contains small pictures of the string objects inside our edit list. We can
bring up their information notebooks by:

· double-clicking the left mouse-button on any of the objects in this list, or
by

· scrolling to the desired list item and pressing <Space>, or by

· scrolling to the desired list item and selecting the Edit button, located on
the right side of the notebook page.

Zinc Designer

Now let's bring up the string information notebook. Double-click on the first
string object in the list. A new window appears for the string object, just
underneath the vertical list notebook.

=1 UIW VT LIST - FIELD 1

=1 UIW STRING - FIELD 1

General 1 Position I Geometry I Advanced I
----- Input Format -----

<!) Normal

Text: ISlring I
o Lower-case

o Upper-case
Length: 132 I o Password (....)

----- Input Conversion -----

Name: IFIELD 7 I o Spaces to underscores

Help: I(Nonel Ii] [g] Automatically highlight data

I OK I I Cancel I I Help J

Browse the string notebook information, then exit by selecting the Cancel
button. Control now returns to the vertical list notebook.

The support buttons, located on the right side of the notebook page are used
to edit objects, add and delete objects, or to move objects up or down in the
objects list. The directory portion of the notebook shows us our current edit
object, the vertical list, and the parent hierarchy of the object back to the
untitled resource window.

The bottom-right portion of the notebook page allows us to create additional
objects of a specified type. The default type of object for vertical list is But
ton. We can add a new Button object by selecting the Add button located on
the right side of the notebook page. We will examine these features later in
our tutorial.

Zinc Designer 21

Text: !Group

Introducing Zinc Designer

Group
Information

22

Now exit from the vertical list notebook by pressing .cancel. Bring up the
group notebook by double-clicking on the group object in the resource win
dow. (Be careful as you double-click on the group not to select one of the
radio buttons inside the group, as doing so would open the radio button
information notebook.)

General 1 SUbobie~- Posi~etr;--I~ Adv~1

----- Interaction -----

D Automatic item selection

I D Select multiple children

D Don't wrap keystrokes

Name: IFIELD 2 I
Help: IIN one) iii

I OK I I Cancel I I Help I

The group notebook contains the same five categories that were available
with the vertical list. If we click on the Subobjects tab, we view the same
information page seen in the vertical list, but under the Objects category we
see button images instead of strings. These are the four radio buttons that we
inserted into the group. Exit from the group notebook by selecting Cancel.

Take a moment to browse the list and group objects, then move the resource
window to the bottom-right portion of the screen next to our first resource
window.

Creating advanced window objects

Let's now create a window with advanced objects. Select the Window l.cre
ate option to create a new window. We are going to place three objects on
this window; a pull-down menu, a button bar, and a status bar. First, create
the pull-down menu using one of the methods discussed earlier, then place

Zinc Designer

the pull-down menu inside the resource window. Next, create and place a
button bar inside of the resource window. Finally, create and place a status
bar inside the resource window.

=1 <untitled> 1"'1·
item

Let's place a few pull-down items in the pull-down menu by selecting the
pull-down item option from the button bar then by clicking the left mouse
button inside the pull-down menu. (Remember that the right mouse-button
reactivates the last object you created). Next create several buttons to go
inside the button bar. Do this by selecting the button item from the button bar
and placing it inside the button bar. Finally, place several strings inside the
status bar. This is done by selecting the string from the button bar and then
by placing it inside the status bar object.

....1 <untitled> 1"'1·
item item item

button I bUlIon I

Istring [string

Zinc Designer 23

Introducing Zinc Designer

Button bar
Information

Subobject
Information

24

Let's take a moment to look at the button bar's edit window. Invoke the but
ton bar notebook by double-clicking on any region outside the button
objects' regions, but inside the button bar's region.

General 1 Subobjects 1 Position I Geometr.Y r Advanced 1

----- Inleraclion -----

o Bilmap children

o Selecl mulliple objecls

o Don'l wrap keyslrokes

Name: IFiElD 3 I
Help: I(None) Iii

I OK I I Cancel I I !!elp I

Notice the five notebook categories; General, Subobjects, Position, Geom
etry, and Advanced. Information contained in the button bar edit window is
similar to that contained in the vertical list and group objects we created ear
lier. Once you have finished browsing the button bar information, exit by
selecting Cancel.

The method used to bring up edit information for the pull-down menu is a
little more complex. In most environments, this object is considered a sup
port or decorative object, so we cannot invoke its information notebook by
simply clicking inside the object's region. This information notebook must
be called through the Window Editor. To do this, bring up the General infor
mation notebook by double-clicking anywhere inside the edit window.

General I Subobjects I Position I Geometr.Y T Advanced

----- Supporl Fealures ----- ~
[gJ Border ...,j

Title: I<unlitled> I [gJ Maximize Button

Minlcon: I 0
[gJ Minimize Button

(None) [gJ System Button

o Geomelry Managemenl

Name: I<UNTITLED> I o Verlical Scroll-Bar

Help: I(None) Iii o Horizontal Scroll-Bar

----- Type -----

I OK I I Cancel I I Help I
(!> Default

~

() ni..lnn nhiprl +

Now move to the Subobjects page. On the left side of the page under the
Objects category there is an image associated with the pull-down menu. In
addition, on the right-side of the notebook page, under the Directories cate
gory, there is another field associated with the pull-down menu. The left-side

Zinc Designer

list allows us to directly invoke the object's information notebook. The right
side list, however, allows us to traverse through the window object hierarchy
and view any of the objects that we have placed in our resource window.
Double-clicking over items on the right-side list does not bring up their asso
ciated information notebook, it simply traverses down into that object's view.
For example, double-click on the pull-down menu item located in the right
side list.

General I Subobiects I Position I Geometry Advanced

Objects:

--- Support Objects ---

--- Normal Objects ---

!P FIELD_2

!P FIELD_5

II !P FIELD_6

I'

Directories:

<untitled>

~:f(EI:-[)·.,.-,.~_-_..-,..-"_-._"_-..-.-_".,,,,,._,,,,..._
!P FIELD_2

!P FIELD_5

!P FIELD_6

Edit

Add

Delete

I Move Up

IMove Down I

OK Cancel I I Help
I!P Pull-down Hem r;t______--'1.:.1

Inside the pull-down menu's view, we can select any of the pull-down items
from the left-side Objects list by double-clicking on the item.

Let's briefly revisit the Add feature associated with this notebook page. On
the left-side, we see the pull-down items created earlier in the tutorial. In
addition, the word Pull-down Item appears inside the combo box, located on
the bottom-right portion of the page.

We can now add a pull-down item to the pull-down menu by pressing Add.
Once the Add button is selected, an additional pull-down item appears in the
object list. These are actual window objects and are as real as the other pull
down items created through the main Window Editor.

Let's delete some of the pull-down items by selecting an item in the object
list and then by pressing the Delete button. When we delete an item from the
object list it is removed from our view. We can delete additional items by
continuing to select the Delete button.

The Move Up and Move Down buttons, located on this notebook page,
allow us to move items either up or down in the object list, thereby changing
their position and the user movement on and off the items. To move an item
up in the list, do the following:

1. Select the item from the object's list.

Zinc Designer 25

Introducing Zinc Designer

26

2. Press the Move Up button on the right side of the notebook page, or type
<Ctrl + up-arrow> from the keyboard. (To move an object down follow
the same process but select Move Down or type <Ctrl + down-arrow>.)

After you have browsed this notebook, exit back to the main Window Editor
by selecting Cancel from any notebook page. Now, prepare for the next tuto
rial section by moving the pull-down window to the bottom-right portion of
the screen, next to the other two windows we created previously in this tuto
rial.

Using the Edit command

We will now shift our focus from creating window objects to editing and
placing objects. Let's give ourselves some objects to edit by creating a new
window and creating several prompt and string objects. Place them ran
domly on the window, but keep the prompts on the left side of the window
and the strings on the right side of the window.

=1 <untitled> I."'j'"
prompt Isiring I

prompt IISlring
,----======,-----------'

prompt Isiring
~=====~-----'

prompt L-Is'_rin--"'.g ---'

We can group objects for modification by using the E.dit I .Group option
located in the pull-down menu, or by:

1. Pressing the <Ctrl> key on the keyboard, while

2. Pressing the left mouse-button, then by

3. Dragging the mouse cursor over the objects that you want to place in the
group, shown by a overlapping rectangle, and then by

4. Releasing the mouse button once all desired objects have been included
in the group.

Zinc Designer

For example, use the Edit I.Group command to select the prompt fields in
our window. First, select the Edit I.Group option, click the left mouse-but
ton in the top-left portion of our window, and then drag the mouse cursor
over the prompts that we have created in the window. Finally, release the left
mouse-button. The new edit group forms a shaded rectangle behind the four
prompts.

=1
prompt

<untitled>

Istring

1·1·

prompt Isiring
r-::-=======,----------'

prompt IsIring
,---'::==========;---'

prompt ,-Isl_ri-"ng'-- ------'

We can modify the position of these prompts by pressing down on the group
with the left mouse-button and then by moving them with the mouse drag
operation. In addition, we can move the group by selecting the Move and
Size commands located under the Edit option. Conceptually, the shaded
window area acts as a new group or object. All of the prompts within the
shaded region are now considered subobjects of the edit group.

Let's change the left justification of all the prompts inside our edit group.
Double-click the left mouse-button anywhere inside the edit group.

General Advanced

o Sort objects on screen location.

o left justify objects.

o Center justify objects.

o Right justify objects.

:01(.: Cancel I I Help

Zinc Designer 27

Introducing Zinc Designer

We make all of the prompts in our edit group left justified by selecting the
Left-justify objects option in the notebook and then by pressing OK.

=1 <untitled> I...J·
prompt: Isiring I
prompt: Isiring

prompt: Isiring

prompt: Isiring

In addition to left justification, we can center- or right justify the objects
inside our edit group using the same method, but by selecting the appropriate
option. To remove the edit group, select the Edit IUngroup option from the
pull-down menu. Once the edit group has been removed, each object returns
to an autonomous state-it can be moved, sized or edited individually.

Group the string objects using only the keyboard and mouse by simulta
neously pressing the <Ctrl> key and the left mouse-button, then by dragging
the left mouse-button and the associated XOR rectangle over the string
objects. Be careful not to begin your group operation over the prompt
objects-this would cause some of the prompts to be included in the string
group. Left justify these objects by double-clicking on the edit group, then
by selecting the Left-justify objects option and by pressing OK.

Move the string group close to the prompts by pressing the left mouse-button
over the edit group, then by dragging the objects near the prompt objects.

=1 <untitled>

28

prompt: Isiring

~=====~
prompt: Isiring

:======~
prompl: Isiring

:======~
prompl: L..Isl_rin...=:g -'

Zinc Designer

Now group both the prompts and the strings together to examine the Edit I
Cut, Edit I Copy and Edit I Paste commands. Do this by pressing the left
mouse-button over the prompt area, by dragging the mouse to include the
string objects from the string area and then by letting-up on the left mouse
button.

=1 <untitled>
prompt Isiring:=======;
prompt . :=1sl=rin=g====~
prompt: . 1siring

prompt :. ~Isl=rin=g====~

Let's first examine the Edit I Copy option. We can copy the edit group we
selected by choosing Edit I Copy from the pull-down menu and then select
ing Edit IPaste. Once you choose this option, notice the place object status
indicator contains the new string Edit Group. We now have a copy of the edit
group in the copy/paste buffer. To paste the edit group, press the left mouse
button inside the edit window.

=1 <untitled>

I
I
I
I

prompt: 1siring:=======;
prompt Isiring

'----==------;::======----,
prompt: prompt: Isiring

~=====~
prompt: prompt:: :.I siring:=======;

.prompt: Isiring:=======;
:prompt: .. Isiring

We can create additional copies of the edit group, by pressing the right
mouse-button to reactivate the place object, then by pressing the left mouse
button to create a new edit group.

Each time you paste an edit group, the focused edit group changes. Zinc
Designer restricts users to only one edit group per window. This is always
the last edit group defined or created using any of the edit commands.

Let's remove the edit group that we just created, by selecting the Edit I
Delete option from the pull-down menu.

The Edit I Cut option is similar to Edit I Copy, except that the edit group is
removed from the screen. The contents of the edit group are moved directly
into the paste buffer. Retrieval of the paste buffer is accomplished in the
same manner as described previously in this tutorial.

Zinc Designer 29

Introducing Zinc Designer

30

We have now looked at some of the basic features associated with the Edit
option. Prepare for the next section by removing the edit group.

File options

Let's give each of our four windows the names SIMPLE, LIST, PULL
DOWN, and GROUP. Bring back the first window into the middle of the
screen by pressing the left mouse-button while positioned over the window's
title, and by dragging the window to the center of the screen. Double-click
inside the window's region to bring up the information notebook.

General I Subobjects T Position T Geometry T Advanced 1
----- Support Fealures ----- ~
~ Border ...,j

Tille: I<unlilled> I ~ Maximize Button

Minlcon: I [3
~ Minimize Button

(None) ~ System Bullon
••r_

II
D Geomelry Managemenl

Name: I<UNTITLED> I D Verlical Scroll-Bar

II Help: I(None) Ii) D Horizonlal Scroll-Bar

----- Type -----

I OK I I Cancel I I Help I
@ Default -
{\ n;~lnn nh;a~1 ..

Type in the word

Simple

in the Title field. Then move to the Name field, and enter the word

SIMPLE

Save both the title and name by selecting OK. Now bring the list edit win
dow to the middle of the screen. Change its name by double-clicking on the
window, typing the word

List

into the Title field, and

LIST

Zinc Designer

into the Name field, then select OK. Change the name of the pull-down
menu window by bringing the window to the middle of the screen, invoking
it's associated information notebook and by entering the word

Pull-Down Menu

into the Title field, and

PULL DOWN

into the Name field. Finally, change the name of our edit group window by
following the same procedures and entering the name

Group

into the Title fields, and

GROUP

into the Name fields. All of our windows now have unique names and are
ready to be saved out to a file. Save the information to a file named
TEMP.DAT by selecting the File INew option, then by entering the name

TEMP.DAT

into the field just under the Filename prompt, then by selecting OK.

After creating the file, all of the windows on the screen can be saved by
selecting the File I Save command. Notice that two windows appear during
the save operation-a .CPP status window, and an .HPP status window,
which show the state of our save operation. The first status window is enti
tled Generating the CPP file.

Generating the CPP file

Generating CPP entry SIMPLE

The second window is entitled Generating the HPP File.

Generating the HPP file

Generating HPP entry SIMPLE

Zinc Designer 31

Introducing Zinc Designer

32

Each time a window is stored, the status information for the window
changes. For example, saving our windows will cause the status window to
update SIMPLE, LIST, PULL-DOWN, and GROUP.

The file TEMP.DAT contains the four windows SIMPLE, LIST, PULL
DOWN, and GROUP that we created during our edit operation. Selecting the
File ISave operation also causes two other files to be created-TEMP.CPP,
and TEMP.HPP.

TEMP.CPP contains entries used by programmers when the windows are
used in an application program. In particular, this file contains a jump table
and a user information table. TEMP.HPP gives us programming hooks that
tell the name and index of a particular field inside our edit window. We'll
discuss the details of using TEMP.CPP and TEMP.HPP in the next tutorial.

We will come back to our edit windows in a few moments. Let's first prepare
for the next section of this tutorial by selecting the Window I Clear All
option from the pull-down menu. When you select Window I Clear All, all
of the edit windows are removed from the ~creen, though they still exist in
the TEMP.DAT file.

Zinc Designer

Chapter 2 Zinc Designer's
Support Editors

1 the last chapter, we learned about the Window Editor, the main editor of
Zinc Designer that allows us to create and edit windows. In this chapter,
we'll learn about the support editors: the Image Editor, the Help Editor, the
Message Editor, the Defaults Editor, and the String Editor. These are what
allow us to edit bitmaps and icons, create help contexts, create run-time
loadable strings, and internationalize applications. If you've closed the .DAT
file we created in the last chapter, open it again, since this tutorial will mod
ify the objects we created.

Zinc Designer's support editors

creating and editing bitmaps and icons

creating and editing help contexts

basics of globalization using·Zinc Designer

Zinc Designer 33

Zinc Designer's Support Editors

Image Editor

The first support editor is the Image Editor, located in the bottom-left portion
of the screen at the Designer's launch time. Open the Image Editor by dou
ble-clicking on the image edit icon or by single-clicking the image edit icon
and then selecting the Restore option from the pop-up menu that appears
above the Image Editor's icon.

light-

sCleen-
. - ..

Main
components

34

The Image Editor's interface has four main components:

· the title;

· the pull-down menu;

· the button bar; and

· the color bars.

Title. The title, which contains the words Image Editor, is located on the top
portion of the window like the Window Editor.

Pull-down menu. The pull-down menu, which appears just under the title,
controls the operation of the Image Editor. However, it does not control the
operation of the Window Editor. In particular, we have the same File option
available as the Window Editor, except this option is grayed out. (Since the
Image Editor is a subcomponent of the Window Editor, the option is not
selectable in the Image Editor-the Window Editor performs all file opera
tions.) The other options in the pull-down menu-Edit, Bitmap, Icon,
Mouse, and Help-allow image editing.

Button bar. The button bar, located underneath the pull-down menu, contains
buttons which represent draw operations.

Zinc Designer

Color bars. The final interface component is a set of three color bars. The
first color bar shows colors that are associated with the left mouse-button.
The second shows colors associated with the right mouse-button. And the
third shows screen colors. We can change the current color selection with the
mouse by selecting color bar options.

Learning to use the Image Editor

Let's begin learning to use the Image Editor. Create a bitmap image by
selecting the Bitmap ICreate option in the pull-down menu.

=1
".. .-" ... - -

<untitled> -

D

Width: 116
:=====:

Height: IL-16__----'

Store I Store As___ I I Close I I Help I I Si.le

The bitmap image window has four areas-the drawing field, the actual
image, the image size, and support buttons. The expanded image is located
on the left side of our window. The actual image is located on the right side
of the window and shows how the bitmap will appear on the screen. On the
bottom-right side of the window are two numbers that contain the bitmap
width and height. The support buttons, Store, Store As..., Close, Help, and
Size allow us to store, close, resize, or obtain help about the bitmap image.

Zinc Designer 35

Zinc Designer's Support Editors

Drawing an
ellipse

36

Let's draw an ellipse in the bitmap. Move the bitmap window to the bottom
of the screen, so the Image Editor's patterns are visible. Select the blue color
from the left color bar. Then select the unfilled ellipse button. To draw the
ellipse in the bitmap window, do the following:

1. Click while positioned in the top-left edit cell.

2. Drag the mouse cursor to the bottom-right portion of the edit bitmap.

3. Release the mouse button.

Now let's fill the ellipse with the light blue color. Use the right mouse-button
to select the light blue color from the right color bar. Use the left mouse-but
ton to select the color fill pattern, which is the right-most button on the bar

Zinc Designer

Filling the
bitmap

located in the Image Editor control window. Fill the interior of the ellipse by
clicking the right mouse button while positioning the mouse inside the
ellipse.

=1
~--~- ~-~- ;-~

<untitled>
~

•• ••• •• • OJ• •

II
• •• • Width: 116• •

I' •• •• Height: 116

SiOie -I I StoleAs... 1 I Close 1 I Help - I I Size ~I

., - ~--~ ~ ~ --

Let's fill the outer four comers of the bitmap with a screen background color.
Use the left mouse-button to select yellow from the screen color bar. We still
have the desired fill option selected as our pattern. Move the mouse cursor
over the top-left portion of the image without overlapping the ellipse and
click the left mouse-button. Do the same thing for the top-right, bottom
right, and bottom-left areas of the edit bitmap. You should now have a bit
map with three separate colors, yellow on the comers, blue on the outer
ellipse, and light blue on the inside of the ellipse. Store this bitmap image by
selecting the Store As command and by entering the name

circle

Zinc Designer 37

Zinc Designer's Support Editors

into the Store As window.

=>1
Objeclname:

ICIRCLE

Object Selection

.Q.ireclories:

~--~- - -

~

OK I
!;.ancel I

Help I
I

38

Now store the circle in the TEMP.DAT file by selecting the OK button.

Zinc Designer

Creating an icon
image

Now let's create an icon image. First, close the circle bitmap by selecting the
Close button. Then select the Icon I Create option.

=1 <untitled> =-;

D

Widlh: 132
:==~

Height 132
'----__-J

Slore 1 Store As... I I Close I I Help I I-Size

The default width and height for icon images is 32, whereas the default
height and width for bitmap images is 16. Let's draw a small rectangle and
an overlapping ellipse for our icon image. To draw these objects, first select
the filled rectangle button from the button bar. Select a left color by pressing
the left mouse-button inside the left color bar over the desired color. Move
back to the icon image and press the left mouse-button just inside the icon
image. Drag the image to approximately half the window size, then release
the left mouse-button.

=1 <untitled>

Widlh: [32
~=~

Height '-132__------'

Store I Store As... I I Close I I Help I I Size

Zinc Designer 39

Zinc Designer's Support Editors

Select a new color, then select the filled ellipse as your pattern. At around the
three-fourth mark of the right-bottom portion of your rectangle, begin draw
ing the ellipse. Release the left mouse-button once your ellipse pattern has
filled half the image.

=-1 <untitled>

Width: 132
~==~

Height '-132__----'

Drawing a
bounding
rectangle

Store I Store As... I I Close I I Help I 1 Size

Draw a bounding rectangle on the image by selecting the unfilled rectangle
pattern and by selecting the color black from the left color bar. Begin the
rectangle by selecting the top-left pixel, dragging the mouse cursor to the
bottom-right corner of the image, and releasing the mouse-button.

=-1 <untitled>

Width: 132
~====:

Height 132
'-----'

40

Store 1Store As,.. I 1 Close I I Help I 1 Si~e

Save this icon image as rectangle. To do so, select the Store As button, enter
the name

rectangle

Zinc Designer

Viewing the
stored images

and press OK. Close this window by selecting the Close button.

To view the names of the images we just stored, go into the bitmap pull
down item and select the Bitmap I Load option.

=-1 ~~--,--- "Resource, Load••.

Objeclname:

D circle

Q.ireclOlies:

OK

Cancel

HelP"

The bitmap named circle appears in our bitmap list. Press Cancel to close
the window, then select Icon I Load to view the icon list. The bitmap and
icon images are now available to the Window Editor. Save your work by
returning to the Window Editor and selecting the File I Save option. Then

Zinc Designer 41

Zinc Designer's Support Editors

minimize the Image Editor by selecting the minimize button from the image
window. Finally, reload the simple window from TEMP.DAT by selecting
the Window ILoad command from the Window Editor's pull-down menu .

object:

$lfinglD:

.c.reate

Load... ': I
~tore ,.--;.c=-==::.:.-
Store As... l: I
Clear
Clear All
Qelete ...

lest...

place object:

=1
Objeclname:

Resource, Load...

Qireclories:

-Ul'w_WINDOW OK
~GROUP

~lIST

El PULL-DOWN

El SIMPLE

£ancel

Help

42

Select the simple window by double-clicking on the SIMPLE list item or by
entering the name

SIMPLE

under Objectname and by selecting OK. The simple window is now visible
on the screen.

Zinc Designer

Incorporate the bitmap and icon images into the edit window by first invok
ing the button's information notebook. (Remember, to select the button note
book, move to the button object, then double-click the mouse button.)

General I Position J Geometry 1 Advanced 1- -
@ '-$tate (no toggle) ~

Text: Ibullon 1
o 2-state (on/off)

Value: 10 1
----- Height-----

Image: I [!]
o Cell based

(None) @ Auto-sized

----- Depth -----

Name: IFIElD_' I o Flat
.a.1--

Help: I(None) Ii) @ Normal 3-0 I-

----- Action -----

I OK I 1
I;.ancel I 1

Help I @ Action on Up·CLlCK
I--

I () A.-tinn nn nnWN_rllrt' +

Select the circle image by first moving down to the image field. Then click
the left mouse-button on the down-arrow of the combo-box, and select the
circle image from the pull-down list. The circle image is now selected and
the button information notebook reflects the image change.

General l Position T Geometry I Advanced
·A

@ '-state (no toggle) ~
Text: !bullon

1
o 2-state (on/off)

Value:
1
0 I

----- Height-----

10 circle [!]
o Cell based

Image: @ Auto-sized

----- Depth -----

Name: IFIElD_' I o Flat,

Help: 1(None) Ii) @ Normal 3-0 ,...
-----Action -----

I~ OK I 1 Cancel I I Help I
@ Actio~on UP-CLICK

'-,-

I n A~';nn nn nnWN_rllrt' +

Save the changes by pressing OK. The edit window is automatically updated
to show the bitmapped button.

=1

prompt:

Istring

Simple I~I·

Zinc Designer 43

Zinc Designer's Support Editors

Associating the
icon with the
window

Let's associate the icon image with our simple window. Double-click on the
window to bring up its information notebook. Move down to the MinIcon
field, bring up the image list, then select the rectangle image from the avail
able items. Save this change by pressing OK.

View the changes made for the minimized icon and the bitmapped button by
selecting the Window I Test feature.

=-1

plOmpl:

Istring

Simple L·J ...

44

To view the minimized icon, press the minimized button from the simple
window.

~
Simple

To exit test mode, press the Exit button on the Test Mode window. We're
now finished with our tutorial on using the Image Editor.

We have now examined various methods used to create bitmap and icon
images and how to insert those images into our simple edit window. Take a
moment to browse the Image Editor and the options available through the
Image Editor and the Window Editor.

Zinc Designer

Creating a help
context

Help Editor

The Help Editor will be the final area of focus in this tutorial. We'll leave
extensive coverage of the Message and Defaults Editors to a later chapter,
though we will introduce them in a moment.

=>/ Help Editor L...J ...
.c.ontext Help

Like the Image Editor, the Help Editor is also a subcomponent of the Win
dow Editor; it too contains a grayed-out File option. The Help Editor allows
us to create a help context, which is specific help information tied to a partic
ular object. Select the Context I Create command to begin creating a help
context.

=>/ Help Editor 1 ... 1'"
~ontext .!::!.elp

Import...
.Export...

~re8t'e: •.

= Load...
Store
Store As...

Clear
Clear All
Qelete ...

=>1 <untitled>

Tille: I:==============::::;::::;
Message:

I £tore I Store As... I I .,..close I I Help

-

Zinc Designer 45

Zinc Designer's Support Editors

Type the words

Simple Help

into the title field. Type the words

Simple help for a simple button

into the message field.

=-1 <untitled>

Tille: ISimple Help

Message: Simple help 101 a simple bullon

-
+

Store I Store As... I I Close I I Help

;

I

46

Store this information by pressing the Store As button, and entering the
word

SIMPLE HELP

and then by selecting OK. Close this window and create a new help context
by reselecting the Context ICreate command. Enter the words

General Help

into the title field. Enter the words

General help for our Application

Zinc Designer

into the message field.

=1 - - <untitled>
;; ..

Connecting the
help context to
the help system

II Tille: IGeneral Help

II Message: ~G=en=e=ra=1h=e=IP='o=r=ou=r=AP=p=lic=a=lio=n========~~
....
,

Stole I Stole As-.. I I £Iose I I Help

.,.

Save this help context by selecting Store As, by entering the name

GENERAL HELP

and by pressing OK. Remove this window by pressing the Close button.

We have now created two help contexts that can be used by the Window Edi
tor. Now we need to connect them to the button object. Minimize the Help
Editor and then open the button information window by double-clicking on
the Edit menu item. Move down to the Help combo-box and select
SIMPLE_HELP from the pull-down list. Press OK to save the changes.

General I Position I Geometry f Advanced
-

@ l-state (no toggle) ..t.
Text: Ibullon o 2-slale (on/oil)

Value: 10 -.--- Heighl-----

10 circle [!]
o Cell based

Image: @ Auto-sized

----- Deplh -----

Name: IFIELD 1 I o Flal,

Help: If~T~~~'~CH:f~~' .JL!) @NolmaI3-D .{L
"""...................................

-----Aclion -----

I~ on UP-CLICK. -
OK. £ancel I I Help f--,

In A,.tinn nn nmlJ'N-rIIrK •

Now bring up the edit information notebook for the main window. Move
down to the Help field and select GENERAL_HELP from the list. Save the
changes by pressing OK. We can now view our help changes by reentering

Zinc Designer 47

Zinc Designer's Support Editors

the Window I Test option. Once you are in test mode move to the button
field and press the help key «FI> in DOS and Windows). This invokes the
specific help associated with our button object.

-=1 Simple Help I~;"J ...
Simple help for a simple bullon

~-

'+

Close the help window by selecting the Close option from the system button.
To view the general help associated with this window, move to any other
field and press the help key.

-=1 General Help L~J ...
General help for our applicalion r!--

,.....,
+

Exit the test mode by selecting Exit from the test mode window. Take a few
moments to browse the Help Editor and its available options.

48 Zinc Designer

Message, Defaults, and String Editors

There are three remaining pieces of the Designer: the Message Editor, the
Defaults Editor, and the String Editor, which we use for internationalizing
applications. Briefly open the Defaults Editor by double-clicking on the
Defaults Editor image icon. Select Language I Create to create a window
in the English language:

<untitled>

DaJI Month 1 Time 1Date Inl 1Num. 1 Real 1 Sys. TTime r Win. I Error 1 Help 1
short days:

Sun I ~ Sun.Moil ~~~~~~~~~~~~~~~~~~~~~~~~~.u. Mon.

Tue TuelL
Wed Wed.
Thu Thuls.
Fli Fli.
S~ S~

long dCJ!ls:

Sunday
Monday
Tuesday
Wednesday
Thulsday
Fliday
Salulday

Ir Store I II Store As '1 Ir ~Iose I II Q.efault I II Help

Zinc Designer 49

Zinc Designer's Support Editors

Browsing the
Defaults Editor

We can modify many pieces of information associated with an object. For
instance, an object's Day tab contains short days, abbreviated days, and long
days. If we wanted to translate the window to Spanish, we could edit each of
these fields and change the text to the appropriate language.

es

Day 1Month I Time l Dale I In!. ~r Num. I Real I Sys. JTimel~ Error r Help 'I
shod days:

Dom[un
Mar
Mie
Jue
Vie
Sab

abbleviated days:

Dom.
Lun.
Mar.
Mier.
Juev.
Vier.
Sab.

long days:

Domingo
Lunes
Martes
Miercoles
Jueves
Viernes
Sabado

50

Stole I I Stole As I I Close I 1 Default I I Help

In a similar manner, we could change each of the tabbed items-month, ami
pm specifiers, date, integer, number, real, system button, time, win, error,
and help. Once we change this information, we can store the window with
the same method used by the Image and Help Editors. Let's close this note
book and look at a locale notebook by selecting Locale I Create.

=1 <untitled>

Date I Number 1 Time I Currency

o Dash separators ~

sepalatOf: 1-
o Slash separators

----- Country Format -----

o European lormal
date: I%m/%d/%y o Asian lormal
date/time: I%m/%d/%y %1:%104:%5 %p o 104 ilitary lormal ---;

@ U.S. fOlmat --•
I-S-tole I I Stole As I 1 klose I I !!.efault 1 Help

Zinc Designer

Browsing the
Message Editor

The locale notebook contains information, such as date, number, time, and
currency values, for a specific geographic area, which we can save to an
environment independent .DAT file. Go ahead and browse the Defaults Edi
tor, then invoke the Message Editor by double-clicking on the message icon.

=-1 Message Editor I·J.··
Message !:::!.elp

The Message Editor ties program identifiers, which are const number decla
rations, with strings assigned at run time. For example, an application may
use the word Exit. Rather than programming a specific hard-coded string
into the program code, we can associate a logical number with the word Exit.
In the application we use the raw number with a ZIL_LANGUAGE::
GetMessage() function to get, rather than enter, the actual string.

Create a message table by selecting the Message I Create option from the
pull-down menu.

=-1 <untitled>

Iv ~dit,l i

1~;;Ad;;d-~"':f;:,,1 ;
I Delete I
I,Nove Up I '
INoveW.1wrt:1 '

~

IStole As... I

Browsing the

Messages can be added to, deleted from, or moved in our message table by
selecting the support buttons located on the right side of the window. Take a
few moments to browse the Message Editor.

Zinc Designer 51

Zinc Designer's Support Editors

String Editor The String Editor provides access to Unicode character sets, allowing you to
translate the text of your application into language characters not available
from a standard keyboard. You must be in Unicode mode to use the String
Editor. Invoke it by double clicking on the String Editor image icon, or, in
DOS and Windows, by pressing <FI2>when positioned on a text field.

....1 String Editor

Original:

Current Icircle
~=::;:::;:;------------

Page: 10 IJl

ii
o
Ii
o
o
o

Help

-: i ._:--~-,~,:,,-_.:~~~Jr !esc s I : I£.'] '6
D T d I I I 11 0
E U e u I J Y_.J! A, g

'1=' ',,' --f -'y' I I. LJ .1_' Ii. 0
G ._ '#,9 w I I § l; x C
H X h x I I _. ~ ~ _J~ iJ
I Y I I @- 1 ---t (j e u
J ZI II! ~Oeu

K [k I Ie> E 0 e u
L \ ,I I ~ I lii 1 -0 i i.i
'j;f-- - }, I I 1i [Y i Y
N - II I 18 ~ l I=> i P
o I .i I II ;- -. i. I .li i Y

Browse through the character sets by either entering a page number into the
Page field, or by clicking its spinner arrows with the mouse. Notice that if
you select a character with the mouse, that character will appear in the Cur
rent field. In this manner, new character strings are formed.

52 Zinc Designer

Exiting the Designer

To exit the Designer, select the File I Exit option. If no changes have been
made since the last save, the following dialog box appears:

....1 Exit Application

o This will close the applicalion.

IlinK! I I Cancel

If any changes have been made to the file, the program will ask you to save
the .DAT files again.

Press the OK button in the exit window to exit the application.

And we're done!

Zinc Designer 53

Zinc Designer's Support Editors

54 Zinc Designer

section two
Zinc Designer
tutorials

Zinc Designer 55

56 Zinc Designer

Chapter 3 Writing an
Application

ThiS tutorial details compiling and running an application in Zinc. If you
are not familiar with Zinc or Zinc Designer, see the appropriate sections of
Getting Started with Zinc Programming or Zinc Designer.

In the first part of this chapter, we will look at the finished application to see
what we will be doing. In the second part of the chapter we begin writing the
application by putting together the basic framework required to bring up the
Movie Control Window.

Zinc Designer 57

Writing an Application

Movie
components

In the next few chapters, we'll discuss the steps to build the MOVIE appli
cation. Each chapter discusses how to implement some major component of
MOVIE, and the following diagram represents how these components fit
together.

FIGURE 1. The relationship of MOVIE's components

-
• Globalization

• Control • Error system

Help system

,,
•

•
• Control architecture

•
Selection Information

._-------------------_.

58 Zinc Designer

The following table describes what we will do in the chapters of the MOVIE
tutorial. Each row in the table corresponds to a step in the diagram. And each
chapter will contain the piece of the diagram that represents the current step.

TABLE 2. Steps in the MOVIE application

Step Chapter App Description

0 Chapter 3-Writing MOVIEl Putting together the framework for

an Application the Movie Control Window.

• Chapter4-Designing MOVIE2 Designing dialog windows, but leav-

Dialog Windows ing their implementation for later.
These windows will display informa-
tion about the movie, as well as
allow us to select a movie.

• Chapter 5-Architect- MOVIE3 Implementing the architecture to

ing the Control control the other components of the
application.

• Chapter 6-Deriving MOVIE4 Fleshing out the functionality of the

Support Modules Movie Selection and Movie Informa-
tion windows that we left in part 2.

• Chapter 7-Loading MOVIES Giving Movie the ability to store

and Storing Data data in a flat file.

• Chapter 8-Making MOVIE6 Making Movie robust by implement-

Movie Robust ing error and help systems.

• Chapter 9-Generat- MOVIE7 Globalizing Movie to display its

ing an Intemational- interface in French and German as

ized Application well as English.

You will achieve the best results if you complete the tutorials in order, as
each provides a foundation for the next. If you jump in the tutorials in the
middle, you will likely find yourself confused.

Each MOVIE component in the tutorial contains .CPP, .HPP, and .DAT
files for user-defined objects and for persistent objects. We generate the code
for user-defined objects, and Zinc Designer generates the code for persistent
objects. Since we use two types of storage in MOVIE, we use two separate
.DAT files-MOVIE.DAT for data storage, and P_MOVIE.DAT for per
sistent object storage.

Zinc Designer 59

Writing an Application

Below is a table of source files we'll be working with in this part of the tuto
rial. We can find these files in /ZINC/TUTOR/MOVIE.

TABLE 3. Components of the MOVIE application

Type offile

User-provided files

Designer-generated
files

Name offile

MOVIE.CPP

MOVIE.HPP

MOVIE.DAT

P_MOVIE.CPP

P_MOVIE.HPP

Description offile

The main program

Class definitions, identifica
tions, and messages

User data storage

Code for tying Designer objects
to our program

Identifications and help con
texts

Persistent object storage

Running the
program in its
finished state

60

Running the MOVIE application

Now that we've discussed what we're going to do in the next few chapters,
let's take a moment to view the application as it appears in its finished state.

=-1 Movie Catalog System I:~J"
File Movie tlelp

I~I~I""I"'I

Movie: I

The source code for MOVIE, which contains the program in its finished
state, is located in /ZINC/TUTOR/MOVIE. (MOVIE is exactly equivalent
to MOVIE7, which we'll write in the last MOVIE tutorial.) Go ahead and
compile the source code and run the executable. To start the program in com
mand-line environments, type the word

movie

If you need to enter the full path, type

c:\zinc\tutor\movie

Zinc Designer

For systems that require an iconized program, double-click on the icon to
bring up the movie application.

You should see the following window on the screen:

-=1 Movie Catalog System 1·1 ...
file Movie Help

rMI~'IJI."'(

Movie:·' c
'""',';;

Here's the way the program works. The movie cataloger allows users to gen
erate new movie information records or to view previously created records.
The main window contains a title field, a pull-down menu, a button bar, and
a status bar. The title contains the name of our application, Movie Catalog
System. The pull-down menu has three options: File, Movie, and Help.

File allows us to exit the application or to receive help about the cataloging
system. Movie allows us to either create, load, store, or delete movie records
from the information catalog. Help brings up help about the movie catalog
system or about the individual options that are available during the applica
tion's operation.

The button bar contains four bitmapped buttons. These buttons give us the
same options as those in the Movie section of the pull-down menu, namely,
the ability to do all of the following:

1. Create a new movie record.

2. Delete an existing record.

3. Load a record from the catalog library.

4. Store the current movie record into the movie catalog.

Zinc Designer 61

Writing an Application

Working with the program

Let's view some of the movies that have previously been entered into the cat
alog system. Select Movie I Load from the pull-down menu. Then we can
browse through some of the functionality of our program.

-=1 Movie Selection I'"

-
+

Movie Selection

Tille: I
~A::;:;:ffa::::;:ir=t=o:::o'Re=m=e=m;=:be=r.==A=n=======r....===i..
Bridge on the River Kwai. The
Casablanca -
Fiddler on the Roof
Field of Dreams
Gone With the Wind

I.. n. -"'

.ilK I I hancel I I !:!.elp

The Movie Selection dialog lets us view all of the movies currently entered
into the system by presenting documented movies in the vertical list. We can
view information about a movie by clicking on the desired item, then by
pressing OK. For example, if we do this with Affair to Remember, An, we
will see the movie information record for this movie.

=-1 - ---
Movie Information

-

Shipboard romance whose continuation on-shore is .!.
interrupted by unforseen circumstances_

Movie
Information

62

Tille: IAffair to Remember. An

Copyright 11957 I Length (in minutes): 1115

Diredor: I Leo McCarey

Adors: ICary Granl. Deborah Kerr

Description:

Save I I Close I I Help

The Movie Information record presents information about the movie we
have selected, such as the title, copyright date, length of the movie (in min
utes), name of the movie director, list of the most prominent actors and
actresses, and a short description of the movie. In addition, there are three
buttons at the bottom of the record that allow us to save the record into the

Zinc Designer

Movie Create

movie catalog, to close the movie record window, or to receive help. Take a
moment to view the information associated with An Affair to Remember.
Once you have finished, close the window by pressing Close.

New movie records are created by selecting Movie I Create from the pull
down menu.

=-1 Movie Information

Title: I I

Copyright: 10 Length (in minutes): 10 ,
Director: I I

Actors: I I
D.,criplin" I ~

savel I Close I I Help

The Movie Create record contains the same fields we saw when the Load
operation was selected, except that all the fields are blank. We can enter data
into the movie information window by moving to each field and then by
entering the appropriate data. Let's experiment by adding a new record for
the movie Vertigo. To do this:

1. Select Movie ICreate from the pull-down menu.

2. Move to the Title field and enter the name

Vertigo

3. Move to the Copyright field and enter the date

1958

4. Move to the Length field and enter the value

68

5. Move to the Director field and enter the name

Alfred Hitchcock

6. Move to the Actors field and enter the names,

James Stewart

and

Kim Novak

Zinc Designer 63

Writing an Application

Movie Delete

Move to the Description field and enter the sentence,

Haunting dream-like thriller. A great motion picture that

demands multiple viewings. 1

';"1 Movie Information 1... 1~

Tille: IVertigo

Copyright 1195B I Length (in minutes): 16B

Director: IAIlred Hitchcock

Actors: IJames Stewart Kim Novak

Description: Haunting dream-like thriller. A great motion picture ~
that demands multiple viewings_ I-i

~

Save I I Close I I Help :

We can save the movie information by selecting the Save button from the
movie record, by selecting the Movie I Save option from the pull-down
menu, or by clicking in the button bar while positioned over the save button,
which contains a picture of movie reels and an arrow pointing to a cylindri
cal disc.

We can delete movies from the catalog by selecting Movie I Delete from the
pull-down menu, and then by moving to the desired video item, clicking on
the selection so that the movie's title appears in the title field, and then
selecting OK. (We can also double-click the selection to delete it.)

=1 Movie Selection

64

Tille: IAffair to Remember. An

Af.!i!!L!9f.!ememb~!,A~ __ __ _ .!.
Bridge on the River Kwai. The
Casablanca -
Fiddler on the R001
Field 01 Dreams
Gone "With the "Wind ---,

n. +

OK I I Cancel I I Help

Take a few moments to browse its contents, then exit the application by
selecting the File I Exit option and by pressing OK on the exit application
window.

l.Leonard Maltin:S Movie and Video Guide, 1994.

Zinc Designer

MOVIE.HPP

Application components

Let's look at the MOVIE application and the code and data we need to gen
erate an executable. While we're doing that, we'll examine the architectural
concepts of creating applications with Zinc Designer.

When we store windows with Zinc Designer, three files are generated: <file
name>.DAT, <filename>.CPP, and <filename>.HPP. When we write an
application that uses Zinc's persistent objects, which are stored to disk and
retrieved later, the associated .CPP files must be included with our own C++
code files to produce the application. The following diagram shows the rela
tionship of these components and how we combine them to generate an
application.

FIGURE 2. Creating a Zinc application

EJ <persist >.DAT
} Zinc persistent files

+ ~ <persist >.CPP

+ ~ <user>.CPP
} user files

+ I~~I .MAK

=~ .EXE

Zinc Designer automatically generates a P_MOVIE.DAT, P_MOVIE.HPP,
and P_MOVIE.CPP file. But we will create two additional source code files
that will control the internal flow of our application-these are
MOVIE.HPP and MOVIE.CPP.

MOVIE.HPP will contain all the class definitions and messages that will be
used in the MOVIE application. These definitions include the code for
MOVIE_CONTROL, MOVIE_SELECTION, and MOVIE_INFOR
MATION classes. The class messages section will contain special identifi
cations-integer values that will signal the program to create, load, store and
delete movie records.

II ----- class definitions -----------------------------------
class MOVIE_CONTROL : public UIW_WINDOW
{

public:

Zinc Designer 65

Writing an Application

66

static ZIL_ICHAR *-pathName;
static ZIL_ICHAR *_exitName;
static ZIL_STORAGE *_dataFile;
static ZIL_STORAGE_READ_ONLY *_intlStorage;
static ZIL_ICHAR _ffiovieName[64];
static ZIL_LANGUAGE *_errorMsgTable;
MOVIE_CONTROL(void);
-MOVIE_CONTROL(void);
virtual EVENT_TYPE Event(const UI_EVENT &event);
virtual void *Inforrnation(ZIL_INFO_REQUEST request, void *data,

ZIL_OBJECTID objectID = ID_DEFAULT);
private:

static EVENT_TYPE Exit(UI_DISPLAY *, UI_EVENT_MANAGER *,
UI_WINDOW_MANAGER *windowManager);

EVENT_TYPE MovieCreate(const UI_EVENT &event);
EVENT_TYPE MovieDelete(const UI_EVENT &event);
EVENT_TYPE MovieLoad(const UI_EVENT &event);
EVENT_TYPE MovieStore(const UI_EVENT &event);

} ;

class MOVIE SELECTION public UIW_WINDOW
{

public:
static ZIL_ICHAR *-pathName;
static ZIL_ICHAR *_allObjects;
MOVIE_SELECTION(ZIL_STORAGE_READ_ONLY *file,

ZIL_USER_EVENT request);
virtual EVENT_TYPE Event(const UI EVENT &event);

private:
ZIL USER EVENT request;

} ;

class MOVIE_INFORMATION public UIW_WINDOW
{

public:
static ZIL_ICHAR *-pathName;
MOVIE_INFORMATION(ZIL_ICHAR *name = ZIL_NULLP(ZIL_ICHAR));
virtual EVENT_TYPE Event(const UI_EVENT &event);
virtual void Load(const ZIL_ICHAR *name,

ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object =

ZIL_NULLP (ZIL_STORAGE_aBJECT_READ_ONLY) ,
UI ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

virtual void Store(const ZIL_ICHAR *name,
ZIL_STORAGE *file = ZIL_NULLP(ZIL_STORAGE),
ZIL_STORAGE_OBJECT *object = ZIL_NULLP(ZIL_STORAGE_OBJECT),
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

Zinc Designer

MOVIE.CPP

} ;

II ----- class messages --
canst ZIL_USER_EVENT OPT_HELP= 10000;
canst ZIL_USER_EVENT OPT_MOVIE_CREATE= 10001;
canst ZIL_USER_EVENT OPT_MOVIE_DELETE= 10002;
canst ZIL_USER_EVENT OPT_MOVIE_LOAD= 10003;
canst ZIL_USER_EVENT OPT_MOVIE_STORE= 10004;
canst ZIL_USER_EVENT OPT_MOVIE_OK= 10005;
canst ZIL_USER_EVENT OPT_RESET_SELECTION= 10006;

MOVIE.CPP will contain four sections.

1. The first section will define all of the information and code needed to
open and control the application.

2. The second section contains the Movie Control Window that we viewed
first on the screen, as well as its annotated code.

3. The third section contains the code necessary to use the movie selection
window that we viewed earlier in the tutorial.

4. The fourth and final section contains all the programming code for the
movie information window, including code needed to create the record
information window, to save the information record, and to load or store
the contents of individual movie records.

Our makefile will combine these source modules to produce object code,
then generate the movie executable, MOVIE.EXE under DOS and Win
dows. (Makefiles for other platforms are included in the MOVIE directory.)

We will look more closely at all of the program code later in this tutorial, but
for now, take some time to become familiar with it, as we'll refer to it
throughout the entire MOVIE series of tutorials.

Writing MOVIE] sMovie Control Window

Now that we've seen the completed application, let's begin writing it. First,
let's look at the Movie Control Window's .DAT information and .CPP code.
The goal in this section is to get something-anything-to run!

Zinc Designer 67

Writing an Application

Components of
MOVIE1

In Figure 1 on page 58, we discussed the components of the MOVIE appli
cation we'll be working with in this series of tutorials. In this part of the tuto
rial, we'll be working with MOVIEl, the first component of MOVIE. The
diagram below shows the component we're working on in relationship to the
other components of the tutorial. (The components we're not working with
are grayed out.)

1;-.
I

0-
Control

,,
_____I

68

._-------------------_.

Zinc Designer

Source files Below is a list of source files we'll be working with in this part of the tuto
rial.

TABLE 4. Components of MOVIEl

Type offile

User-pro
vided files

Designer
generated
files

Name offile

MOVIEl.CPP

MOVIEl.HPP

P_MOVIEl.CPP

P_MOVIEl.DAT

Description offile

The main program

Class definitions, identi
fications, and messages

Code for tying Designer
objects to our program

Identifications and help
contexts

Persistent object storage

Creating the
window

We will first create a portion of the controlling window with Zinc Designer,
then write a short program that creates and loads this window into our appli
cation.

=1 Movie Catalog System I.·J...
file Movie tlelp

Enter the Designer to create the application Movie Control Window. Create a
new window by selecting the Window I Create option from the pull-down
menu. Next, add a pull-down menu by clicking on the pull-down button,
then by placing the pull-down menu inside the edit window. This creates a
pull-down menu with one pull-down item.

=1 <untitled> 1·1'"
item

Now lefs create the File, Movie, and Help items on the pull-down menu. We
already have one pull-down item on the menu, so we need to add two more:

Zinc Designer 69

Writing an Application

70

1. Select the pull-down item from the button bar and click inside the pull
down menu. This places the second pull-down item, which will eventu
ally be the Movie item, in the menu.

2. Reactivate the pull-down item option by pressing the right mouse-button.

3. Place the last pull-down item, which will eventually be Help, in the pull
down menu.

Change the names of these pull-down items:

1. Open the window's information notebook,

2. Move down to the Subobjects notebook page,

3. Double-click the pull-down menu image, FIELD_I, from the Directo
ries list. This gives us access to the objects attached to the pull-down
menu.

4. Edit the information associated with each item in the object's list.

For example, to edit the information associated with the first pull-down item,
double-click on FIELD_2 in the object list. Then move to the Text field and
enter

&File

(The'&' designates the F character as a hot key for that object. When desig
nating the hot key character, put the '&' just before the appropriate charac
ter.)

Change the name of the file item by moving to the Name field and entering
the word

FILE OPTION.

Save these changes by pressing OK.

General J Subobiects f Position J Geometry 1 Advanced

I:
----- Interaction -----

D Alphabetical sorting
Ii

Text: I&File I D Don't wrap k.eystrok.es

Value: 10 I
D Select multiple

II
D Send user message

II
Name: IFILE_OPTION I
Help: I<none> Iii

I OK I I hancel I I Help I

Next, open the information notebook for FIELD_3.

Zinc Designer

Enter the word

&Movie

into the text field and

MOVIE OPTION

into the name field. Press OK to save the changes.

General I Subobjects I Posrtion I Geometry I Advanced

----- Interaction -----

o Alphabetical sorting

Text: !trMovie I o Don't wrap keystrokes

o Select multiple
Value: 10 I o Send user message

Name: IMOVIE OPTION I I'
Help: I<none> iii

I OK I Ir .cancel I I ~Help I

Follow the same procedure with the last menu item by entering the text

&Help

and name

HELP OPTION

into the item's information notebook. Select OK to save the changes to the
pull-down item. Then select OK on the window's information notebook to
save the changes to the window and exit the information windows.

General I SUbobjects I Position I Geometry I Advanced 1

II ----- Interaction -----

o Alphabetical sorting

Text: I&:H elp I
o Don't wrap keystrokes

i o Select multiple
Value: 10 I o Send user message

Name: IHElP OPTION I
Help: I<none) 111

I~OK~ I I-.cancer-I I -!!elp-I

Zinc Designer 71

Writing an Application

When you return to the untitled edit window, three pull-down items should
be visible: File, Movie, and Help.

=1 Movie Catalog System I..,t ...
file Movie tlelp

Now let's size the window by moving the mouse cursor over the bottom
right comer of the window so that the mouse is positioned over the window's
border, then by clicking and dragging the window's border to the desired
size-we want a window width of 60 and height of 4. The window's size can
be viewed on the status bar in the pos and size fields; the position and size of
the window are given in cell coordinates.

type: [Window

name: I<UNTITLED>

place object:

Let's now enter three subobjects into the File pull-down item.

1. Double-click on the edit window and then select the Subobjects note
book page.

2. Double-click on the pull-down menu in the Directories list.

3. Double-click on the pull-down item labeled OPTION_FILE in the Direc
tories list. This gives us access to the objects attached to the pull-down
item.

General T Subobjects 1 Position 1 Advanced
~ P---....:...::.:-"'=----'----'-:..=..:...=:=---';,

Obiects:

--- Supporl Objecls ---

--- Normal Objecls ---

Dilectolies:

MOVIE

'lIT" FIELD 1

1~::=~_~:(~:ijitlQE-·~~-·_~:~~:~~-.~

Edit

Add·

Delete

I Moye Up

IMoye Down'

Ii OK I Cancel I I Help 1_~_···_P_O_P-_uP_I_le_m ~

72

At this point, the directory list shows the edit hierarchy of our pull-down
item, and the object list contains a list of all the added Support and Normal
objects, though no object should be visible yet. Add three pop-up items to
the objects list by pressing the Add button three times. Pressing the Add

Zinc Designer

button adds an instance of the type of object currently selected in the object
combo box in the bottom-right comer of the notebook page. Only pop-up
items can be added to a pull-down item.

Subobjects ~=;;;;;;--:.,:PO:;.::si:.:;,:tio:;..:n==;!-;;;1_;;;;_~A.:.::.dv.:..:a::..::nc:..:;.ed=--_'"'i
Directories:

General 1
Ii Objects:

I; _.. Support Objects .

... Normal Objects .

~ FIELD_5

~ FIELD_6

~ FIELD_7

MOVIE

U' FIELD_1
'" .~ FiLE_oPTioN-······
-_····~Fi·ELD·=5--""·,

~ FIELD_6

~ FIELD_7

Edit

Add

I-Delete

I Move Up

IMoveDoMiI

OK .cancel I I Help 1_~_···_P_o_p_.u_p_lt_em ---'L3

Edit the first item, FIELD_S, by double-clicking on the field item in the
objects list, then by entering the word

&About •••

in the text field and

ABOUT OPTION

in the name field.

General-l Subobjects 1 Position 1 Geometry 1 Advanced

..... Item Features ~o Mark as separator l-

Text: 1&About I o Allow check·mark

Value: 10 I
o Send user message

..... Sub·Menu Options

o Alphabetical sorting

Name: IABOUT OPTION I o Don'l wrap keystrokes

Help: I<none> l!J o Selecl multiple children

..... Item Message

I: I 11K I I .cancel I Ir-Help I
I~al operalion

..."..,

I(J ",>not 1oIA}(11oI17F ~a~~~na +

Save these changes, then edit FIELD_6. Identify this item as a menu separa
tor by deleting all the text from the text field and by entering

FILE SEPI

Zinc Designer 73

Writing an Application

74

into the name field. (You could also select the separator option from the
options list.)

General 1 Subobjects I Position T Geometry T Advanced 1
----- Hem Features ----- .!.
~ Mark as separator -

Text: I I
o Allow check-mark

o Send user message
Value: 10 I ----- Sub-Menu Options -----

o Alphabetical sorting

II
Name: IFILE SEPl I o Don't wrap keystrokes

Help: I<none> Iii
o Select multiple children

----- Hem Message -----

I OK I I Cancel I I Help I @ Normal operation
~

() <; ..nll t.lA)(1t.l171= m.."""np ..

Select FIELD_7 and enter the name

E&xit

into the text field and

EXIT OPTION

into the name field. Save the changes by pressing OK and return to the main
edit window. Let's take a moment to enter a title and name with the pull
down menu and with the edit window. Bring up the information notebook
and enter the words

Movie Catalog System

in the title field and

MOVIE CONTROL

in the name field.

General I Subobjects 1 Position I Advanced

!~ ----- Support Features ----- ~I ~ Border 1-1
!l ~ Maximize Button

Tille: IMovie Catalog System I

I B
~ Minimize Button

Minlcon: <none> ~ System Button

o Geometry Management

Name: IMOVIE CONTROL I o Vertical Scroll-Bar

Help: I<none> Iii
o Horizontal Scroll-Bar

----- Type -----

I OK I I Cancel I I Help I @Default
f---,

I (\ n;~lnn nh;gr' ..

Zinc Designer

Move to the Subobjects notebook page and double-click on the pull-down
menu inside the objects list. Change the name of this field to PULL_DOWN_
MENU. Press OK to save the changes.

We now have a simple window with associated pull-down and pop-up items.
Let's save the window by selecting File INew and entering the name

P MOVIEl.DAT

under the Filename prompt and by pressing OK.

=1
Filename:

Ip MOVIE1.DAT

File Selection

!!.ireclories:

c:\ziI400\design

127 c:

127 zil400

~ design
LJ direcl'

o file

Dhel ..

OK

kancel

Help

MOVIE1.CPP

Lisl Files of lYpe: Driyes:

L-IZ-d_al -------'1 m1L-ISi!I_c_: -------'I~

Select File ISave from the pull-down menu. The window is saved to the P_
MOVIEl.DAT file. Finally, exit the Designer by selecting File I
Exit.

Let's now look at the code modules used to run our application. First, let's
look at the main control loop used to bring up the Movie Control Window
and to process user input. The main control loop is located in
MOVIEl.CPP.

#include <ui_win.hpp>

int UI_APPLICATION::Main(void)
{

UI_APPLICATION::LinkMain()i
*windowManager + new UIW_WINDOW("p_ffioviel.dat-MOVIE_CONTROL")i
UI_APPLICATION::Control()i
return (O)i

The first part of the program contains include files necessary to initialize
Zinc Application Framework and to launch our movie program. The next
part, UI_APPLICATION::Main(), loads the program. LinkMain() is
needed to make sure a maine) function definition is included in our applica-

Zinc Designer 75

Writing an Application

P_MOVIE1.CPP

76

tion. The next line is used to retrieve MOVIE_CONTROL from the .DAT
file, and then to add the window into the window manager. The next line,
UI_APPLICATION::Control(), sends control to Zinc Application Frame
work, which processes all of the user responses, then returns control to our
module, once we have finished viewing the main Movie Control Window.
The final line returns the value 0 to the main application control loop, which,
in turn, returns 0 to the operating system.

So all we need is six lines of code to run our simple application. Take a
moment to examine this code and review the purpose behind each line.

When Zinc Designer writes P_MOVIEl.DAT, it generates an associated
.CPP, and .HPP file. P_MOVIEl.CPP contains three sections:

1. Include directives,

2. pointers to user functions, and

3. pointers to Zinc object constructors.

The first section gives directives that load Zinc Application Framework
objects and the programming information associated with the Movie Control
Window we just created.

#include <ui_win.hpp>
#define USE DERIVED OBJECTS- -
#include Ip_Inoviel.hpp"

The next section contains a user information table. The user-table normally
contains information that has been entered by a programmer in the Designer
but is not yet used by our application. Thus the table contains only an end
of-table indicator.

static UI_ITEM _userTable[]
{

{ ID_END, ZIL_NULLP(void), ZIL_NULLP(ZIL_ICHAR), 0 }
} ;

The final section contains a table with object descriptions. At this point, we
have only created a few objects-a border, maximize and minimize buttons,
several pop-up items, a pop-up menu, several pull-down items, a pull-down
menu, system button, title, and a window. As you browse this table, you will
see unique object, name, and constructor references to the objects used by
the Movie Control Window. These references tell Zinc how to construct and
link specific persistent objects into our application.

static UI_ITEM _objectTable[] =

Zinc Designer

Makefile

ID_BORDER, ZIL_VOIDF(UIW_BORDER::New),
UIW_BORDER: :_className, 0 },
ID_MAXIMIZE_BUTTON, ZIL_VOIDF(UIW_MAXIMIZE_BUTTON::New),
UIW_MAXIMIZE_BUTTON: :_className, 0 },
ID_MINIMIZE_BUTTON, ZIL_VOIDF(UIW_MINIMIZE_BUTTON::New),
UIW_MINIMIZE_BUTTON: :_className, 0 },
I D_POP_UP_ITEM, ZIL_VOIDF(UIW_POP_UP_ITEM::New),
UIW_POP_UP_ITEM: :_className, 0 },
ID_POP_UP_MENU, ZIL_VOIDF(UIW_POP_UP_MENU: :New) ,
UIW_POP_UP_MENU: :_className, 0 },
ID_PULL_DOWN_ITEM, ZIL_VOIDF(UIW_PULL_DOWN_ITEM: :New),
UIW_PULL_DOWN_ITEM: :_className, 0 },
ID_PULL_DOWN_MENU, ZIL_VOIDF(UIW_PULL_DOWN_MENU: :New),
UIW_PULL_DOWN_MENU: :_className, 0 },
ID_SYSTEM_BUTTON, ZIL_VOIDF(UIW_SYSTEM_BUTTON::New),
UIW_SYSTEM_BUTTON::_className, 0 },
ID_TITLE, ZIL_VOIDF(UIW_TITLE::New),
UIW_TITLE: :_className, 0 },
ID_WINDOW, ZIL_VOIDF(UIW_WINDOW::New),
UIW_WINDOW: :_className, 0 },

{ ID_END, ZIL_NULLP(void) , ZIL_NULLP(ZIL_ICHAR), 0 }
} ;

MOVIEl.CPP and P_MOVIEl.CPP are both compiled and linked to pro
duce an executable. The makefile you will use to generate this application
depends on the type of compiler and operating system you are currently run
ning. In this manual we will show a simplified Borland 4.0 Windows version
of our makefile.

MOVIE1 program makefile
make -fbtcpp400.mak windows (makes the Windows movie program)
Be sure to update your TURBOC.CFG and TLINK.CFG files to include
the Zinc paths, e.g.:
-I.;C:\ZINC\INCLUDE;C:\BC4\INCLUDE
-L.;C:\ZINC\LIB\BTCPP400;C:\BC4\LIB
----- Windows compiler options -------------------------------
WIN CPp=bcc
WIN LINK=tlink
WIN RC=rc
WIN CPP OPTS=-c -dc -ml -01 -x- -RT- -Vf -WE -w
WIN RC OPTS=-k
WIN_LINK_OPTS=/c Ic ITwe Ix
WIN_OBJS=cOwl
WIN_LIBS=win_zil mathwl import cwl
.cpp.obw:

$ (WIN_CPP) $ (WIN_CPP_OPTS) -o$*.obw {$< }

----- Windows ---
windows: wmovie1.exe

Zinc Designer 77

Writing an Application

78

wmoviel.exe: moviel.obw p_moviel.obw
$ (WIN_LINK) $ (WIN_LINK_OPTS) @&&!

$(WIN_OBJS)+moviel.obw+p_moviel.obw
$*, ,$(WIN_LIBS),wmovie.def
!

$ (WIN_RC) $(WIN_RC_OPTS) wmovie.rc $<

Take a moment to view the appropriate makefile information for this appli
cation. (Makefiles for each compiler and environment supported by Zinc are
in this directory.)

Conclusion

The main components of our application are the P_MOVIEl.DAT and the
P_MOVIEl.CPP and MOVIEl.CPP files, which are compiled to produce
the movie application. When launched, the movie program loads MOVIE_
CONTROL from P_MOVIEl.DAT and then displays the information.

In the next chapter, we're going to learn how to use Zinc Designer to design
the interface components of MOVIE.

Zinc Designer

Chapter 4 Designing Dialog
Windows

1this tutorial, we're going to learn how to design dialog windows for our
movie application. We will not do anything with how the program works,
only how it looks. (Remember, in the first four tutorial chapters, we discuss
MOVIE's architecture. We'll fill in the holes in "Loading and Storing Data"
on page 127.)

creating interfaces

working with bitmaps

Zinc Designer 79

Designing Dialog Windows

Components of
MOVIE2

Working with MOVIE2

In Figure 1 on page 58, we discussed the components of the MOVIE appli
cation we've been working with in this series of tutorials. In this part of the
tutorial, we'll be working with MOVIE2, the second component of
MOVIE. The diagram below shows the components we're working on in
relationship to the other components of the tutorial. (The components we're
not working with are grayed out.)

Selection • Information

80

._-------------------_.

Zinc Designer

Source files Below is a table of source files we'll be working with in this part of the tuto
rial. We can find these files in IZINC/TUTORIMOVIE.

TABLE 5. Components of MOVIE2

Type offUe

User-pro
vided files

Designer
generated
files

Name offUe

MOVIE2.CPP

MOVIE2.HPP

P_MOVIE2.CPP

P_MOVIE2.HPP

P_MOVIE2.DAT

Description offile

The main program

Class definitions, identi
fications, and messages

Code for tying Designer
objects to our program

Identifications and help
contexts

Persistent object storage

What we'll do

We will first complete the movie and help options located in the pull-down
menu. Then we will create the Movie Selection and Movie Information win
dows, but without implementing any of their functionality.

But first, let's take a moment to discuss how we will learn how to create the
remaining items in our Movie Control Window.

For example, under the File option we created three items, About..., a menu
separator, and Exit. And we described in the last chapter how we created and
edited the information.

We will use the same process for the rest of our application, but we won't
describe many of the basic operations, such as how to invoke the information
window, how to position the cursor in the fields, and how to select options
from the window button bar. If you get confused or lost during the tutorial,
take a few minutes to return to the previous tutorial, then examine the steps
used to edit the information. To help, we will supply numerous pictures that
show you the proper state of the edit objects.

Zinc Designer 81

Designing Dialog Windows

82

Finishing the Movie Control Window

Let's take a few minutes to finish creating the interface of the main Movie
Control Window. First, open Zinc Designer. Then reload the Movie Control
Window.

1. Select File I Open.

2. Enter the filename

P MOVIE1 . DAT

and press OK.

3. Select Window I Load.

4. Then select MOVIE_CONTROL from the file list.

Now let's add items to the Movie options.

1. Double-click on the edit window.

2. Select the subobjects category.

3. Double-click on the pull-down menu item in the Directories list,

4. Double-click MOVIE_OYfION in the Directories list, then

5. Select Add four times. This process adds four items to the Movie option.

-
General TI~ SUbObiict- I Posilion T Advanced

Obiecb: Directorie_:

--- Support Objects --- MOVIE- CONTROL If Edit 1
--- Normal Objects --- U' PULL_DOWN- MENU I ijIl I,
~ ~ MOVIEFIELD- 9 , - OPTION I Delete I

[.; ~ FIELD- 10 ~ FIELD_9
IrMllveup I

" ~ FIELD- 11 ~ FIELD_10

J~ FIELD- 12 .' ~ FIELD_11 IMove Down1
~ FIELD_12

OK -, I .cancerl I-Helpl I~ Pop-up lIem [3

We will associate the Create, Load, Store, and Delete text with the new
items in the object list. Edit the first option by double-clicking on the item.
Enter the text

&Create

and the name

CREATE OPTION

into the general information. Close this notebook and then invoke the second
item's notebook information. Enter

Zinc Designer

Objects:

&Load •••

as the text and

LOAD OPTION

as the name. On the third item, enter

&Store

as the text and

STORE OPTION

as the name. In the final object item, enter

&Delete •••

as the text and

DELETE OPTION

as the name.

General Ir Subobjects 1. __-:....:Po::.::si::.:.:lio::.:.n__..I..-f_..:..A:::..dv:..=an~c:.=:ed::-.----'-.
f-----'--"-~'---==.J \;"

Directories:

--- Support Objects ---

--- Normal Objects ---

~ CREATE_OPTION

~ DELETE_OPTION

~ LOAD_OPTION

~ STORE_OPTION

MOVIE_CONTROL

U' PULL_DOWN_MENU
~'i4ovIE-oPTiriN~"-""-""

...._ __ ":::.....•......._ _.•.....•__-
~ CREATE_OPTION

~ DELETE_OPTION

~ LOAD_OPTION

~ STORE_OPTION

Edit

Add

I~Deletel

I Move Up I
IMove Down I

OK Cancel I 1..1...."..e...lp_..1 I~ Pop-up Item

Zinc Designer 83

Designing Dialog Windows

Now move into the Help category. First, double-click the pull-down menu in
the Directories list, then double-click on HELP_OPTION.

f--__G_en_er_a'_---Jl Subobjects 11'-'__P...:..os"--'iti.:c-on'---=-===I_...;.Ad:;.;.va.:c-n..:.:ce...:..d_----',

Objects:

--- Support Objects --

I' --- Normal 0 bjects ---

I'

MOVIE_CONTROL

0'" PULL DO......N MENU

.,~~"HEltOp.!.l~~=~~~=

Edit I
Add'

Delete'

I Move Up ,

IMove Down'

OK Cancel I I Help 1_~_"'_P_O_P-_uP_I_te_m ~

84

Add four pop-up items to the object's list by pressing the Add button four
times. The information we'll add to these items is File, Movie, a line separa
tor, and About Movie Catalog. Edit the items in the same manner as you did
the movie options, but enter the text as follows:

1. In the first item enter the text

File

and name

HELP FILE

2. In the second item enter the text

Movie

and the name

HELP MOVIE

3. In the third item delete all text to create a separator item, then enter

HELP SEPI

in the name field.

4. In the last item, enter

About Movie Catalog

in the text field, and

HELP MOVIE CATALOG- -

in the name field.

Zinc Designer

Save all the changes by pressing the OK button until you return to the main
edit window.

....1 Movie Catalog System 1 ... 1'"
Eile Movie tielp

Your main Movie Control Window now has all the category and item infor
mation needed for the pull-down menu.

Creating a tool bar

Now that we've created the interface of our application, we can move on to
creating a tool bar for the movie application. Create a tool bar by selecting
the tool bar item from the Window Editor's button bar, and then by placing
the item inside the edit window.

....1 Movie Catalog System 1 ... 1'"
Eile Movie tielp

I

Add four buttons to the tool bar by selecting the button item from the Win
dow Editor's button bar and by creating four buttons inside the movie win
dow's tool bar.

....1 Movie Catalog System 1"'1'"
Eile Movie Help

button I button I rbu'ttoni~1 button 1

Zinc Designer 85

Designing Dialog Windows

Size each button in the tool bar to a width of 4 and a height of 1. Remember
that the size and position are indicated in the Window Editor's status bar.

=1 Movie Catalog System 1·1
file Movie tlelp

uuoluuoluttolul~

Importing
bitmaps

Rather than creating bitmap images, let's use the Image Editor's import fea
ture. Bring up the Image Editor by double-clicking on its icon. Then select
Bitmap I Import from the Image Editor.

File Selection

Filename:]2irecIOlies:

i
;
I
i

Driyes:

r:c :::-\z_il_40_0_IU_lo_r_m_ov_ie__-, I OK

Dc:

D zil400 I I;.ancel

DlulOl
f:7 movie ""7 I ~ Help

:~=~i~f:;:~:::=:==~:==::=~
p_movie2.dal
p_movie3.dal
p_movie4.dal
p_movie5.dal
p_mov~~~.~~l

Lisl Files of !ype:

........I··d_al ------'I ~ I_la_c_: I!J

Ip movie.dal

Select the item

P MOVIE.DAT

86 Zinc Designer

from the filename field and press OK. Select each item in the object list by
moving to the item and clicking the left-mouse button while positioned over
the item. (The selected item will appear shaded in the list when it is
selected.)

....1 -

objectname:

IMOVIE STORE

o movie_create

o movie_delete

o movie_load

~[~:'t~~\1!!:=,~t~~

Object Selection

Qirectories:

......

OK

Cancel

Help

II

II '------------'

!

i

!

The bitmapped images are imported once the OK button is selected. (When
the Image Editor imports a bitmap image, the window's main status field will
show the image that is being imported. Once the import process is complete,
the storage selection window is removed from the display and control
returns to the Image Editor.) We can now view the bitmap images by select
ing Bitmap ILoad.

....1
-- Object Selection

Objectname:

o movie_create

o movie_delete

o movie_load

o movie_store

- ".

Qirectories:

I" !lK I
1 Cancel I

I' , H.elp I

I
,

i;

The load procedure tells us that four bitmap images are available:
movie_create, movie_delete, movie_load, and movie_store. Return to the
Window Editor by removing the Load Window and then by minimizing the
Image Editor's Movie Control Window.

Zinc Designer 87

Designing Dialog Windows

Editing the tool
bar buttons

We can now edit the information associated with our four tool bar buttons.
The four buttons will be used to represent the create, delete, load, and store
options, respectively. Invoke the information notebook for the first button in
the tool bar. This will be designated CREATE_BUTTON.

Remove the default text of this button. Move down to the image field and
select the movie_create bitmap image from the combo box's pull-down list.
Enter the name of the field as CREATE_BUTTON. Choose the Auto sized
feature from the button's option list. Save the changes by pressing OK.

General I Position I Geometry I Advanced

@ l-state (no toggle)

o 2-state (on/off)

----- Height-----

o Cell basedl3 ,~~~}~:!~~~~~-··-:~ __uu_._..._.__ ._

----- Depth -----

I 0 Flat

iii @ Normal 3-D

----- Action -----

Name: ICREATE_BUTTON

Help: I<none>

Text I
:=======;~_--l

Value: 10:=====:....-_
Image: I~ movie_create

OK Cancel I I Help
@ Action on UP-CLICK
() A.-tinn nn nnWN_rllrk"

Follow the same process for the next button by deleting the text, then by
selecting movie_delete as the button image, then by entering the name

DELETE BUTTON

General J Position I Geometry I Advanced

@ l-state (no toggle)

o 2-date (on/off)

----- Height-----

o Cell based

[3 ·~~~~i·~~~d··=~~:~ __~====~.:=~~~
----- Depth -----

I 0 Flat

liJ @ Normal 3-D
----- Action -----

Name: IDELETE BUTTON

Help: I<none>

Text I
:=======;~_--l

Value: 10:=====::::::.-_----,
Image: I~ movie_delete

OK Cancel I I Help
@ Action on UP-CLICK

I () A.-tinn nn nnWN_rllrk"

88 Zinc Designer

Edit the next button so that it contains the movie_load image, named
LOAD_BUTTON.

AdvancedGeometry I
@ l-state (no toggle)

o 2-state (on/off)

----- Height-----

o Cell based

[3 _:~~~!lt()~~~:~~ __~-::~:-: ~~~~ ".__, ..
----- Depth -----

I 0 Flat

iii @ Normal 3-D

-----Action -----

I

Name: ILOAD_BUTTON

Help: I<none>

Text: I
~===,--_------J

Value: 10
~====-----------,

Image: I'" movie_load

OK I~ Cancel I I Help
@ Action on UP-CLICK

I {\ "'~linn nn nnWlJ_rllrt'
f-
+

The final button should contain the image movie_store and the name
STORE_BUTTON.

General 1 Position Geometry I Advanced

~ l-state (no toggle)

o 2-state (on/off)

----- Height-----

o Cell based

[3 ~:Aui·;.~~d-- "'_"_',,__
----- Depth ----

I 0 Flat

LiJ @ Normal 3-D

-----Action -----

Name: ISTORE_BUTTON

Help: I<none>

Text: I
~===,--_------J

Value: 10;:=====-----------,
Image: I... movie_store

OK Cancel I I Help
@ Action on UP-CLICK
() A~';nn nn nnWlJ_rl Irt'

f-
+

We now have all the presentation features for the Movie Catalog window.
Save these changes by selecting File ISave from the Window Editor.

Browsing the
window

Let's see what the Movie Catalog window looks like by selecting Window I
Test. At this point, the movie catalog system should appear on the screen.

'=1 Movie Catalog System I,,,J·
file Movie .!::!.elp

!ca-I~I"I"'I

Zinc Designer 89

Designing Dialog Windows

90

Take a minute to browse the window information. Under the File option you
should see the About... and Exit items as well as a menu separator.

-=1 Movie Catalog System I:..J. ...
File Movie tlelp

About. .. Illtl
E~it I

Under the Movie option, you should see the options Create, Load..., Store,
and Delete....

-=1 Movie Catalog System ITI'"
file Movie tlelp

w.u ~reate

.load ...

'=== .s.tore
Delete ...

Under the Help option you should see the options: File, Movie, a menu sep
arator, and About Movie Catalog.

-=1 Movie Catalog System ITI'"
file Movie tlelp
~I~I"'I. file I

Movie I
About Movie Catalog

If we exited the Window Editor now, we could compile and run the same
code produced in the last section; it would present the same information we
just viewed in test mode. Recall that we invoked the Movie Information win
dow by reading a UIW_WINDOW object. We have done nothing to modify
the operation of our application-just its interface.

Creating the Movie Selection window

Now that we've created the Movie Catalog window, let's create the Movie
Selection window. We just saved the Movie Catalog window, so clear it from
the screen by selecting Window I Clear. Then create another window by
selecting Window I Create. Remember, the Movie Selection window will be
used to select a movie from the catalog system. Therefore, we need a win-

Zinc Designer

dow that contains the title of the movie we want to select, a list that tells us
the available movie options, and three buttons that allow us to select a
movie, cancel out of the selection process, or to obtain help about the Movie
Selection window.

=1 Movie Selection I.:J.:J

Tille: I

1============
.Q.K I I.t.ancel I I .!::!.elp

Let's first change the title and name associated with the window that we just
created. In the general window notebook enter the title Movie Selection and
the name MOVIE_SELECTION.

General I Subobjects T Position I Advanced

----- Support Features ----- ~
[8l Border --

Title: IMovie Selection I [8l Maximize Bullon

[8l Minimize Bullon
Minlcon: I <none> ~ [8l Svstem Bullon

o Geometry Management
-

Name: IMOVIE_SELECTION I o Vertical Scroll-Bar

Help: I<none> Iii o Horizontal Scroll-Bar
----- Tvpe -----

@ Default
I OK I I Cancel I I Help I --;

1(\ n;;olnn nh;....t ..

Prepare the window by creating a prompt field for the title, a string field for
the title, a vertical list field for the movie selections, and three buttons for
OK, Cancel, and Help. Your edit window should look like this:

-=1 <untitled> I...J ...
prompt: Isiring I

D
I button I I bullon I I [bullon[I

Zinc Designer 91

Designing Dialog Windows

92

Change this window to be a dialog window by invoking the window's infor
mation notebook, then by selecting Dialog object as the default from the
options list (located at the right-side of the notebook page.)

Change the text associated with the prompt to

Title:

Now, set the name of the prompt to be

SELECT PTITLE

(The P represents "prompt.") Next, edit the string field. Remove the default
text by pressing the <delete> key, then change the length of data to 64, and
change the name of the field to

FLD SELECT TITLE- -

Change the name of the vertical list to

FLD SELECT SELECTION- -

Change the text of the first button to

&OK

and the name of the button to

SELECT OK

Change the text of the second button to

&CANCEL

and the name to

SELECT CANCEL

Change the text of the final button to

&HELP

and the name to

Zinc Designer

....1

SELECT_HELP

<untitled>
Tille: Isiring I

D
1 OK II Cancel I I (Hel,,) I

Now let's modify the position and size of all the fields in the window. First,
size the Movie Selection window to be width 52 and height 9. Next, position
the title prompt to be at position 2,1. Refer to the size: and pos:, fields on the
status bar to validate the position and size of the window and its window
objects. Position the title string to be at position 8,1 with a width of 40. Posi
tion the vertical list directly under the title field at 8,2 and size it to be of
width 40 and height 3. Position the OK button to be at position 8,6 with the
size of 12,1. Position the Cancel button to be at position 22,6 and size 12,1.
Move the Help button to position 36,6 with the size of 12,1. Your Movie
Selection window now looks like this:

....1 Movie Selection - " I· J.J

Tille: II!======;
OK I I Cancel I I Help

Save the information for this window by selecting Window IStore from the
Window Editor's pull-down menu, then remove the window from the screen.

Zinc Designer 93

Designing Dialog Windows

Creating the Movie Information window

Now that we've finished the Movie Selection window, let's create the Movie
Information window.

=-1 Movie Information

94

Tille: I I
Copyright 10 Length (in minutes): 1 0 I

Director: I I
Actors: I I

Description: I'---- ~

Save I I Close I I Help

We'll start out by describing how to create the prompt and field information
for each item in the movie information record.

1. The Title Information field has a prompt with the text title and the name
INFO_PTITLE right justified at the location (5,1). The size of the title
should be (7,1).

2. The Title Information is a string field located at position (13, I) with
size (45,1). It has blank text a length of 128 and a name
FLD_INFO_TITLE.

3. The Copyright prompt is located at position (1,2) and has the text Copy
right: and name INFO_PCOPYRIGHT.

4. The Copyright field is an integer field located at position (13,2) with the
size (12,1), value 0, and name FLD_INFO_COPYRIGHT

5. The Length prompt is located at position (27,2) contains the text length
(in minutes):, and name FLD_PLENGTH.

6. The Length field is an integer field located at (46,2) with size (12,1), and
has the value 0, and name FLD_INFO_LENGTH.

7. The Director field has a prompt located at position 2,3 with size (10, I).
The text is Director:, and the name is INFO_PDIRECTOR.

8. The Director field is a string field located at position (13,3) with size
(45,1). The text is blank length 128, with the name
FLD_INFO_DIRECTOR.

9. The Actor prompt has the text Actors: and name INFO_PACTORS.

Zinc Designer

Updating the
source code

10. The Actor field is a string field located at position (13,4) with size (45,1).
It has blanked-out text and a maximum length of 128 and the name
FLD_INFO_PACTORS.

11. The Description prompt has the text description: and name
INFO_PDESCRIPTION.

12. The Description field is of type text and is located at position (13,5) with
a size of (45,3). It has no text, but it has a maximum length of 1024 and
identifying name FLD_INFO_DESCRIPTION.

13. The Save button is located at position (13,8) with size 12,1 and has the
text &Save, and the name INFO_SAVE.

14. The Close button is located at position (27,8) with size (12,1) and has the
text &Close with name INFO_CLOSE.

15. The Help button is located at position (41,8) with size (12,1) and has the
text &HELP with name INFO_HELP.

We have now completed the creation of the Movie Information record. Save
this information by selecting File I Save from the Window Editor's pull
down menu, then exit the Designer.

We have now created and saved the interfaces of our three windows:
MOVIE_CONTROL, MOVIE_SELECTION, and MOVIE_INFOR
MATION. Let's go back into our source code and change it so that the pro
gram can display all three windows to the screen. We do this by adding two
additional window creation lines-one for the Movie Selection window, and
one for the Movie Information window.

II Include the appropriate directives.
#include <ui_win.hpp>

int UI_APPLICATION::Main(void)
{

UI_APPLICATION::LinkMain()i
II Add the Movie Control Windows and process user responses.
*windowManager

+ new UIW_WINDOW("p_movie2.dat-MOVIE_CONTROL")
+ new UIW_WINDOW("p_movie2 .dat-MOVIE_SELECTION")

+ new UIW_WINDOW("p_movie2 .dat-MOVIE_INFORMATION") i

UI~PLICATION::Control();

return (0);

Zinc Designer 95

Designing Dialog Windows

96

Now recompile and run the application. Your screen should have all three
windows that we created in Zinc Designer.

=-1 Movie Selection I...J:"'

=>1
file Movi Title: I I
1~1~1'" =-1 Movie Information I...J.o.

Title: I I
Copyright 10 I Length (in minules): 10 I

Direclor: I I
Aclors: I I

Descriplion:

I ~iy

i'

I Save I I
~Close I I Help I

You can move through the windows and browse the information, but no con
trol has been built into the application; we will do this in the next tutorial. To
exit the application, remove all three windows from the display.

Conclusion

In this chapter, we created MOVIE's interface. In the next chapter, we will
create the menu options that we will connect later to member functions.

Zinc Designer

Chapter 5 Architecting the
Control

In this chapter, we're going to examine how to connect menn options to

the functions that perform some action. While we do this, we'll examine the
architecture needed to generate messages that cause things to happen in the
MOVIE program.

responding to events

thinking about architecture

Zinc Designer 97

Architecting the Control

Working with MOVIE3

Components of
MOVIE3

In Figure 1 on page 58, we discussed the components of the MOVIE appli
cation we've been working with in this series of tutorials. In this part of the
tutorial, we'll be working with MOVIE3, the third component of MOVIE.
The diagram below shows the components we're working on in relationship
to the other components of the tutorial. (The components we're not working
with are grayed out.)

• Control architecture

._-------------------_.

98 Zinc Designer

Source files Below is a table of source files we'll be working with in this part of the tuto
rial. We can find these files in /ZINCrrUTORIMOVIE.

TABLE 6. Components of MOVIE3

Type offile

User-pro
vided files

Designer
generated
files

Name offile

MOVIE3.CPP

MOVIE3.HPP

P_MOVIE3.CPP

Description offile

The main program

Class definitions, identi
fications, and messages

Code for tying Designer
objects to our program

Identifications and help
contexts

Persistent object storage

The Movie Control window

The first thing we'll look at in this tutorial is the Movie Control window. Its
definition in MOVIE3.HPP contains several interesting things.

class MOVIE CONTROL : public UIW WINDOW
{

public:
MOVIE_CONTROL (void) ;
virtual EVENT_TYPE Event(const UI_EVENT &event);

private:
EVENT_TYPE MovieCreate(const UI_EVENT &event);
EVENT_TYPE MovieDelete(const UI_EVENT &event);
EVENT_TYPE MovieLoad(const UI_EVENT &event);
EVENT_TYPE MovieStore(const UI_EVENT &event);

} ;

First, MOVIE_CONTROL derives from UIW_WINDOW, allowing
MOVIE_CONTROL to inherit all the properties of the UIW_WINDOW
class. Also, the Movie Control window's overloaded constructor will call the
base class UIW_WINDOW constructor by default.

Zinc Designer 99

Architecting the Control

The constructor

100

In addition to an overloaded constructor, MOVIE_CONTROL also has an
Event() function. By defining Event() for MOVIE_CONTROL, it will
receive messages before UIW_WINDOW. MOVIE_CONTROL can pro
cess the events itself, or dispatch the events to a child process, such as the
Movie Information window or the control selection. Or it can pass the infor
mation to UIW_WINDOW.

MOVIE_CONTROL has four private member functions: MovieCreate(),
MovieDelete(), MovieLoad(), and MovieStore(). We'll discuss these later
in the tutorial.

Let's examine the MOVIE_CONTROL constructor more closely.

MOVIE_CONTROL::MOVIE_CONTROL(void) :
UIW_WINDOW("MOVIE_CONTROL", defaultStorage)

II Center the window at the top of the screen.
windowManager->Center(this);
relative.bottom = relative.Height() - 1;
relative. top = 0;

It takes no arguments, but it loads the window from a .DAT file by calling
the base UIW_WINDOW class with the window name
MOVIE_CONTROL, and a pointer to the default persistent storage, which
we will examine in a moment. Next, the constructor centers the window in
the display by calling windowManager->Center(), and moves it to the top
of the screen by resetting its relative. bottom and relative. top values.

Let's examine Main() to see what the definition of default storage is.

int UI_APPLICATION::Main(void)
{

II Fix linkers that don't look for main in the .LIBs.
UI_APPLICATION::LinkMain();
II Provide a general storage module.
UI_WINDOW_OBJECT::defaultStorage =

new ZIL_STORAGE_READ_ONLY (lip_movie3 •dat ") ;

The UI_WINDOW_OBJECT base class has a member variable called
defaultStorage. This variable is a global storage object that contains our
.DAT file, which is P_MOVIE3.DAT. The default storage is initialized by
calling new ZIL_STORAGE_READ_ONLY with the argument
P_MOVIE3.DAT. This allows us not only to retrieve the Movie Control
window from the .DAT file, but the Movie Information and Movie Selection

Zinc Designer

Event handling

windows as well. Next, notice that the application creates a new
MOVIE_CONTROL window instead of a new UIW_WINDOW window.
Then it attaches the Movie Control window to the Window Manager.

Finally, the application sets the Window Manager screenID to the Movie
Control window's screenID. This tells the Window Manager that even if
there are several windows on the display, the application should exit when
the Movie Control window is removed from the display.

In the previous tutorial, we looked at all three windows on the display at
once; to leave the application, we had to remove each window from the dis
play until no Zinc windows remained. With this code, removal of just the
Movie Control window closes the application-even if we have several win
dows on the screen.

The next important aspect of the Movie Control window is event handling.
But to cause the Movie Control window to respond to events, we must
decide what it must do when it receives those events. Here's what the Movie
Control window must do:

1. Create, delete, load, or store movie records. (We've seen how this will
work with the pull-down menu and the bitmapped buttons.)

2. Exit when finished receiving user input.

The most efficient way to cause the Movie Control window to do these
things is to introduce six new messages into our system:

· OPT_HELP

• OPT_MOVIE_CREATE

· OPT_MOVIE_DELETE

· OPT_MOVIE_LOAD

• OPT_MOVIE_STORE, and

· a system message, S_CLOSE.

Zinc reserves the values 10,000 and above and -10,000 and below for user
events. In our case we will assign values of 10,000 and above to create,
delete, load, and store messages. And we will also provide a special message
for help. The values for messages are:

canst ZIL USER EVENT OPT HELP- - -
canst ZIL USER EVENT OPT MOVIE CREATE=- - --
canst ZIL USER EVENT OPT MOVIE DELETE=- - --
canst ZIL USER EVENT OPT MOVIE LOAD =- - --
canst ZIL USER EVENT OPT MOVIE STORE =

- - --

Zinc Designer

10000;
10001;
10002;
10003;
10004;

101

Architecting the Control

102

When our Movie Control window receives these messages, it will call differ
ent member functions. As we already discussed, MOVIE3.HPP defines four
private member functions for MOVIE_CONTROL, which are
MovieCreate(), MovieDelete(), MovieLoad(), and MovieStore(). To
intercept these messages, we overload MOVIE_CONTROL's Event()
function for MOVIE_CONTROL, and then check for one of these mes
sages. (We'll discuss help messages in the next chapter.)

EVENT_TYPE MOVIE_CONTROL::Event(const UI EVENT &event)
{

II Check for special requests.
EVENT_TYPE ccode = event. type;
if (ccode == OPT_MOVIE_CREATE)

ccode = MovieCreate(event);
else if (ccode == OPT_MOVIE_DELETE)

ccode = MovieDelete(event);
else if (ccode == OPT_MOVIE_LOAD)

ccode = MovieLoad(event);
else if (ccode == OPT_MOVIE_STORE)

ccode = MovieStore(event);
else

ccode = UIW_WINDOW::Event(event);
return (ccode);

If the Movie Control window receives one of these messages, it calls the
member function for that message.

In this tutorial we won't worry about the controlling movie information and
movie selection. So in the MovieCreate(), MovieDelete(), and
MovieLoad() members, all that we will do is add a new UIW_WINDOW.

EVENT_TYPE MOVIE_CONTROL::MovieCreate(const UI_EVENT &event)
{

*windowManager + new UIW_WINDOW("MOVIE_INFORMATION",
defaultStorage);

return (event.type);

In the MovieStore() member, we will simply return without performing any
action.

EVENT_TYPE MOVIE_CONTROL::MovieStore(const UI EVENT &event)
{

return (event.type);

We'll discuss deriving movie information and movie selection in the next
MOVIE tutorial.

Zinc Designer

Directories:

Connecting
messages to the
pull-down menu

Now that our source file has an underlying architecture with messages, we'll
connect the Movie Control window to these messages.

Connecting messages

In this section, we'll connect the messages to the Movie Control window and
menu options. Invoke the Designer and load the Movie Control window.

=-1 Movie Catalog System 1 ... 1'"
file Movie tlelp

I_OOIl5alj;ll

Connect the messages to the pull-down menu, so that the program knows to
send the messages when the user selects those menu options. Invoke the win
dow information notebook by double-clicking on the window. Then, in the
Subobjects page, double-click on the pull-down menu in the Directories
list. Then double-click on the MOVIE_OPTION object in the Directories
list. Now the screen should look like this:

1---_-=G=en=era=1_---IT Subobjects Ip...-_-':p,.:..:os=itio:.;.;.n_---'T=_=A=dv=an...:.ce,;;.;;d_----'.
- -

Objects:

I' Supporl Objecls ---

--- Normal Objecls --

~ CREATE_OPTION

~ DELETE_OPTION

~ LOAD_OPTION

~ STORE_OPTION

MOVIE_CONTROL

'§f' PULL_DOWN_MENU
-.. ~-N·oviE·-OPTI()N····-···_··-

·--·'--~·CRE·A~·E·=OPTi(iN--····-

~ DELETE_OPTION

~ LOAD_OPTION

~ STORE_OPTION

Edit

Add

Delete

I Move Up

IMove Down I

OK Cancel I I Help I I~ Pop-up Item 11]

Connecting
messages to the
Movie Control
window

Now connect messages to the Movie Control window. Editing each of the
movie options, enter a value, and then set the option so the value passes
through the system when the option is selected. Change the
CREATE_OPTION object first. Invoke the create option information note
book and change the value on the general page to

Zinc Designer 103

Architecting the Control

104

10001

and set the Send user message flag from Item features.

General 1 Subobjects I Position I Geometry I Advanced

----- Item Features ----- ~o Mark as separator I-'

Text: I&Create I o Allow check-mark
-IZJ Send user message

Value: 110001 I -
0---- Sub-Menu Options -----

o Alphabetical sorting

Name: ICREATE OPTION I o Don't wrap keystrokes

Help: I<none> Iii
o Select multiple children

--0-- Item Message -----

I .Q.K I I Cancel I I Help I @ Normal operation
I--,

I () <;;pnrl ""AXII.I17r mp"""np •

Do the same thing with DELETE_OPTION by entering the value

10002

and setting the Send user message flag.

General I Subobjects f Position 1 Geometry I Advanced I
----- Item Features ----- I.!o Mark as separator I-

Text: I&Delete... I
o Allow check-mark

-
110002 I

IZJ Send user message
~.

Value: ----- Sub-Menu Options -----

o Alphabetical sorting

Name: IDELETE_OPTION I o Don't wrap keystrokes

Help: I<none> iii o Select multiple children

----- Item Message -----

I OK I I Cancel I I Help I @ Normal operation
f----,

I(l <;;pnol loIio,><,11oI171' mp...."np •

Enter the value

10003

Zinc Designer

Closing a
window

for LOAD_OPTION, then set the Send user message flag.

General I Subobjects T Position T Geometry --I Advanced 1
----- Item Features ----- .,!.

,I< D Mark as separator I-

Text: I&Load... I
D Allow check-mark

110003 1
[gj Send user message .-Value: ----- Sub-Menu Options -----

D Alphabetical sorting

Name: ILOAD_OPTION I D Don't wrap keystrokes

Help: I<none> 1Oi] D Select multiple children

----- Item Message -----

I I I Cancel I I I
@ Normal operation c-OK Help I() <:An.f UilVIUI7J: mA~~~nA +

Finally, set the value

10004

for STORE_OPTION and set the Send user message flag.

General I Subobjects T Position I Geometry f Advanced

----- Item Features ----- ..t
D Mark as separator -'

I Text: I&Store I D Allow check-mark

Value: 110004 I
[gj Send user message

~

----- Sub-Menu Options -----

D Alphabetical sorting

Name: 1STORE_OPTION I D Don't wrap keystrokes

Help: I<none> iii D Select multiple children

----- Item Message -----

I OK I I kancel I I Help I @ Normal operation,
I () <; ..nol t.4/lX1t.4171" mp"""n.. +

Save the changes by pressing OK.

Zinc automatically includes S_CLOSE. When we want to close a window or
terminate an application, we can send the S_CLOSE message through the
system. If the current front window receives S_CLOSE, Zinc will remove the
window from the display or terminate the application.

Let's associate S_CLOSE with File I Exit in our pull-down menu. Invoke the
information notebook and move to File I Edit. In the information notebook,
enter the value

-11

Zinc Designer 105

Architecting the Control

and set Send user message from the item features.

+OJ(Cancel I I,-__H_elp__~

Name: IEXIT OPTION

Help: I<none>

----- Item Features ----

o Mark as separator

-I 0 Allow check-mark
Text: IE&xit _;=====,-----' lSJ Send user menage

Value: 1-11 u_u Sub-Menu Options m __

o Alphabetical sorting

I 0 Don't wrap keystrokes

Iii 0 Select multiple children

----- Item Message -----

~~~_r_mal_~~~:;ati~f1:~~ _

General

The value -11 corresponds to the S_CLOSE message. To view a list of logi
cal and system events that we can connect to our user values, simply move to
the Message Editor and invoke the Help I Logical events or Help I System
events menu item from the pull-down menu.

~I Message Editor t"'l....
Message tlelp

Index...

file
Message

System events
Logical events

About Message Editor

These help options list all supported Zinc messages and their values. When
we set the File IExit value to -11, we are telling the item to send a -11 value
into the system, which it interprets as a message to close the window. Then
as the window closes, the Window Manager will close our application.

Connecting
menu items to
functions

Now that we've connected the messages to the Movie Control window and
to the pull-down menu, we need to connect the Movie Control window's
pull-down menu items to the member functions. Each of the pull-down menu
options was marked as a "send message" item, which means any time the
user selects an option like Movie I Create, the option will create a message
and put it on the event queue. For example, when the user selects Movie I
Create, the option creates the value 10,001 and sends it to the Event Man
ager's event queue. Then our application will retrieve that event.

106 Zinc Designer



Finishing the
tool bar buttons

Processing
messages

What the Movie
Control
window's
Event( ) does

Before we go back into the code and look at exactly how our application will
retrieve values, finish setting up the message system with tool bar buttons.
These buttons need the same information as the pull-down items.

Use the Create button as an example. Invoke the button information note
book, then enter

10,001

into the value field. Then set the Send user message flag from the Settings
list.

General 1 Position I Geometry 1 Advanced 1
----- Type ----- ~

Text: 1 I @Normal I-

Value: 110001 1
o Radio-bulton

Image: I~ movie_creale ~
o Check-box

----- Seltings ----- --

I
t8J Send U$er meuage -

Name: 1CREATE BUTTON I o Sel as defaull bulton

Help: 1<none> If] ----- Slale -----

@ l-$tate (no toggle)
-

I 01( I 1
M

Cancel I I Help I o 2-slale (on/off) '----,
_____ I-Iginh••••__ +

Do the same for the Delete, Load, and Store buttons by entering 10,002 for
delete, 10,003 for load, and 10,004 for store, and by setting Send user mes
sage. Finally, connect the help contexts by entering the value 10,000 and set
ting the Send user message for each of the help pull-down items. Save the
changes to the movie catalog system.

Let's review the code that processes these messages once again. In the func
tion UI_APPLICATION::Main(), one line sends control to Zinc.

II Process user responses.
UI_APPLICATION::Control();

At run time, UI_APPLICATION: :Control( ) passes messages to
MOVIE_CONTROL::Event( )-system events, logical events, operating
system-specific events, or user-defined events. Movie I Create, Moviel
Delete, Movie I Load, and Movie I Store generate user-defined messages
that MOVIE_CONTROL::Event( ) will interpret.

Let's look at what MOVIE_CONTROL::Event( ) does.

EVENT_TYPE MOVIE_CONTROL::Event(const UI_EVENT &event)
{

II Check for special requests.

Zinc Designer 107



Architecting the Control

108

EVENT_TYPE ccode = event. type;
if (ccode == OPT_MOVIE_CREATE)

ccode = MovieCreate(event);
else if (ccode == OPT_MOVIE_DELETE)

ccode = MovieDelete(event);
else if (ccode == OPT_MOVIE_LOAD)

ccode = MovieLoad(event);
else if (ccode == OPT_MOVIE_STORE)

ccode = MovieStore(event);
else

ccode = UIW_WINDOW::Event(event);
return (ccode);

First, it sets the control code, recognized as eeode in the file, which repre
sents the message sent to our Movie Control window. When Event()
receives a message to which it doesn't respond, it sends the information up
to UIW_WINDOW::Event(). But when the user selects Create, Delete,
Load, and Store, the program intercepts and processes the messages. To see
how this happens, let's first look at Movie I Create. When the user selects it,
it sends the OPT_MOVIE_CREATE message to the Movie Control window,
which calls the MovieCreate( ) member function. In tum, this function adds
a new Movie Information window to the Window Manager.

The same things happen when the user selects other options. When the user
selects the Movie I Delete option, it sends a message to the Movie Control
window, which calls MovieDelete(). In tum, this function adds a new
Movie Selection window to the Window Manager. When the user selects
Movie I Load, it also sends a message to the Movie Control window, which
calls the MovieLoad() function. Then this function adds a new Movie
Selection window. And when the user selects Movie I Store, it sends a mes
sage to the Movie Control window, which calls MovieStore(). But unlike
the other member functions, MovieStore() doesn't do anything right now
we have not yet assigned it information or processing tasks. We will do so
later.

Notice that when the program called MovieDelete() and MovieLoad(),
both constructed a Movie Selection window. When the user selects Movie I
Delete, we will tell the Movie Selection window to delete a movie. When the
user selects Movie I Load, we will tell the Movie Selection window that we
wish to load a movie. In both cases, we need the Movie Selection window to
select the movie to delete or load.

Zinc Designer



Viewing the
application

We will discuss MovieDelete() and MovieLoad() in greater detail in the
next tutorial. But the important thing to learn in this tutorial is MOVIE's
architecture, or specifically, that main control first goes to the Movie Control
window, which invokes the movie selection process.

With the changes we just made, we may now compile and run the MOVIE
application.

=1 Movie Catalog System 1·1·
file Movie tlelp

IMnXn H .....

The main difference between the state of MOVIE in this tutorial and in the
previous one is that in this state, it has all the movie options. If we select
Movie I Create, Movie I Delete, or Movie I Load, we get additional infor
mation. For example, if we select Movie I Create from the pull-down menu,
the Movie Information window appears on the screen.

=-1 Movie Information 1·1"

Tille: I I
~===;----------;:::======:

Copyright: 10 Length (in minutes): 10 I
~==:'...-----=-----=------=--'===~

Director: I I
~==========~

Actors: I I
~===========;~

0.'.';";00 I ~

--------------

I - Save I I Close I I Help

Zinc Designer 109



Architecting the Control

If we select Movie I Delete or Movie I Load, the Movie Selection window
appears on the screen.

=1 Movie Selection

110

Tille: I
I~======

OK I I Cancel I I Help

If we select File IExit, the application exits.

Message flow

Now that we've compiled and run MOVIE, let's examine the message sys
tem to find out what's going on under the hood. First, the movie catalog win
dow appears on the screen because we have added a new Movie Control
window to the Window Manager.

II Add the Movie Control window.
*windowManager + new MOVIE_CONTROL;

Second, when we select Movie I Create, the create object sends the value
10,001 through Zinc. The Movie Control window intercepts that message
and calls the MovieCreate( ) member function.

EVENT_TYPE MOVIE_CONTROL::Event(const DI EVENT &event)
{

II Check for special requests.
EVENT_TYPE ccode = event. type;
if (ccode == OPT_MOVIE_CREATE)

ccode = MovieCreate(event);

MovieCreate( ) then constructs a new movie information window and adds
it to the screen.

EVENT TYPE MOVIE_CONTROL::MovieCreate(const Dr EVENT &event)

Zinc Designer



*windowManager + new UIW_WINDOW("MOVIE_INFORMATION",
defaultStorage) ;

return (event.type);

The same process happens when we select Movie I Delete and Movie I
Load. For example, if we select Movie I Delete, the Movie Control window
intercepts the value 10,002. Then it processes this event and calls the
MovieDelete( ) member function.

Finally, when we select File I Exit, the option sends the value -11, Zinc's
S_CLOSE message, through the system. The Window Manager, rather than
the Movie Control window, intercepts the message. In response, the Window
Manager deletes the movie catalog system window from the display. Since
this window is the Window Manager's main window, the application termi
nates.

Conclusion

In this tutorial, we learned how to assign values to messages. We also
learned how to use messages to connect menu options to functions that cre
ate, delete, load, and store movie records. In the next tutorial, we're going to
define the architecture of the Movie Selection and Movie Information win
dows.

Zinc Designer 111



Architecting the Control

112 Zinc Designer



Chapter 6 Deriving Support
Modules

In previous tutorials, we used the Designer to create windows and their
window objects, and looked at how to create source code that uses these win
dows. In this tutorial, we'll round out the MOVIE application's architecture.
We'll do this by creating two classes, MOVIE_SELECTION and
MOVIE_INFORMATION, and by connecting their messages to the Movie
Control Window and source code. We will also finish connecting the help
system to our application.

implementing program architecture

working with the help system

Zinc Designer 113



Deriving Support Modules

Components of
MOVIE4

Working with MOVIE4

In Figure 1 on page 58, we discussed the components of the MOVIE appli
cation we've been working with in this series of tutorials. In this part of the
tutorial, we'll be working with MOVIE4, the fourth component of MOVIE.
The diagram below shows the components we're working on in relationship
to the other components of the tutorial. (The components we're not working
with are grayed out.)

114

._-------------------_.

Zinc Designer



Source files Below is a table of source files we'll be working with in this part of the tuto
rial. We can find these files in /ZINCITUTORIMOVIE.

TABLE 7. Components of MOVIE4

Type offile

User-pro
vided files

Designer
generated
files

Name offile

MOVIE4.CPP

MOVIE4.HPP

P_MOVIE4.HPP

P_MOVIE4.DAT

Description offile

The main program

Class definitions, identi
fications, and messages

Code for tying Designer
objects to our program

Identifications and help
contexts

Persistent object storage

The Movie Selection window

Let's begin rounding out the MOVIE application's architecture by working
on the Movie Selection window. To prepare it, we'll go in to the Designer
and change a few of the options. By using the Designer to modify windows,
we'll be making changes to the P_MOVIE4.DAT file, the container for the
Movie Selection and the Movie Information windows.

Zinc Designer 115



Deriving Support Modules

Changing its
information

Assigning
messages to
buttons

116

We must change two things with the Movie Selection window, so open it for
editing. First, in the information notebook for the main window, set the
object to a dialog window. Do this by selecting the dialog object option from
the general list in its information notebook.

General I Subobjects I Position I Advanced 1
---.• Type ----- ~
@ Default

Tille: IMovie Selection I o Dialog Object

Minlcon: I [3
o MOl Object

<none> ----- Interaction -----

o Alphabetical sorting
h

Name: IMOVIE SELECTION I o Select multiple objects
I-i

Help: I<none> Iii o Select on drag operation

o Allow normal hotkeys

I OK I I {;.ancel I I Help- I o Don't size
I--

In Onn', mnvp +

The main difference between a dialog object and a normal window is how
they look. In most systems, the border of a dialog window is flat, whereas
the border for a normal window is three dimensional. In addition, most dia
log objects are marked as nonsizeable modal objects, which means a user
cannot continue an application until he or she has entered a title name into
the Movie Selection and pressed OK or Cancel.

Let's make the OK and Cancel buttons functional by entering a value and
selecting a user message for each of these buttons.

Zinc Designer



First, let's change the information for the OK button by invoking the button
information notebook, then by changing the value of the button to 10,005.
(This is a new value that will correspond to an OPT_MOVIE_OK message,
defined in MOVIE4.HPP.) Then set the Send user message flag from the
options in the genera11ist.

General I Position r Geometry I Advanced 1
----- Type ----- ~

Text: I&OK 1 @Normal I-

Value: 110005 1
o Radio-bullon

o Check-box
Image: I <none> 0 ----- Sellings -----

I;gJ Send user message
-~

Name: ISELECT_OK 1 o Sel as default bullon

Help: I<none> Iii ----- Slale -----

@ l-slale (no toggle)
--

I OK I I Cancel I I Help I
o 2-slale (on/off) e.....,
_____ ~Ainh' _____ •

Change information for the Cancel button by invoking the button informa
tion notebook, by setting the Send user message flag, then by specifying the
value -11 in the value field in the notebook. (The value -11 corresponds to S_
CLOSE.)

Last, change information for the Help button using its information notebook.
Enter the value 10,000, which corresponds to the OPT_HELP value, and set
the Send user message flag in the settings list.

Now we have connected the buttons to messages. The OK button sends an
OPT_MOVIE_OK message, the Cancel button sends the S_CLOSE mes
sage, and the Help button sends the OPT_HELP message.

We implement this, first by defining the option messages, then by deriving
MOVIE_SELECTION from UIW_WINDOW, and overloading the con
structor and the Event( ) function.

canst ZIL_USER_EVENT OPT_HELP 10000;
canst ZIL_USER_EVENT OPT_MOVIE_CREATE= 10001;
canst ZIL_USER_EVENT OPT_MOVIE_DELETE= 10002;
canst ZIL_USER_EVENT OPT_MOVIE_LOAD = 10003;
canst ZIL_USER_EVENT OPT_MOVIE_STORE = 10004;
canst ZIL USER EVENT OPT_MOVIE_OK 10005;
class MOVIE SELECTION public UIW_WINDOW
{

public:
MOVIE_SELECTION(vaid);
virtual EVENT_TYPE Event(canst UI_EVENT &event);

Zinc Designer 117



Deriving Support Modules

The constructor

118

} ;

Now that we've assigned messages to the buttons, let's look at the construc
tor code for the Movie Selection window. The constructor is similar to the
Movie Control Window's constructor-we call the base UIW_WINDOW
class and pass MOVIE_SELECTION and the default storage as our param
eters. In addition, just as in the Movie Control Window, we center the win
dow on the display.

MOVIE_SELECTION::MOVIE_SELECTION(void) :
UIW_WINDOW( "MOVIE_SELECTION", defaultStorage)

II Center the window on the screen.
windowManager->Center(this);

In order to allow the Movie Selection window to respond to messages, we
must overload MOVIE_SELECTION::Event(). Once overloaded, the
Event() function will intercept messages that the base UIW_WINDOW
would otherwise receive. Event() will respond when the user presses the
Help, OK, and Cancel buttons. The following code does this:

EVENT_TYPE MOVIE_SELECTION::Event(const UI_EVENT &event)
{

II Check for special requests.
EVENT_TYPE ccode = event. type;
if (ccode == OPT_HELP)

helpSystem->DisplayHelp(windowManager, helpContext);
else if (ccode == OPT_MOVIE_OK)

eventManager->Put(S_CLOSE); II Close the window.
else

ccode = UIW_WINDOW::Event(event)i
return (ccode);

When the user pushes the Help button, Event() intercepts OPT_HELP.
Then the help system calls DisplayHelp( ), which brings up a help window.

When the user pushes the OK button, Event() intercepts OPT_MOVIe_OK,
and a movie will be loaded or deleted. Since we're implementing architec
ture and not functionality, for now, we'll just pass the S_CLOSE message to
the Event Manager. The Window Manager will process this message and
will remove the Movie Selection window from the display.

Earlier, we assigned the S_CLOSE message to the Cancel button. When the
user pushes the Cancel button, the Window Manager intercepts the message
and removes the window from the display.

Zinc Designer



Here's the old code that invoked the Movie Selection window-this came
from our tutorial that discussed the MovieDelete( ) and MovieLoad( ) mem
ber functions.

EVENT_TYPE MOVIE_CONTROL::MovieDelete(const DI_EVENT &event)
{

*windowManager + new UIW_WINDOW("MOVIE_SELECTION",
defaultStorage);

return (event.type);

EVENT_TYPE MOVIE_CONTROL::MovieLoad(const DI_EVENT &event)
{

*windowManager + new UIW_WINDOW("MOVIE_SELECTION",
defaultStorage);

return (event.type);

The new MOVIE_SELECTION adds a Movie Selection window to the
Window Manager in MovieDelete( ) and MovieLoad( ), instead of in UIW_
WINDOW's constructor. This allows MOVIE_SELECTION, not
MOVIE_CONTROL, to process the information. We will see the benefits
of this in the next chapter, when we begin implementing storage.

EVENT_TYPE MOVIE_CONTROL::MovieDelete(const DI_EVENT &event)
{

*windowManager + new MOVIE_SELECTION;
return (event.type);

EVENT_TYPE MOVIE_CONTROL::MovieLoad(const DI_EVENT &event)
{

*windowManager + new MOVIE_SELECTION;
return (event.type);

Zinc Designer 119



Deriving Support Modules

Changing its
information

120

Movie Information

Now that we've modified the Movie Selection window, we can modify the
Movie Information window-and we'll do it like we did Movie Selection.
We'll derive a new window class called MOVIE_INFORMATION. Then
we'll overload its Event( ) function, then intercept messages sent by the
Movie Information dialog window.

Launch the Designer and open the Movie Information window to change its
information.

We'll change several of its flags, as well as the values of its buttons. Let's get
started by invoking the general window information notebook. Change the
window to be a dialog object by selecting the Dialog Object flag from the
general window object features list.

General 1 Subobjeds I Position I Advanced I

II

----- Supporl Fealures ----- ~
[gI Border ....I

Title: IMovie Informalion 1
[gI Maximize Button

Minlcon: I 0
[gI Minimize Button

<none> [gI System Button -

II

o Geomelry Managemenl

Name: IMOVIE_INFORMATION I o Verlical Scroll-Bar

Help: I<none> Ii) o Horizontal Scroll-Bar

----- Type -----

I o DefaullI-OK I Cancel I I Help I ~ n;",lnn nh;....t +'

Next, change the Save button information by invoking the information note
book for the button. Once invoked, enter the value

10,005

Zinc Designer



which corresponds to the OPT_MOVIE_OK option. Then set its flag to Send
user message by selecting that option from the options list.

General Position Geometry

----- Type -----

Text: It-Save @Normal

Value: 110005
o Radio-bullon

Image: I mo Check.-box
<none> ----- Sellings -----

~ Send user message

Name: IINFO SAVE I o Sel as delaull bullon

Help: I<none> Iii ----- Slale -----

@ 1-state (no loggle)

I 1

o 2-slale (on/oll)
kancel H.e1p •

Next, change the value of the Close button to

-11

which corresponds to S_CLOSE. Then set its flag to Send user message by
selecting that option from the options list.

- General -, Position 1 Geometry I Advanced

----- Type -----
-~

Text: It-Close 1
@ Normal I"'"
o Radio-bullon

Value: 1-11 1 o Check.-box
Image: I <none> [!J ----- Sellings -----

I~end user message -
Name: IINFO_CLOSE 1

o Sel as delaull bullon

Help: I<none> iii ----- Slale -----

1"@1-state (no toggle)

Ir I I I o 2-slale (on/oll)
I'-OK-W kancel H.elp

----- ~ ..inhl----- '+'

Finally, change the Help button's value to

10000

Zinc Designer 121



Deriving Support Modules

Movie
Information
definitions

The Event()
function

122

Then set its flag to Send user message by selecting that option from the
options list.

! General I Position I Geometry I Advanced 1
----- Type ----- ~

Text I&Help I @ Normal i-i

Value: 110000 I o Radio-bullon

Image: I 0
o Check-box

<none> ----- Sellings ----- -_.
11 IZI Send user message

~

Name: IINFO HELP I D Sel as default bullon

Help: I<none> Ii) ----- Slale -----
1 @ l-state (no toggle)

~

I OK I I Cancel- I I Help I o 2-slate (on/off) ---,
_____ ~D;nh' _____ +.

In MOVIE4.HPP, MOVIE_INFORMATION derives from UIW_WIN
DOW.

class MOVIE INFORMATION public UIW WINDOW
{

public:
MOVIE_INFORMATION(void);
virtual EVENT TYPE Event(const UI_EVENT &event);

} ;

MOVIE4.CPP contains Movie Information's constructor code and its
Event( ) function. The constructor is nearly the same as Movie Selection's
constructor.

MOVIE_INFORMATION::MOVIE_INFORMATION(void) :
UIW_WINDOW("MOVIE_INFORMATION", defaultStorage)

II Center the window on the screen.
windowManager->Center(this);

}

MOVIE_INFORMATION::Event() differs slightly from MOVIE
SELECTION::Event(). Just like Movie Selection, it intercepts the OPT_
HELP message and calls the help system. But it also processes the OPT_
MOVIE_STORE message, which has a value 10,005, and which tells the
Event() function to store the record. We'll implement how it stores the
record in the next tutorial, though we'll take care of some other functionality
in this tutorial.

EVENT TYPE MOVIE_INFORMATION::Event(const UI EVENT &event)

Zinc Designer



Help system,
persistence
architecture

II Check for special requests.
EVENT_TYPE ccode = event. type;
if (ccode == OPT_HELP)

helpSystem->OisplayHelp(windowManager, helpContext);
else if (ccode == OPT_MOVIE_STORE)
{

eventManager->OeviceState(E_MOUSE, OM_WAIT);
II save storage till later.
eventManager->OeviceState(E_MOUSE, OM_VIEW);

}

else
ccode = UIW_WINOOW::Event(event);

return (ccode);

When the Event() function receives the OPT_MOVIE_STORE message, it
stores the information to disk. But since a storage operation may take some
time, we should give the user some information about the operation's status.
To give the user this information, we call the Event Manager's
DeviceState( ) function to tell the mouse to display a "wait" cursor while the
Event() function will store a record in the data file. After the record is
stored, we tell the mouse cursor to display a "view" cursor, which informs
the user that he may continue using the application.

The Event() function need not handle the S_CLOSE message; it can pass it
to the base VIW_WINDOW::Event() function, which processes the mes
sage directly.

Now that we've added architecture for passing a storage message, we need
to add one additional piece of code to Main( ).

II Provide a general storage module.
static ZIL_ICHAR _fileName [ ] = "p_movie4 .dat";
UI_WINDOW_OBJECT::helpSystem = new UI_HELP_SYSTEM(_fileName);
UI_WINDOW_OBJECT::defaultStorage = new

ZIL_STORAGE_READ_ONLY(_fileName);

This code generalizes Movie Information's data file, assigning its name to a
parameter called JileName. Also, it creates a new VI_HELP_SYSTEM,
the default system that displays a window whenever the user requests help.
Finally, it creates read-only storage for the window by calling the constructor
with the same filename.

Zinc Designer 123



Deriving Support Modules

Testing our
handiwork

Save these changes to the Movie Information and Movie Selection windows,
and add the changes to create Movie Information and Movie Selection
classes. Go ahead and compile MOVIE4. Then run the executable to exam
ine the features.

<=1 Movie Catalog System I. ...J.&
file Movie lielp

CMr~Iit"I"'1

During execution, most features of the movie catalog system window are the
same as in previous tutorials. The main addition is that the window's help
buttons now bring up a general help window. (We'll further refine the help
system in "Refining the help system" on page 165.)

The options work like they did in our last tutorial-Create brings up the
Movie Information window, and Delete and Load both bring up the Movie
Selection window. We'll implement the Store option in the next tutorial.

After creating a new Movie Information record, selecting Help brings up the
help system. Selecting Close or Save, however, removes the Movie Informa
tion window from the display. The Save button doesn't save anything yet. As
we discussed earlier, we'll connect the Save button to the storage module in
the next tutorial.

If we select Movie I Delete, the Movie Selection window appears on the dis
play.

<=1 Movie Selection

124

Tille: I

I:====~

OK I I Cancel I I Help

Selecting the Help button brings up the help window. And since we have not
implemented all of the features of the OK button, pressing OK or Cancel
doesn't yet close the Movie Selection window.

Zinc Designer



Conclusion

In this tutorial, we've created MOVIE_SELECTION and MOVIE_IN
FORMATION classes that encapsulate and localize the Movie Selection
and Movie Information windows. Though the Movie Control Window archi
tecture still controls the overall application, these windows now respond to
events.

In the next tutorial, we'll begin implementing the next major component of
MOVIE-reading and writing records.

Zinc Designer 125



Deriving Support Modules

126 Zinc Designer



Chapter 7 Loading and Storing
Data

We've reached a point in the tutorials where we can fill in the pieces of
our architecture. Up to now, we've used the Designer to create windows that
present information to the screen; we've also discussed the architecture of
the window objects. Now our program has many holes; but with our archi
tecture finished, we can fill in those holes. This tutorial shows that we can
design the architecture of our programs and defer filling in the holes until
later in the programming process.

Zinc Designer 127



Loading and Storing Data

Components of
MOVIES

128

Here, we'll examine the code for reading and storing the movie data, as well
as for managing movie data. We've already written a large portion of
MOVIE, so as we read this tutorial, we'll see the benefits of the architecture
we set up (and deferred) in previous tutorials, which now load and store, and
manage information efficiently and understandably.

First, we'll look at the groundwork for implementing storage, the definitions
of MOVIE_SELECTION and MOVIE_INFORMATION. Then we'll
disassemble the implementations piece by piece to learn how they work. In
these implementations, we'll pay close attention to the communication
between the Movie Control Window, the Movie Selection window, and the
Movie Information window. We'll also examine loading and storing records
using a .DAT file.

Working with MOVIES

In Figure 1 on page 58, we discussed the components of the MOVIE appli
cation we've been working with in this series of tutorials. In this part of the
tutorial, we'll be working with MOVIES, the fifth component of MOVIE.

Zinc Designer



The diagram below shows the components we're working on in relationship
to the other components of the tutorial. (The components we're not working
with are grayed out.)

Zinc Designer 129



Loading and Storing Data

Source files Below is a table of source files we'll be working with in this part of the tuto
rial. We can find these files in /ZINCITUTOR/MOVIE.

TABLE 8. Components of MOVIES

Type offile

User-pro
vided files

Designer
generated
files

Name offile

MOVIES.CPP

MOVIES.HPP

MOVIE.DAT

P_MOVIES.CPP

P_MOVIES.HPP

Description offile

The main program

Class definitions, identi
fications, and messages

User data storage

Code for connecting
Designer objects to our
program

Identifications and help
contexts

130

Laying the ground workfor storage

Let's start filling in the holes by looking at MOVIES.HPP. At the top is the
definition for MOVIE_CONTROL. Its public section contains the con
structor and the Event( ) function we've discussed at in previous tutorials.
Its private section contains functions MovieCreate(), MovieDelete(),
MovieLoad( ), and MovieStore().

class MOVIE_CONTROL : public UIW WINDOW
{

public:
static ZIL_STORAGE *_dataFile;
static ZIL_ICHAR _IDovieName[64];
MOVIE_CONTROL(void);
-MOVIE_CONTROL(void);
virtual EVENT_TYPE Event(const UI_EVENT &event);

private:
EVENT_TYPE MovieCreate(const UI_EVENT &event);_
EVENT_TYPE MovieDelete(const UI_EVENT &event);
EVENT_TYPE MovieLoad(const UI_EVENT &event);
EVENT_TYPE MovieStore(const UI_EVENT &eVent)i

} ;

Zinc Designer



The Movie
Control window

The Movie
Selection
window

This tutorial has a new member function, the destructor. It also contains two
static members, ZIL_STORAGE *_dataFile and ZIL_ICHAR
_movieName[64}. The _dataFile member stores movie record information,
and the _movieName member stores the name of the current movie record.

NOTE: The ZIL_STORAGE data file is not a true database. We are using it
in this tutorial for simplicity. Zinc data files are built for persistence, not data
storage; the methods in this tutorial work for simple data storage and
retrieval, but not for advanced database operations. But later in the tutorial,
we'll show where we could bolt up a third-party database to MOVIE.

The next piece of code defines a new message called
OPT_RESET_SELECTION, which will allow individual Movie Selection
items to communicate with the Movie Selection window.

MOVIE_CONTROL will work a little differently from objects in previous
tutorials; it will do more than mere file management. We also add more code
to all options so that they do specific things.

MOVIE_SELECTION is much the same as in the last tutorial, except for a
new private member called request, which will identify the type of request
MOVIE_SELECTION received. The request can be either
OPT_MOVIE_LOAD, which causes the class to load a new record, or
OPT_MOVIE_DELETE, which causes it to delete a record.

class MOVIE SELECTION : public UIW_WINDOW
{

public:
MOVIE_SELECTION(ZIL_STORAGE_READ_ONLY *file,

ZIL_USER_EVENT request);
virtual EVENT_TYPE Event(const UI_EVENT &event);

private:
ZIL_USER_EVENT request;

} ;

We will also pass to our constructor the data file and type of request that we
want the MOVIE_SELECTION to perform. The file will be a pointer to the
library catalog, and the request will be either OPT_MOVIE_LOAD or
OPT_MOVIE_DELETE. To expand the definition from previous definitions
of MOVIE_SELECTION, this window will display all of the movies cur
rently available in the database, then respond to the Movie Control Window,
telling it what type of movie needs to be loaded or deleted.

Zinc Designer 131



Loading and Storing Data

The Movie
Information
window

Opening and
closing the data
file in the
constructor

132

MOVIE_INFORMATION is also similar, except for two new member
functions, Load( ) and Store( ). Load( ) gets a specific record title from the
database. The first argument of Load( ) is the name of the record that we
will be loading, and the second is the data file.

class MOVIE INFORMATION : public UIW WINDOW
{

public:
MOVIE_INFORMATION(ZIL_ICHAR *name = ZIL_NULLP(ZIL_ICHAR));
virtual EVENT_TYPE Event(const UI_EVENT &event);
virtual void Load(const ZIL_ICHAR *narre, ZIL_S'IDRAGE_READ_ONLY *file,

ZIL_STORAGE_OBJECT_READ_ONLY *object =

ZIL_NULLP(ZIL_STORAGE_OBJECT_READ_ONLY),
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

virtual void Store(const ZIL_ICHAR *name,
ZIL_STORAGE *file = ZIL_NULLP(ZIL_STORAGE),
ZIL_STORAGE_OBJECT *object = ZIL_NULLP(ZIL_STORAGE_OBJECT),
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

} ;

Store( ) works much the same way, except that it stores movie information
to our data file. Again, the first parameter is the name of the record that we
want to store, and the second parameter is a pointer to the data file.

Writing the load and store functionality

We've already entered all of the information in the .DAT file, so now we
need only work with the source files. Let's start by implementing the part of
the Movie Control Window's constructor and destructor that will open and
close the data file.

MOVIE_CONTROL::MOVIE_CONTROL(void) :
UIW_WINDOW("MOVIE_CONTROL", defaultStorage)

II Give the window a unique searchID.
searchID = ID_MOVIE_CONTROL;
II Center the window at the top of the screen.
windowManager->Center(this);
relative.bottom = relative.Height() - 1;
relative. top = 0;

Zinc Designer



The Event()
function

II Initialize the data file.
_dataFile = new ZIL_STORAGE("movie.dat",

UIS_OPENCREATE I UIS_READWRITE);

The constructor opens the data file MOVIE.DAT with read and write
access. The MOVIE_CONTROL destructor saves the data file, then deletes
the data file object.

MOVIE_CONTROL::-MOVIE_CONTROL(void)
{

II Save the data file.
_dataFile->Save();
delete _dataFile;

Deleting the data file object closes the file and preserves all the information
that we've saved during the MOVIE's execution.

The Event( ) function works exactly as in the previous tutorial-it intercepts
messages and dispatches them to the proper member function. As a brief
reminder,

1. OPT_HELP is handled by the help system when we call
helpSystem->DisplayHelp( ).

2. OPT_MOVIE_CREATE is dispatched to MovieCreate().

3. OPT_MOVIE_DELETE is dispatched to MovieDelete().

4. OPT_MOVIE_LOAD is dispatched to MovieLoad( ).

5. OPT_MOVIE_STORE is dispatched to MovieStore().

EVENT_TYPE MOVIE_CONTROL::Event(const UI EVENT &event)
{

II Check for special requests.
EVENT_TYPE ccode = event. type;
if (event. type == OPT_HELP)

helpSystem->DisplayHelp(windowManager, helpContext);
else if (ccode == OPT_MOVIE_CREATE)

ccode = MovieCreate(event);
else if (ccode == OPT_MOVIE_DELETE)

ccode = MovieDelete(event);
else if (ccode == OPT_MOVIE_LOAD)

ccode = MovieLoad(event);
else if (ccode == OPT_MOVIE_STORE)

ccode = MovieStore(event);
else

ccode = UIW_WINDOW::Event(event);
return (ccode);

Zinc Designer 133



Loading and Storing Data

MovieCreate( )

MovieDelete( )

134

Now that we remember how Event( ) dispatches messages to member func
tions, let's examine each of the member functions, starting with
MovieCreate(). We won't change MovieCreate() much from the previous
tutorial-here, too, we create a new movie information window and attach it
to the Window Manager.

EVENT_TYPE MOVIE_CONTROL::MovieCreate(const UI_EVENT &event)
{

*windowManager + new MOVIE_INFORMATION;
return (event.type);

Adding a new Movie Information window displays the window on the
screen with all information blank. Also, MOVIE_INFORMATION will
handle its own storage.

The MovieDelete( ) code is similar to that in the previous tutorial, except
that we have two new components. The first component checks to see if a
movie record is active. If so, it deletes it from the data file by calling
_dataFile->DestroyObject( ), with the movie name as the parameter. Then
it resets the movie name for the next time it's called.

EVENT_TYPE MOVIE_CONTROL::MovieDelete(const UI_EVENT &event)
{

if (_rnovieName[O])
{

_dataFile->DestroyObject(_movieName);
_movieName[O] = '\0';

}

else
*windowManager + new MOVIE_SELECTION(_dataFile,

OPT_MOVIE_DELETE);
return (event.type);

}

MOVIE_SELECTION will set _movieName when the user presses OK
after choosing a movie from the list. We will look at that a little later in the
tutorial.

For now, let's work on the second piece of MovieDelete( ). This code is sim
ilar to that in the previous tutorial, except that it passes in a pointer to the
data file in addition to the type of request.

EVENT_TYPE MOVIE_CONTROL::MovieDelete(const UI_EVENT &event)
{

Zinc Designer



MoV'ieLoad( )

if (_ffiovieName[O)
{

_dataFile->DestroyObject(_ffiovieName);
_ffiovieName[O) = '\0';

}

else
*windowManager + new MOVIE_SELECTION(_dataFile,

OPT_MOVIE_DELETE);
return (event.type);

In this function, the request will be OPT_MOVIE_DELETE. Recall that in
the Movie Control Window, Event( ) had a case for
OPT_MOVIE_DELETE, which called MovieDelete() with the original
event, event. type = OPT_MOVIE_DELETE.

else if (ccode == OPT_MOVIE_DELETE)
ccode = MovieDelete(event);

Here, we call MOVIE_SELECTION and request that we want to use the
Delete operation instead of the Load operation.

Let's now look at the MovieLoad() member function. It works like
MovieDelete( ), only it makes a different request.

First, MovieLoad( ) checks the movie name. If it exists, it loads it from the
data file by creating a new movie information record, by assigning it a valid
movie name, then by attaching it to the Window Manager. Then it resets the
movie name, so that the next time MovieLoad() is called, it has a fresh
name field.

EVENT_TYPE MOVIE_CONTROL::MovieLoad(const UI_EVENT &event)

if (_movieName[O])
{

*windowManager + new MOVIE_INFORMATIONLmovieName);
_rnovieName[O] = '\0';

}
else

*windowManager + new MOVIE_SELECTION(_dataFile,
OPT_MOVIE_LOAD) ;

return (event.type);

But if no movie name exists, then MovieLoad() opens the Movie Selection
window using the _dataFile pointer and the request OPT_MOVIE_LOAD.

EVENT_TYPE MOVIE_CONTROL::MovieLoad(const UI EVENT &event)

Zinc Designer 135



Loading and Storing Data

MovieStore( )

136

if (_IDovieName[O)
{

*windowManager + new MOVIE_INFORMATION(_IDovieName);
_IDovieName[O) = '\0';

else
*windowManager + new MOVIE_SELECTION(_dataFile,

OPT_MOVIE_LOAD);
return (event.type);

This tells MOVIE_SELECTION that we requested a movie for loading,
rather than for deleting.

The type of request MOVIE_SELECTION receives is important. Earlier,
we said we can call MOVIE_SELECTION's Delete() or Load() opera
tion. Upon completion, MOVIE_SELECTION will tell the Movie Control
Window whether to delete or to load a new movie. (We'll examine this in
detail when we examine the MOVIE_SELECTION class.)

At any given time, the Window Manager will have at least the Movie Con
trol Window on the screen. It may also have one or more Movie Selection
windows. MovieStore() finds the first window that matches the movie
name, and then stores the information out to the data file.

In the previous tutorial, MovieStore() was stubbed out. Now, in keeping
with the mission of this tutorial, we'll fill in the holes and write code to store
the movie record. This code will look at all the windows on the screen to see
if any are of type MOVIE_INFORMATION. If so, they are stored to disk.

EVENT_TYPE MOVIE_CONTROL::MovieStore(const VI_EVENT &event)
{

VI_WINDOW_OBJECT *window =

windowManager->Get( "MOVIE_INFORMATION");
if (window)

window->Store(ZIL_NULLP(ZIL_ICHAR), _dataFile);
return (event.type);

Zinc Designer



The Movie
Control window

The Movie
Sele!ction class

Now that we've discussed what happens in the header file, let's review what
the Movie Control Window is doing.

First, the constructor creates or opens a new or existing data file.

Then, when it receives create, delete, load, or store requests, it calls the
appropriate member function.

The member function MovieCreate( ) creates a new Movie Information
record. However, the member functions MovieDelete( ) and
MovieLoad( ) are more complex. We can call them in one of two differ
ent circumstances-when a movie name is present, or when one isn't.

Finally, MovieStore( ) stores out the first window that it finds that
matches the string id MOVIE_INFORMATION. These members form the
major components of the control of the MOVIE application.

Let's now examine the functionality of MOVIE_SELECTION. Here's an
overview of what it does.

1. It creates and displays a Movie Selection window.

2. Then it lists all movies in the catalog data file.

3. When created, the Movie Control Window specifies an operation, either
delete or load.

4. Once the user presses OK, MOVIE_SELECTION sends a message that
tells the Movie Control Window whether the OPT_MOVIE_DELETE or
OPT_MOVIE_LOAD operation is requested, and also sets the movie
name.

else if (ccode == OPT_MOYIE_OK)
{

Get(FLD_SELECT_TITLE)->Information(I_COPY_TEXT,
MOVIE_CONTROL::_movieNarne);

eventManager->Put(S_CLOSE);11 Close the window.
eventManager->Put(request);11 Send response to the main

II control.
}

Now MOVIE_SELECTION's constructor has a new section that loads
movie information. One of the first lines in the section is a constructor of an
event.

The event, S_ADD_OBJECT, communicates with the vertical list inside the
Movie Selection window. It tells it to add to itself the individual movie
names, which are its items.

Zinc Designer 137



Loading and Storing Data

138

The next line calls the member function Get() with the field identifier
FLD_SELECT_SELECTION.

With the Designer, we assigned FLD_SELECT_SELECTION to the vertical
list.

Get() calls MOVIE_SELECTION and asks for a field that matches this
identification. This will be the vertical list where we present the movie
records. Next, we use FindFirstObject() to find every record inside the
data file.

ZIL_ICHAR *entry = dataFile->FindFirstObject(_allObjects);

The next several lines continue to find data records until we've run out of
information in the file.

for (; entry; entry = dataFile->FindNextObject())
if (strcmp(entry, _currentDirectory) &&

strcmp(entry, -parentDirectory))

addEvent.windowObject = new UIW_BUTTON(O, 0, 30, entry,
BTF_NO_TOGGLE I BTF_NO_3D I BTF_SEND_MESSAGE,
WOF_NO_FLAGS, ZIL_NULLF(ZIL_USER_FUNCTION),
OPT_RESET_SELECTION);

list->Event(addEvent);

We create a new list entry for each movie record by calling the
UIW_BUTTON constructor and by passing the name of the movie. Then
we set up the button to send a user message by setting the BTF_SEND
_MESSAGE request and by setting our request as OPT_RESET
_SELECTION.

addEvent.windowObject = new UIW_BUTTON(O, 0, 30, entry,
BTF_NO_TOGGLE I BTF_NO_3D I BTF_SEND_MESSAGE,
WOF_NO_FLAGS, ZIL_NULLF(ZIL_USER_FUNCTION),
OPT_RESET_SELECTION);

Finally, we add the button to the list by calling list->Event( ) with the mes
sage S_ADD_OBJECT

list->Event(addEvent);

The Event( ) function. Now that we've introduced MOVIE_SELECTION's
constructor, let's look at its Event() function. When the user presses OK,
MOVIE_SELECTION receives the message OPT_MOVIE_OK. Handling

Zinc Designer



that request, Event() gets the information from the window's title field,
sends a delete or load request to the Movie Control Window, and then closes
the Movie Selection window.

else if (ccode == OPT_MOVIE_OK)
{

Get(FLD_SELECT_TITLE)->Information(I_COPY_TEXT,
MOVIE_CONTROL::_movieName);

eventManager->Put(S_CLOSE);11 Close the window.
eventManager->Put(request);11 Send response to the

Ilmain control.

These three lines of code expose much of Zinc's architecture. In the first line,
we get information from our MOVIE_SELECTION window by calling the
Get() function with our field identifier of FLD_SELECT_TITLE, and by
making the request of I_COPY_TEXT Then we pass in the Movie Control
Window movie name.

Get(FLD_SELECT_TITLE)->Information(I_COPY_TEXT,
MOVIE_CONTROL::_movieName);

This tells the selected title field that we want to copy the text currently in its
field to _movieName. Then we put an S_CLOSE message into the Event
Manager. As discussed in a previous tutorial, this message is sent through
the Event Manager, picked up by the system. And since the selection win
dow is the top window on the display, Window Manager will close the selec
tion window.

This is why we copy the movie information to _movieName before we put
the S_CLOSE in the Event Manager. Once our selection window is closed, it
will be destroyed. So if we passed messages in a different order, we would
delete the information before we copied it.

The last thing we do is put the load or delete request on the event queue.
Now the Movie Control Window will pick it up, since it's the first window
on the screen after our window is removed.

eventManager->Put(request); II Send response to the main
II control.

The selection reset command. The final piece of code that we need to exam
ine is the OPT_RESET_SELECTION command. Each button sends this com
mand whenever the user selects a movie from the list.

else if (ccode == OPT_RESET_SELECTION)
{

ZIL_ICHAR *title;

Zinc Designer 139



Loading and Storing Data

The Movie
Information
class

140

event.windowObject->Information(I_GET_TEXT, &title);
Get(FLD_SELECT_TITLE)->Information(I_SET_TEXT, title);

When the program receives the OPT_RESET_SELECTION command, it
gets the text from the current item and inserts it into the title field. When a
button sends the OPT_RESET_SELECTION message, it also includes a
pointer to itself inside of the event. windowObject variable. This is where we
get the text for the title field, using the LGET_TEXT request.

event.windowObject->Information(I_GET_TEXT, &title);

Finally, setting the title selection with the text, we get the title field from our
window, and copy the movie title with the command LSET_TEXT

Get(FLD_SELECT_TITLE)->Information(I_SET_TEXT, title);

This code updates the window, displaying the new title in the title field.

Summarizing Movie Selection. MOVIE_SELECTION might seem compli
cated, so let's review what it does so we can keep a clear picture in our
minds. In the constructor, we pass the data file and the request, either
OPT_MOVIE_LOAD or OPT_MOVIE_DELETE. Then we traverse the data
file, looking for all available movie records inside the vertical list.

In the Event() function we look for two messages, OPT_MOVIE_OK and
OPT_RESET_SELECTION. When it receives OPT_MOVIE_OK, it sets the
_movieName variable name. Then it sends a response to the Movie Control
Window, telling it that we've completed the request. Finally, we reset a
movie selection inside the movie list by sending the
OPT_RESET_SELECTION message, and getting the information text from
the current window object. Then it sets the selected title in the title field.

Now that we've reviewed MOVIE_SELECTION, the last code we'll need
to write in this tutorial is MOVIE_INFORMATION. Its definition is sim
ple, but there are many new pieces in the Load and Store operations.

The constructor. Let's start by looking at the constructor. When we call the
constructor we pass in a name argument. The name is the actual name of the
movie record that we want to load or create. Then if we have a name, we
load the record information. The Movie Control Window will either call the
constructor with NULL to create a new movie record, or it will call the con
structor with the valid movie name.

MOVIE_INFORMATION::MOVIE_INFORMATION(ZIL_ICHAR *name)
UIW_WINDOW( "MOVIE_INFORMATION", defaultStorage)

Zinc Designer



II Center the window on the screen.
windowManager->Center(this);
II Load the record information.
if (name)

Load (name, MOVIE_CONTROL::_dataFile)i

In Event( ), we only look for the additional request of
OPT_MOVIE_STORE. In this case, we call the Store( ) member function to
pass a NULL name and a pointer to the actual data file.

EVENT_TYPE MOVIE_INFORMATION::Event(const VI EVENT &event)
{

II Check for special requests.
EVENT_TYPE ccode = event. type;
if (ccode == OPT_HELP)

helpSystem->DisplayHelp(windowManager);
else if (eeode = OPT_MOVIE_STORE)

Store(ZIL_NULLP(ZIL_ICHAR), MOVIE_CONTROL::_dataFile)i
else

ceode = VIW_WINDOW::Event(event);
return (ccode);

We need not associate the actual name with Store( ), because the window's
title field contains the name of the movie.

The Load( ) function. Now that we're done with the constructor, let's look at
the Load( ) function. Load( ) creates the storage record and loads the data in
two steps. First, it creates the record by constructing a load object called
ZIL_STORAGE_OBJECT_READ_ONLY, and by passing the data file
handle and the load name.

This code opens a record in the data file. Then it loads its information with
the overloaded Load( ) function.

lObject.Load(&sData, MAX_LENGTH); II title.
Get(FLD_INFO_TITLE)->Information(I_SET_TEXT,

sData) ;
lObject.Load(&iData); II copyright.
int copyright = iData;
Get(FLD_INFO_COPYRIGHT)->Information(I_SET_VALUE,

&copyright) ;
lObject.Load(&iData); II length.
int length = iData;
Get (FLD_INFO_LENGTH)->Information(I_SET_VALUE,

Zinc Designer 141



Loading and Storing Data

142

&length) ;
lObject.Load(&sData, MAX LENGTH); II director.
Get(FLD_INFO_DlRECTOR)->Information(I_SET_TEXT,

sData) ;
lObject.Load(&sData, MAX_LENGTH); II leads.
Get(FLD_INFO_LEADS)->Information(I_SET_TEXT,

sData) ;
lObject.Load(&sData, MAX_LENGTH); II description.
Get(FLD_INFO_DESCRIPTION)->Information(I_SET_TEXT,

sData) ;

In this code, we use a 16-bit integer and character array overloads for the
Load( ) function. Zinc automatically defines many overloads for the Load( )
function. Here is a list of some of them:

virtual int Load(ZIL_INT16 *value);
virtual int Load(ZIL_UINT16 *value);
virtual int Load(ZIL_INT32 *value);
virtual int Load(ZIL_UINT32 *value);
virtual int Load(ZIL_UINT8 *value);
virtual int Load(ZIL_INT8 *value);
virtual int Load(void *buff, int size, int length);
virtual int LOad(ZIL_ICHAR *string, int length);
virtual int Load(ZIL_ICHAR **string);

Once we've loaded the record's information, we set the appropriate field
inside our movie information record. First, we load the information for the
movie's title by calling object.Load( ) and by passing the pointer to sData,
with the maximum length of the read buffer.

lObject.Load(&sData, MAX_LENGTH);

Then we set the FLD_INFO_TITLE information to the loaded title.

We do similar type calls for the copyright, length, director, actors, and
description, though the copyright information is an integer.

lObject.Load(&iData);

For the length, we load an integer value.

lObject.Load(&iData);

For the director field, we load a string.

lObject.Load(&sData);

For the actors and actresses, we also load a string.

lObject.Load(&sData);

Zinc Designer



Finally, for the description field, we again load a string.

lObject.Load(&sData);

Above, we load information from a .DAT file used as a flat-file database, but
we could load it from a third-party database instead. However, the focus of
this tutorial is not how to use a third-party database, but how to build an
application by architecting it first and implementing it later. The reason we
even mention third-party databases? This is where Zinc and third-party data
bases intersect. If you were to exceed the scope of this tutorial and store
movie information in a third-party database, this is where you would load
that information.

The Storer ) function. The Store( ) operation mirrors the Load( ) operation,
but we create and store movie information rather than load it. This code gets
the record name from the window title.

if (! name I I ! name [ 0 ] )
Get(FLD_INFO_TITLE)->Information(I_GET_TEXT, &name);

The next line creates a new object and gives us read and write privileges.

ZIL_STORAGE_OBJECT sObject(*file, name, 0,
UIS_CREATE I UIS_READWRITE);

Next, we store the record's information, first getting the data from the field,
then storing the information. For example, the title field gets the information
from FLD_INFO_TITLE, and calls sObject.Store(), with sData as its
parameter. Subsequently, we do the same for the copyright, length, director,
actors and actresses, and description fields.

Get(FLD_INFO_TITLE)->Information(I_GET_TEXT,
&sData) ;

sObject.Store(sData); II title.
int copyright;
Get(FLD_INFO_COPYRIGHT)->Information(I_GET_VALUE,

&copyright) ;
iData = (ZIL_INT16)copyright; II copyright.
sObject.Store(iData);
int length;
Get(FLD_INFO_LENGTH)->Information(I_GET_VALUE,

&length) ;
iData = (ZIL_INT16) length; II length.
sObject.Store(iData);
Get(FLD_INFO_DIRECTOR)->Information(I_GET_TEXT,

&sData) ;
sObject.Store(sData); II director.
Get(FLD_INFO_LEADS)->Information(I_GET_TEXT,

&sData) ;

Zinc Designer 143



Loading and Storing Data

sObject.Store(sData); II leads.
Get(FLD_INFO_DESCRIPTION)->Information(I_GET_TEXT,

&sData) ;
sObject.Store(sData); II description.

Below is a representation of the composition of files in the movie catalog
library:

African Queen

Vertigo

data .

data .

data .

data .

data .

Summarizing
the Movie
Information
class

144

MOVIE_INFORMATION might seem complicated, so let's summarize
what it does so we can keep a clear picture in our minds. If we pass a name
to MOVIE_INFORMATION's constructor, it loads the information from
the data file; but if we pass it a NULL, it creates a new movie record.
Event() only checks for the OPT_MOVIE_STORE message in Event(). If it
receives the message, Event( ) calls Store( ), which stores the movie record.

Admiring our handiwork

We have now filled in MOVIE's holes. Having architected it in the earlier
tutorial, we were able to implement storage and management in this tutorial
without any hassles. This hassle-free implementation shows that we can
write a properly designed program-that is, a program that functions by
passing messages between objects-by creating the architecture first, and
implementing the main functionality later.

Zinc Designer



Go ahead and compile and run it.

..../ Movie Catalog System 1... 1..:
file Movie .!::!.elp

, ~_.

Once it's running, select one of the movie operations.

Movie I Create works as in previous tutorials, but now we can enter infor
mation into the title, copyright, length, director, actors, and description
fields, and save the information by pressing Save.

Movie I Delete brings up the Movie Selection window. Clicking on an item
in the list updates the window's title field-our list item tells the window to
update the title field. If we press OK, the button sends the OPT_MOVIE_OK
message to the Movie Selection window. The window then resets the movie
catalog system's movie name, and sends the message for the movie catalog
to delete or load a movie.

Movie I Load also brings up the Movie Selection window. Selecting Bridge
on the River Kwai, The, from the list brings up the record for Bridge on the
River Kwai, The in a Movie Information window.

';"'1 Movie Information

Tille: IBridge on the River Kwai. The I
Copyright: 11957 1 Length (in minutes): 1161 I

Director: IDavid Lean 1 '

Actors: IWilliam Holden. Alec Guinness 1

Description: Psycological bailie of wills combined with
high-powered action sequences make this a
blockbuster.

Save I I Close 'I Help

We can view or change the information inside this record and then save the
changes by pressing Save. We can cancel and close the window by selecting
Close.

Our movie catalog system is nearly complete. Take a few minutes to play
with it, then exit the application by selecting File IExit.

Zinc Designer 145



Loading and Storing Data

146

Conclusion

ThiS tutorial showed how we could write a program by architecting it
first and implementing the main functionality later. Understanding the con
nections between the .DAT file, the windows, the data file, and the source
code sends us well on our way to understanding complex applications.

Zinc Designer



Chapter 8 Making Movie
Robust

In the last tutorial, we described the construction of the movie application.
In this tutorial we will make the movie application more robust by including
an exit function, adding geometry management, including an error system
with error checking, and by beefing up the help system. The addition of
these features will combine creating new windows in Zinc Designer with
adding functionality in our code.

Zinc Designer 147



Making Movie Robust

Components of
MOVIE6

Working with MOVIE6

In Figure 1 on page 58, we discussed the components of the MOVIE appli
cation we've been working with in this series of tutorials. In this part of the
tutorial, we'll be working with MOVIE6, the sixth component of MOVIE.
The diagram below shows the components we're working on in relationship
to the other components of the tutorial. (The components we're not working
with are grayed out.)

Error system

Help system

148

._-------------------_.

Zinc Designer



Source files

Minimize icon

Below is a table of source files we'll be working with in this part of the tuto
rial. We can find these files in /ZINC/TUTORIMOVIE.

TABLE 9. Components of MOVIE6

Type offile Name offile Description offile

User-pro- MOVIE6.CPP The main program
vided files

MOVIE6.HPP Class definitions, identi-
fications, and messages

MOVIE.DAT User data storage

Designer- P_MOVIE6.CPP Code for tying Designer
generated objects to our program
files P_MOVIE6.HPP Identifications and help

contexts

P_MOVIE6.DAT Persistent object storage

Addingfeatures to the Movie Control window

Let's start by adding four features to the Movie Control window-a mini
mize icon, an exit window, a status bar, and a help option.

To add a minimize icon to the Movie Control window, enter Zinc Designer,
open P_MOVIE6.DAT, and then invoke the Image Editor.

right-

screen-

. .. ..
Import the icon from the P_MOVIE.DAT file by

1. selecting Icon I Import, then by

2. selecting P_MOVIE.DAT, then by

Zinc Designer 149



Making Movie Robust

3. selecting the icon entitled movie_icon.

=-1
Objectname:

Imovie icon

mASTERISK

~:~~~~j~~.

Resource, Import•..

.!2irectories:

-UUCON

.._ _........••......

OK

Cancel

Help

150

Once the icon is imported into the P_MOVIE6.DAT file, we can load the
Movie Control window. Associate the Movie Icon with the Movie Catalog
System window by invoking the window's information notebook and select
ing the movie_icon from the MinIcon list.

General I Subobjects T Position I Advanced 1
----- Supporl Fealures ----- ~
I2l Border .....

Tille: IMovie Calalog System I I2l Maximize Button

18 movie_icon [3
I2l Minimize Button

Minlcon: I2lSystem Button -o Geometry Managemenl

Name: IMOVIE CONTROL I o VerlicalScroll-Bar

Help: 1<none> Iii o Horizontal Scroll-Bar
-..-- Type -----

@ DefaultI I 1
hancel I I·' Help I ---,OK

:(l ni"lnn nhi.....t +

Zinc Designer



Exit window

Save the change by pressing OK, then save the window by selecting Win
dow I Store. The minimize icon is now associated with the movie catalog
system and will appear when the Movie Control window is minimized. To
view this feature select Window ITest then select the minimize button from
the catalog system window.

Movie Catalog
System

Now let's associate an exit window with our application. The exit window
will contain text that states that pressing OK will close the application. We
will also attach an icon and two buttons, OK and Cancel, and modify the
title to read Exit Application.

=1 Exit Application

o This will close the application.

II OK I I .•.. Cancel

Create a window and modify the following:

1. Enter the new title

Exit Application

2. Enter the name

EXIT APPLICATION

into the Name field, then

3. Deselect the maximize and minimize options from the support features.

Zinc Designer 151



Making Movie Robust

4. Change the window's style by selecting Dialog Object, Don't size, and
Modal from the options list.

General I Subobjects r Position I Advanced

@ Dialog Object ~o MDI Object

Title: IExit Application I
----- Interaction -----

Minlcon: I l!l
D Alphabetical object sorting

<none> D Select multiple objects

D Select on drag operation

Name: IEXIT APPLICATION I D Allow normal hotke.l's f--,

Help: I<none> liJ [gI Don't Size
I-'

D Don't Move
1-" [gI Modal -

I OK I I I I I '"---,Cancel Help In I n~~a<l +

Save the changes, then create an icon field and place it at position (l, 1).
Enter the information notebook for the new icon field. When Zinc creates a
new .DAT file, it automatically inserts five default icons into the file. These
include the application, asterisk, exclamation, hand, and question icons. To
use the asterisk icon, select it from the Image combo box.

General I Position I Geometry r Advanced

Tille: I I

Image: I[D::~~~~~:':~:~:::.:::::.::::::::::·:::::::~----::IB
Name: IFIELD 1 I
Help: I<none> liJ

OK I I Cancel I I Help

-----Action -----

@ Action on UP·CLlCK

o Action on DOUBLE-CLICK
--

152

By default, the icon image does not have a title and is not selectable by the
user. We will keep the default information associated with this icon.

Now create a string field at position (7,1) and give it a size of (35,1). Edit the
infOlmation by bringing up the string information notebook and typing in the
text

This will close the application.

Zinc Designer



Change the default length to 64 characters, then change the mode of interac
tion on the advanced page to be View only and Noncurrent.

"General 1 Position T Geometry I Advanced

----- Input Formal -----

@Normal

o Lower-case
Text: IThis will close lhe applicalion. I o Upper-case

Length: 164 I o Password (....)

----- Input Conversion -----

Name: IFIELD 2 I o Spaces to underscores

Help: I<none> Iii o Automatically highlight data

I 01( I I Cancel I I Help I

Now create the two buttons that will have the OK and Cancel options. Place
the OK button at position (9,2) with size (12,1), and place the Cancel button
at position (24,2) with size (12,1). Change the information associated with
the OK button by invoking the information notebook, entering the text

&OK

in the text field, changing the value to

1,000

for the value field, and by setting the flags Send user message and Set as
default button. Save the changes, then edit the Cancel button. Change the
text by entering the string

&Cancel

and then the value

-11.

Then set the Send user message flag. (S_CLOSE has the value -11.) Save the
information for the exit window by selecting Window I Store, then File I
Save. Then exit the application.

We must do three things to connect an exit function to the source code. First,
we need to define the exit function in one of our classes. Since this is a con
trol operation, we will define Exit in the class MOVIE_CONTROL.

class MOVIE CONTROL : public UIW WINDOW
{

public:

private:

Zinc Designer 153



Making Movie Robust

static EVENT_TYPE Exit(UI_DISPLAY *, UI_EVENT_MANAGER *,
UI_WINDOW_MANAGER *windowManager);

Next, we need to set the Window Manager's exit function to point to our exit
function.

windowManager->exitFunction = MOVIE_CONTROL::Exit;

This tells the Window Manager that it must call our exit function before it
actually exits the application. This gives our application final control to tell
whether we should continue or exit. We will display one additional window
to confirm the exit process. Finally, we define the actual
MOVIE_CONTROL::Exit() function.

EVENT_TYPE MOVIE_CONTROL::Exit(UI_DISPLAY *,
UI_EVENT_MANAGER *, UI_WINDOW_MANAGER *windowManager)

II Read the exit window.
UI_ERROR_STUB::Beep();
UIW_WINIXM *wi.nc:lo.v = new UIW_WINIXM( "EXIT_APPLICATIOO", defaultStorage};
windowManager->Center(window);
*windowManager + window;
return (S_CONTINUE) ;

The steps in this process are:

1. Sound the bell on the computer,

2. Load in the exit application window,

3. Center the window on the display,

4. Attach the window to the display, and

5. Return the message S_CONTINUE. This message tells the Window Man
ager we want to continue our application.

When we run the application with these changes, and select File I Exit, the
exit application window appears on the screen.

=1 Exit Application

154

o This will close the application.

OK I I Cancel

Zinc Designer



Status bar

We can continue with our program by selecting Cancel or we can quit by
selecting OK. When we select OK, the final exit message is sent to the Win
dow Manager, our application windows are removed from the screen, and
control returns to the operating system.

Now, let's return to the Designer to add a status bar to the Movie Control
window. In the Designer, load in MOVIE_CONTROL from the resource
file. Select the status bar object from the button bar, then place the object in
the movie catalog system window.

-=1 Movie Catalog System L"J·
File Movie Help

1~Il5ln"'I"'1

Size the window to be one cell taller- to (60,5)-so that all the information
fits inside the window. Place a prompt inside the status bar at position 0,1).
Then create and place a string object and stretch the object so that it fits
across the status bar.

=1 Movie Catalog System L'FJ·
file Movie .!::!.elp

1~1~I ...nHl

prompt: [string
,."

Change the name and text associated with the movie prompt by invoking the
prompt information notebook and entering the text

Movie:

with name

Zinc Designer 155



Making Movie Robust

General

Text: IMovie:

Position Geometry Advanced

156

Name: \STATUS PMOVIE TITLE

OK Cancel I I Help

Change the name of the string object by invoking the string information
notebook and changing the Name field to

giving it no default text. Then change the length to 128. When we run our
application, this field will be changed any time we load in a new movie
record, or if we have multiple records on the screen and change the focus
from one movie record to another.

Let's see how this is done by saving the window, exiting the Designer, and
viewing the new code in P_MOVIE6.CPP.

Here's the design of the status bar:

1. The Movie Control window actually controls the presentation of the sta
tus bar.

2. Each of the movie information windows will send a message to the
Movie Control window to update the status bar information.

The Movie Control window updates the status bar from Information( )
when it receives the information request I_UPDATE_STATUS.

void *CONTROL_WINDOW::Information(ZIL_INFO_REQUEST request,
void *data, ZIL_OBJECTID objectID)

if (request == I_UPDATE_STATUS)
{

Get (STATUS_MOVIE_TITLE)->Information(I_SET_TEXT, _movieName)i
_movieName[O] = I \0 ';

}
else

data = UIW_WINDOW::lnformation(request, data, objectID);
return (data);

Zinc Designer



Error handling

This request is sent to the Movie Control window any time we receive an
S_CURRENT or S_NON_CURRENT message in the MOVIE_INFORMA
TION::Event() function.

else if (ccode == S_CURRENT I 1 ccode
{

ccode = UIW_WINDOW::Event(event);
UI WINDOW OBJECT *window =- -

windowManager->Get ( "MOVIE_CONTROL" ) ;
if (window && ccode == S_CURRENT)
{

Get(FLD_INFO_TITLE)->Information(I_COPY_TEXT,
MOVIE_CONTROL::_ffiovieName);

window->Event(I_UPDATE_STATUS, ZIL_NULLP(void));

Compile and run the application again to see the status bar change.

Now let's look at how we can beef up the movie catalog's record informa
tion. Launch the Designer and load the movie information window. The
main things that we want to change in this record are the copyright date,
length, and code to ensure that we have a valid title.

The copyright date is changed by entering the copyright field information
window and specifying a valid range for the date. In our case let's enter the
range in years from 1900 to 2020. This is done by moving to the range field,
and entering

1900 .• 2020

General I Position l Geometry I Advanced 1
~ ~

----- Input Conversion -----

~ Automatically highlight data

Value: 10 1
Range: 11900..2020 1

Name: IFLD INFO COPVRIGHT 1
Help: I<none> Iii

I OK I I~ Cancel I I Help I

Zinc Designer 157



Making Movie Robust

158

Now when the user enters a date outside of this range, an error window will
appear on the screen, indicating that they have entered a copyright date that
is outside of the years 1900 to 2020.

Next, let's change the length of the movie to be a minimum of 5 minutes and
a maximum of 5 hours. This is done by invoking the length field information
notebook and by entering the range

5 •• 300

where 300 is (5 x 60) minutes.

General 1 Position r Geometry I Advanced 1--
----- Input Conversion -----

~ Automatically highlight data

Value: 10 I
Range: 15__ 300 I

Name: IFLO INFO LENGTH I

Help: I<none> Iii

I OK I I ~ancel I I !::!.elp I

These two changes add validation for the copyright and length.

To insure a valid title, we must go to the source code. Save the changes to the
movie information window, then exit the Designer. We will display an error
any time the Store operation is called and we do not have a name for the
title. This is done by checking the name argument for NULL.

if (!name II !name[O])
errorSystem->ReportError(windowManager, WOS_NO_STATUS,

"Sorry, cannot save the movie without a name.");

If an invalid name is entered, we call the error system with the message

Big Time Movie Error

The final thing that we need to do is to actually invoke Zinc Application
Framework's error system. This is done by attaching a new error system to
the base UI_WINDOW_OBJECT::errorSystem member.

If we recompiled the application and launched MOVIE6, we could test the
title, copyright, and length error handling by typing invalid data into any of
these fields.

Zinc Designer



Movie Selection

Adding geometry management

Let's now beef up the movie selection by adding geometry management.
Geometry management is a programming option where we can tie window
objects to a specific position of its parent window or to a side of the window,
so the object moves or stretches when we size the window. Let's first look to
see how we can size a window and have the vertical list and buttons move
appropriately.

After you load the movie selection window, bring up its information note
book. To turn on geometry management, select the Geometry management
option from the support features. At this time, we will also turn off the Dia
log Object option, which we turned on in an earlier tutorial-doing so will
allow us to resize the window. (Dialog windows cannot be sized in some
environments.) Turn this option off by selecting the Default option in the
Type section of the options list.

General Subobjects i Position Advanced 1

!!K I I ~ancel I 1~_.!i...eIP.........

Name: IMOVIE_SELECTION

Help: I<none>

Individual
objects

----- Support Features ----

C81 Border

- -. I C81 Maximize Button
Tille:. IMovie Selection _

W:!; C81 Minimize Button
Minlcon: '_<_n_on_e> ---'I.:.I C81 SJlstem Bulton

~ __G~~!!'.t:!!?~_~_~~!~e!'.!..... ·· ~:~~~
I D Vertical Scroll-Bar

Iii D Horizontal Scroll-Bar

----- TJlpe -----

o Default
IA\ ";~Inn nh;DnO

Once we have turned on the window's geometry management, we can turn
on the geometry management for individual objects. We want to turn on
geometry management for the OK, Cancel, and Help buttons, as well as for
the vertical list and string that contains the name of our movie title.

Zinc Designer 159



Making Movie Robust

The goal behind geometry management is to allow us to size the window to a
larger size and have the buttons follow the window border at the bottom, and
to have the list and title fields follow the window and grow when the win
dow grows larger on the bottom right side.

'=1 Movie Selection 1"'1'"

160

Tille:
:===============:

OK I I Cancel. I I Help

=1 Movie Selection 1... 1'"

Tille:
~============~

OK I I Cancel I I Help

Do this by attaching items to the vertical list, the title field, and to each of the
buttons. Let's start by attaching geometry to each of the buttons. First,
choose the OK button. To attach geometry management, we will need to do
change the coordinates for our button to be mini-cells, and create the attach
ments on the Geometry page of our information notebook.

Zinc Designer



The rninicell coordinates are contained in the second column of numbers on
the Position/Size group. Choose this coordinate scale by selecting the mini
cell bitmap button.

General I Position T Geometry I Advanced 1

Position/Size
[io~~~r I[EJ I Eiill I o:IJ [gJ I

column: c=J~ c=J [RegiOn
line: c=J~ c=J I § I 0:0 I

width: c=J @C] c=J [Alignment
height: c=J~ c=J CEJ [B] [3] I

I OK I I Cancel I I Help I

The reason that we want to change the type of coordinate is so that it will
align more closely with the bottom of the window. If we were to attach on
cell boundaries, the buttons and the vertical list would collide with the bor
der.

Now, move to the Geometry page. Attach the button to the bottom of the
window by selecting the bottom attachment located on the bottom-left por
tion of the geometry page.

General Position Geometry Advanced

~relaliv ..

OK I I Cancel I I Help

Zinc Designer

Constraint Features
offset: 17 I

options: D streich ~
D opposile I-i
D hz-center f---,
I~ ..

anchor: IMOVIE_SELECTION Iii
Size Restrictions------,
~ <=width<= ~

~ <= height <= ~

161



Making Movie Robust

Choose an absolute coordinate for attachment by selecting absolute from
the combo box.

General Position Geometry Advanced

OK Cancel I I Help

Constraint Features
olf$el: 17 1

option$: o stretch ~o opposite ....
o hz-center ......,
I~ +

anchor: !MOVIE_SELECTION m
Size Restrictions------,
GI::=J <=width <= GI::=J
[C=:J <= height <= [C=:J

An absolute attachment is like connecting a physical wire from our object to
the parent window. And attaching a relative constraint is like attaching a
spring from our object to the window.

We are now working in mini-cell coordinates, so in the constraint features,
under offset, we want to enter a mini-cell value that represents appropriate
space between the bottom of the window and our button. Here, let's set the
mini-cell coordinate to 4.

General Position Geometry Advanced

OK kancel I I !!elp

Constraint Features
olf$el: 14 I

option$: o stretch ~o opposite l-

f-
+

anchor: IMOVIE_SELECTION Iii
Size Restrictions------,
GI::=J <= width <= GI::=J
[C=:J <= height <= [C=:J

162

Save these changes by pressing OK. We have now attached the constraint to
our OK button. Follow the same process to attach the Cancel and Help but
tons to the bottom of the window. Remember, first change the coordinates of
each object to mini-cell, then change the geometry management to absolute
bottom attachment, with a mini-cell offset of 4.

Zinc Designer



Test these geometry management constraints by sizing the edit window on
the screen. Notice that when enlarging the window, the buttons move down
with the window.

=1 Movie Selection

Tille:
==============:::;

OK I I Cancel I I !!elp

Change the geometry for vertical list by entering the vertical list informa
tion notebook and moving to the Geometry page. With this object we can
keep cell coordinates. Attach an absolute bottom constraint to the vertical
list and enter an offset of 2. This means that the vertical list will move within
two cells of the bottom of the window. Next, set the stretch feature in the
Constraint Features options list so that it will grow when the window
grows, and shrink when the window shrinks.

General Subobjecls Position Advanced

Constraint Features
offset: 12 I

oplions: g'l---!!I~C?~...__.._..t
o opposile ,...
o hz-cenler f----,

,.., •
anchOl: IMOVIE_SELECTION Iii
Size Restrictions------,
~ <= widlh <= ~

OK I Cancel I I Help ~ <= height <= ~

We should also add a right constraint to our vertical list so that it will grow
on the right side if we size the window. This is done by selecting an absolute
constraint on the right side and by once again entering the offset value of 2.
Allow stretching of the width by selecting the stretch option from the
options list.

Zinc Designer 163



Making Movie Robust

We have now attached geometry with the vertical list. When the window
grows from either the right or the bottom the vertical list will stretch with the
window.

Let's complete the geometry management by selecting the title field, moving
to the geometry page and adding an absolute constraint on the right side.
Enter an offset of 2 and select the stretch option.

General Position Geometry Advanced

OK Cancel I I Help

Constraint Features
offset 12 I

options: ~._~tretch ..- ...._~
o opposite I-'

t----,..
anchor: IMOVIE_SELECTION iii
Size Restrictions-----,

~ <=width<= ~

~ <= height <= ~

164

We have now tied constraints to the title field, the vertical list, and all of our
buttons. Save the changes and exit the application. You can now test this fea
ture by recompiling and running the application. As you invoke the movie
application and load the movie selection window, notice how you can size
the window and see the buttons, vertical list, and title stretch with the size of
the window.

Zinc Designer



Refining the help system

This tutorial's final area of emphasis is to include context-specific help.
Recall that we connected general help to our application by introducing the
message OPT_HELP, and then connecting it with each of the pull-down help
items and the Help buttons located at the bottom of the information and
selection windows.

General I Position I Geometry I Advanced

----- Type ----- ~

Text: I&Help I
@ Normal I-l

II Value: 110000 I
o Radio-bullon

o Check-box
Image: I <none> 0 ----- Sellings ----- .-

[gJ Send user message
-,

Name: ISELECT HELP I o Set as default bullon

Help: I<none> iii ----- State -----

@ l-state (no toggle)
-

I OK I I J;;.ancel I I I
o 2-state (on/off)

f-Help _____ I-Io;nhl _____ +

To specify context-sensitive help, we associate help contexts with pull-down
items and dialog windows, then call the help system with the appropriate
help context in our code. The Designer allows us to connect help contexts to
pull-down items and dialog windows.

Let's look at how to import the help contexts. Launch the Designer and open
the P_MOVIE6.DAT file.

Import all the help contexts from P_MOVIE.DAT by calling the Help Edi
tor, then by selecting the Context I Import option from the pull-down menu.

<=1 Help Editor 1·1'"
~ontext tlelp

Import...
.Export...

~reate ...

'==== Load ...
.s.tore
Store As ...

Clear
Clear All
Qelete ...

Zinc Designer 165



Making Movie Robust

Select the file P_MOVIE.DAT for importing, then select all of the help con
texts from the resource list.

=1
Objectname:

Object Selection

!2ilectOlies:

@ HELP ABOUT

@ HElP_ABOUT_MOVIE

@ HElPJllE

@ HELP_GENERAL

@ HElP_MOVIE

@ HELP_MOVIE_EDIT

@ HELP_MOVIEJllE

~.~~~~:::"'OVI.~.:::I.~~O~~~!IO~..

OK

Cancel

Help

Item help

We now have a full set of help contexts from which to choose. The names of
the imported help contexts are associated directly with the type of help we
will be identifying, except that each help context has the prefix HELP_.

Let's start the association by:

1. minimizing the Help Editor,

2. loading the Control Window,

3. bringing up the control window's information notebook,

4. bring up the window's Subobjects page,

5. moving to the pull-down menu's directory,

6. moving to the FILE_OPTION directory,

7. moving down to the first help item, ABOUT_OPTION, located under
the File option.

f--_--=G=en=er=al_---lJ SubobjectsW>'---_--=.P...::.os::.::iti:::-on'--_-'---l_.:....::Ad:..:.va=.:nc::.::ce:.:::cd_----'.

Objects: DilectOlies:

--- Support Objects ---

--- NOlmal Objects ---

~:rABOUT~OPTION ...
n ~-FllE~SEPl' .. .. - .

~ EXIT_OPTION

MOVIE_CONTROL

ill'" FIELD_2

~ FilE_OPTION

~ ABOUT_OPTION

~ FILE_SEPl

~ EXIT_OPTION

Edit'

Add I
Delete I

Move Up ,

IMove Down'

OK Cancel I 1 Help 1,-~_",_p_O_P-_U_P_lte_m I!J

166 Zinc Designer



Open the item's information notebook, then choose the HELP_ABOUT
option from the help field.

General I Subobjects I Position I Geometry I Advanced

Text: I&About..

Value: ,-11_°°_°_°__---'

Name: IABOUT_OPTION I
Help: IH.H:~~~.~.(i:~I,:::· ···:'::'·::::,::.:,::.::JliJ

OK Cancel 'I Help

----- Item Features ----

D Mark as separator

D Allow check-mark ,~.

12J Send user me~sage ,~_

----- Sub-Menu Options -----

D Alphabetical sorting

D Don't wrap keystrokes

D Select multiple children

----- Item Message -----

@ Normal operation
III <:An..4 I.IA'Il11.l171O mA~~~nA

Dialog help

Press OK to save the changes.

Now associate the remaining menu items with these help contexts:

• HELP_MOVIE_FILE with the File menu item

· HELP_MOVIE_EDIT with the Edit menu item

· HELP_ABOUT_MOVIE with the About Movie Catalog... menu item

Now let's connect help for the selection and information dialog windows. We
want to associate help with the general dialog window, then make sure the
system calls it when the user presses the system help key while a field in the
dialog window is current, or when the user selects the Help button in a dia
log window.

We specify the help context by bringing up the window's information note
book, then by selecting the appropriate help context. The following help
contexts correspond with our dialog windows:

· HELP_MOVIE_SELECTION with the selection dialog.

· HELP_MOVIE_INFORMATION with the information dialog.

The source code does not require any modification. Remember, we intercept
the OPT_HELP message and call the help system with a variable helpCon
text.

EVENT_TYPE MOVIE_SELECTION::Event(const VI EVENT &event)
{

II Check for special requests.
EVENT_TYPE ccode = event. type;
if (ccode = OPT_HELP)

helpSystem->DisplayHelp(windowManager,
event.windOWObject->helpContext);

Zinc Designer 167



Making Movie Robust

General
application help

Run time

168

The variable helpContext is the identification number of the help we want to
display. By default, helpContext is defined to be HELP_CONTEXT_NONE.
We now have changed the values for the information and selection windows
to HELP_MOVIE_INFORMATION and HELP_MOVIE_SELECTION.

We must make a final help connection in the source code; we must specify
HELP_GENERAL in the second argument of the help system's constructor.

UI_WINDOW_OBJECT::helpSystem = new UI_HELP_SYSTEM(_fileName,
HELP_GENERAL) ;

Specifying this argument causes invokes HELP_GENERAL any time we call
the help system and where no other help is available. For example, if we had
just launched MOVIE and pressed the help key, the application would dis
play the general help window.

We have now connected help to various parts of our application. Take a few
minutes to recompile and view the application with the added help informa
tion.

Conclusion

In this tutorial we have looked at several ways in which we can beef up our
application. There are many things that we can do to the application that
involve: modifying the windows in Zinc Designer, creating new windows,
and modifying the source code.

Through all of our modifications, we have worked the architecture of our
program and the overall design of our code. We have simply added new fea
ture points where we can either bring up a new window or add options using
the Designer that help our windows look better.

Since we're finished with this section, you may want to think of additional
ways to strengthen MOVIE to enhance or improve its strength.

Zinc Designer



Chapter 9 Generating an
Internationalized
Application

We have now covered a lot of territory with the movie application. We
need to address one final component-globalizing MOVIE. Here, we will
examine the Message Editor, discuss importing locale and language informa
tion, introduce delta storage, and finally, learn to use Unicode with our appli
cation.

globalizing an application

working with Unicode

Zinc Designer 169



Generating an Internationalized Application

Working with MOVIE7

Components of
MOVIE7

In Figure 1 on page 58, we discussed the components of the MOVIE appli
cation we've worked with in this series of tutorials. In this part of the tuto
rial, we'll be working with MOVIE7, the seventh and last component of
MOVIE. (MOVIE7 is exactly equivalent to MOVIE, which we compiled
and ran in the first MOVIE tutorial.) The diagram below shows the compo
nents we're working on in relationship to the other components of the tuto
rial. (The components we're not working with are grayed out.)

• Globalization

_-_1-..~"_-1_-"

Information

0t:'_-_.--._-1_-...'_

SelectionI
I

170 Zinc Designer



Source files Below is a table of source files we'll be working with in this part of the tuto
rial. We can find these files in /ZINC/TUTORIMOVIE.

TABLE 10. Components of MOVIE7

Type offile Name offile Description offile

User-pro- MOVIE7.CPP The main program
vided files

MOVIE7.HPP Class definitions, identi-
fications, and messages

MOVIKDAT User data storage

Designer- P_MOVIE7.CPP Code for tying Designer
generated objects to our program
files P_MOVIE7.HPP Identifications and help

contexts

P_MOVIE7.DAT Persistent object storage

Message Editor

Let's start by looking at the conversion of internal strings in our application.
Recall the error message that indicated that the application could not save a
movie record without a movie title. When we write applications for multiple
languages and locales, we cannot use embedded strings written in English.
In addition to the store error message already in the application, we will
implement three more error messages: one for movie delete, one for movie
load, and one for movie selection.

To internationalize this portion of our program we need to create these
strings using abstract names. The way this is done in Zinc is by using the
Designer to construct a message table that has a number identifier and a
string that can be stored and loaded to and from disk.

Construction of a message table is accomplished through the Message Editor
module of the Designer. In our application we will create a message table
and then associate four strings with four unique identifiers. We'll create the

Zinc Designer 171



Generating an Internationalized Application

identifiers ZMSG_STORE_ERROR, ZMSG_LOAD_ERROR, ZMSG_
DELETE_ERROR, and ZMSG_NAME_ERROR. Let's add these messages to
our data file. Start the Designer and invoke the Message Editor.

=01 Message Editor I.."J.·
Message !ielp

Create a new message table by selecting Message I Create.

Edit

1
m

Add

I Delete

I Move Up

IMove Down I

Store I Store As... I Close =) I Help'~ I

172

Add four messages to the table by selecting Add four times.

=-1 <untitled>

0 ZMSG_O <undefined> Edit

0 ZMSG_O <undefined> AM!
0 ZMSG_O <undefined>

Delete
0 ZMSG 0 <undefined>

I IMove Up

IMove Down I

Store I Store As... I I Close I I Help

Zinc Designer



To edit any item, click on it and press Edit, or double-click it.

-=1 - Message Information

Message: I<undefined>:==::::::::::::::::::::===;---------'
NumberlD: 10

:======----------,
SlringlD: '-IZ_M_SG-=-'-O ----'

OK I I cancef I I· Help

The message information window has three components: message, num
ber/D, and string/D. The message field is the message we want to display.
The number/D field contains a programming number that will be associated
with the message. The string/D is a #define variable that identifies in code
what our number/D will be.

Edit the four embedded movie string messages to see exactly how the mes
sage information is correlated. Do the following to create the information for
a Store( ) error:

1. Select the top message item and enter:

Store error: cannot save the movie without a name into the
field.

2. Enter the value

1

into the number/D field.

3. Enter the string

ZMSG_STORE_ERROR

into the string/D field.

Q] ~~ 'Message Information

Message: 15tore error: cannot save the movie withou I
NumberlD: 11 I
SlringlD: IZMSG STORE ERROR

I-......;;o..K_--I1 I cancel III-_,;;;;H;..el;..p_.....

Press OK to save the changes.

Zinc Designer 173



Generating an Internationalized Application

Now create a message for the Load( ) error. Select the second item, then in
the message field, enter the text

Load error: cannot find the specified movie "%s"."

In the numberID field enter the value

2

and in the stringID field enter the string

ZMSG LOAD ERROR.

=1 Message Information -
i.

Message: ILoad enOl: cannot find the specified movi I
NumberlD: 12

:=====~-------,
SlringlD: IZMSG LOAD ERROR

l-......;;o;;;"K_-",,1 1 Cancel I lo..l__H...el;",p_....

For the Delete( ) error, enter the message,

Delete error: cannot find the specified movie "%s"."

In the numberID field, enter the value

3

In the stringID field enter the string

ZMSG DELETE ERROR- -

=1 Message Information
._~

'.

174

Message: IDelete enor: Cannot find the specified mo'l

NumberlD: 13 I
SlringlD: IZMSG_DELETE ERROR

l-......;;o;;;"K_-J1 1 Cancel I 1..1_,;:;;:!i;.;.el.:..,p_....

The final message occurs when no name has been entered into the selection
window. Edit this message and enter the message text

Name error: a name must be specified to complete the operation.

In the numberID field, enter the value

4

Zinc Designer



and in the stringID field, enter the string

ZMSG NAME ERROR

=-1 Message Information -

Message: IName error: A name must be specified to (I
NumberlD: 14 I
SlringlD: IZMSG NAME ERROR

l-.....o..K_.......1I Cancellil..__H...el,;",p_....

We now have four messages in the message table. Store them by selecting
Store As... and entering the name MSG_TABLE. Press OK to save the
changes.

When we save the P_MOVIE7.DAT file, the Designer saves four const val
ues in the P_MOVIE7.HPP file.

#ifdef USE_MSG_TABLE
canst ZIL_NUMBERID ZMSG_STORE_ERROR
canst ZIL_NUMBERID ZMSG_LOAD_ERROR
canst ZIL_NUMBERID ZMSG_DELETE_ERROR
canst ZIL NUMBERID ZMSG NAME ERROR- --
#endif

OxOOOl;
Ox0002;
Ox0003;
Ox0004;

The #ifdef USE_MSG_TABLE entry allows us to choose whether we want
to include the message table information. If we define USE_MSG_TABLE,
then the four messages will be included in our application. The four mes
sages contain the values 1,2,3, and 4. The name associated with each number
is the text we entered when editing each message item. For example, the
store error has the line ZMSG_STORE_ERROR =OX0001.

When we replace strings in an application, we need to specify the constant
identifier that corresponds to the message we want to display. So we replace
the embedded string with a constant value. Let's see how we replace the
strings in MOVIE.

We define an error message table by declaring _errorMsgTable in the Movie
Control Window as a static member.

class MOVIE_CONTROL : public UIW WINDOW
{

public:
static ZIL_ICHAR *-pathName;
static ZIL_ICHAR *_exitName;
static ZIL_STORAGE *_dataFile;

Zinc Designer 175



Generating an Internationalized Application

static ZIL_STORAGE_READ_ONLY *_intlStorage;
static ZIL_ICHAR _movieName[64];
static ZIL_IANGUAGE *_errorMsgTable;

Now let's look at MOVIE7.CPP. The first thing that we need to define when
we use the message table and its string identifiers is the variable USE_MSG_
TABLE.

II Include the appropriate directives.
#include <ui_win.hpp>
#include "movie7.hpp"
#define USE MOVIE CONTROL- -
#define USE MOVIE SELECTION- -
#define USE MOVIE INFORMATION- -
#define USE_MSG_TABLE
#include "p_movie7.hpp"

Next, initialize the message table by creating a new object of class ZIL_
LANGUAGE, and by passing in the table name and the storage file where
the message table is located.

_errorMsgTable = new ZIL_LANGUAGE(_tableName, _intlStorage);

We are now ready to use the message table in our application. The first
occurrence will be in the MovieDelete( ) function. We make a call to _error
MsgTable->GetMessage() and pass the identifier ZMSG_DELETE_
ERROR. This call returns a pointer to the requested string.

if (!_dataFile->FindFirstObject(_movieName))
{

ZIL_ICHAR *message = MOVIE_CONTROL::_errorMsgTable->
GetMessage(ZMSG_DELETE_ERROR) ;

errorSystem->ReportError(windowManager, WOS_NO_STATUS,
message, _movieName);

The call to GetMessage() abstracts our string, so that we can identify a
number instead of a string with the actual message. The message is then
passed to the error system.

Now let's look at the message associated with MovieLoad( ).

if (!_dataFile->FindFirstObject(_movieName))
{

ZIL_ICHAR *message = MOVIE_CONTROL::_errorMsgTable->
GetMessage(ZMSG_LOAD_ERROR) ;

errorSystem->ReportError(windowManager, WOS_NO_STATUS,
message, _movieName);

176 Zinc Designer



The GetMessage( ) call is just like MovieDelete( ), except that the message
identifier is ZMSG_LOAD_ERROR. This causes the program to read the
Load error: message instead of the Delete error: message.

The MOVIE_SELECTION::Event( ) and MOVIE
SELECTION: :Store( ) error message retrieval is just like MovieDelete( )
and MovieLoad( ), except that the message identifier will correspond to the
appropriate error message.

EVENT_TYPE MOVIE_SELECTION::Event(const UI_EVENT &event)
{

if ( !MOVIE_CONTROL: :_movieName [ 0] )
{

ZIL_ICHAR *message = MOVIE_CONTROL: :_errorMsgTable->

GetMessage (ZMSG_NAME_ERROR) ;

errorSystem->ReportError(windowManager, WOS_NO_STATUS,
message) ;

void MOVIE_INFORMATION::Store(const ZIL_ICHAR *name ,
ZIL STORAGE *file, ZIL_STORAGE_OBJECT *, UI_ITEM *, UI_ITEM *)

if (! name I I ! name [0] )
{

ZIL_ICHAR *message = MOVIE_CONTROL::_errorMsgTable->

GetMessage (ZMSG_NAME_ERROR) ;

errorSystem->ReportError(windowManager, WOS_NO_STATUS,
message) ;

In addition to placing the en'or messages in a message table, we also placed
the names of the windows we created in the Designer in a message table. We
won't need to change these names if we change languages, but placing them
in a message table ensures Unicode compatibility.

We'll begin discussing Unicode in a moment. Right now, all we need
remember is that we need to remap hard-coded strings to define the message
in the Message Editor, then to replace the code with the embedded string
with the appropriate message identifier. In a moment we will look at how we
can change this message table to different languages without changing the
executable.

Zinc Designer 177



Generating an Internationalized Application

Using multiple languages

Now let's look at the method used to associate multiple languages with an
application. We'll first look at the so-called ISO languages, deferring Uni
code until later in the chapter.

Replacing
language strings

To replace Zinc library language strings with ISO language strings in an
application, import the language strings from a preexisting language file.
Now, we'll import the French and German languages into P_MOVIE7.
DAT. Open the language component by opening the Defaults Editor.

=1 Defaults Editor I"'J·
.language .locale tlelp

Import...
Export...

-C.reate

= .load...
.s.tore
Store As ...

-C.lear
Clear All
Q.elete ...

Take a moment to browse through the P_MOVIE.DAT file to see the vari
ous languages that we have imported. To do this, open the P_MOVIE.DAT
file using File I Open, and select Language I Load in the Defaults Editor.

=1 -~ ~ - ,i..' --~ - - .-
Resource, Load...

--

178

Objectname:

Zinc Designer

Q.irectories:

Cancel

Help

."



To select French, select the object item markedfr from the object list.

DaylM~~th TTi~~rDate
-

short days:

Dim
fun
Mar
Mer
Jeu
Ven
Sam

Int. .. TNum. TRe~'1
-

abbreviated days:

Dim.
Lun.
Mar.
Merc.
Jeu.
Vend.
Sam.

Sys. T Time TWin. f Error THelp 1
long days:

Dimanche
Lundi
Mardi
Mercredi

-Jeudi
. Vendredi

Samedi

Changing locale
information

Store =-1 I Store As 1I Close I I Default 1I Help

The information notebook of the fr language object shows Zinc's default
string information. By importing the object, we can retrieve all the strings
that appear in this notebook translated into French, including the date,
month, am/pm specifiers, date, integer strings, number, real, system values,
time, window messages, error and help messages.

By browsing through the available languages, we will find several Unicode
languages, includingja (Japanese), and ko (Korean). These will display cor
rectly only in Unicode.

In addition to language, we also find support for locale information. Locale
information stores data for specific geographic locations. To view locale
information, select Locale I Load. To view the information for France, select
the FR option.

Date I Number r Time J Currency
~

! ----- Default Formats ----- .'"""'!

separator: II o Shorl alphanumeric day ......
o Alphanumeric day-of-week

o Short alphanumeric month
date: l%dl4m/%Y o Aphanumeric month
dale/time: I%dl%m/%Y %H:%M:%S o Short year

o Format upper-case ~..
Ii

Store I I Store As I I Close I I Default I Help

Locale information includes items such as date, number, and time formats,
as well as currency symbols. Like languages, certain locales like lP and KR
will work only in Unicode.

Zinc Designer 179



Generating an Internationalized Application

Importing
language and
locale

Now import languages and locales to MOVIE. Select File I Open, and
choose P_MOVIE7.DAT. Then select Language I Import from the
Defaults Editor. Again select P_MOVIE.DAT file, then mark the fr and de
options, the French and German languages, from the object list. Then select
OK.

....1

Objec1name:

Object Selection

ILireclories:

-ZIUNTERNAT10NAL

~ ~
..... f5

.... ca

.... da

~de

.... el

.... en

.... es

.... fi

I:~::~~ ~===:=".=-.:.. ....."+'

I,

OK

Cancel

Help

Now import the French and German locales. Select Locale I Import, the
choose P_MOVIE.DAT. Then select the French and German locales FR and
DE, and press OK.

....1

Objeclname:

Object Selection

ILireclories:

-ZIUNTERNAT10NAL

~ ~

I- f5
.... AT

.... CA

.... CN

~DE

.... OK

.... ES

.... FI

.~l~~.~_._ _ _._ ~..:.. "+

OK

Cancel

Help

;

Setting
language and
locale at run time

180

We now have imported the language and locale information for France and
Germany. View this information in the P_MOVIE7.DAT file by selecting
Language I Load or Locale I Load and by selecting the appropriate lan
guage or locale extension. Save the changes by selecting File I Save and then
exit the Designer.

Importing library language and locale information does not require recom
piling source. To change the default language and locale in command-line
environments, simply type in

Zinc Designer



set ZINC LANG=fr FR- -

The set argument tells the operating system to create a new environment
variable called ZINC_LANG. Then when we assign it the value fr_FR, we
associates with it the French language and locale-the first two letters are
the language (jr), and the last two letters the locale (FR).

When we initialize Zinc, the language and locale libraries look for the envi
ronment variable ZINC_LANG. If they find that variable, they locate the lan
guage and locale information, if any, from the appropriate .DAT file. Here,
we have associated the French language and French locale with our P_
MOVIE7.DAT file. Setting the ZINC_LANG environment variable tells
Zinc to use the French language and locale.

If we now run the application, the system button, the elTor messages, and any
default Zinc information will appear in the French language. For example,
launch MOVIE, then generate an elTor by selecting Movie I Create and
entering in the copyright field the year 3000. An elTor message appears on
the screen because 3000 is outside the valid range. The elTor message, how
ever, appears in French.

=-1 Error

Le nombre 3000 n'est pas dans I'intervalle 1900..2020.

The system button also supports multiple languages. If you select the system
button, the French words for restore, maximize, minimize, move, size, and
close appear on the pull-down menu. (This only happens in environments
that support multiple languages conculTently).

[ermer

We can do the same thing with German by entering

set ZINC LANG=de DE.- -

Zinc Designer 181



Generating an Internationalized Application

Delta storage

Now that we've imported languages and locales, change the movie windows
and their message strings.

To restore the US language and locale to the system, enter the line

set ZINC LANG=en US- -

We'll change and save the window and message information with a tech
nique called delta storage. Delta storage allows us work with a core set of
data, retrieve it, enter any differences of various languages or locales, and
save only the changes-not a new copy-to a different file. To see how,
enter the Designer.

Enabling delta
storage in the
Designer

182

Select the File IPreferences option in the Window Editor.

=-1
.-

Window Editor Preferences

1P'O"ol,Uo, I,,;okell
@ Image bullons 'Widlh:~/~

o Image bullons wilh lexl Heighl:~/~

Delta Storage File Options
Currenl: t <no file> I Backups (0__ 9): E::::J

Palhname: I I Defaull Exlension: ~
Exlension: I I 'Wrile HPP [Z]

I start II end I 'Wrile CPP [Z]

I Save I I Close I I Help I

In the Pathname field, enter the string

P MOVIE7.fr

In the Extension field enter

fr

Zinc Designer



and select Start.

~I Window Editor Preferences
~.

IP""""';"" 1";";"'" I@ Image buUons Width:~/~

o Image buUons with text Height:~/~

Delta Storage File Options
Current: I<no file> I Backups (0-.9): ~

Pathname: IP_MOVIE7.fr I Default Extension: ~
Extension: I I Write HPP 0

I start II end I Write CPP 0

I Save I I Close I I Help I

We have now opened the delta storage component of P_MOVIE7.DAT.
Now we will save any changes we make to existing objects in P_
MOVIE7.FR instead of the main file, P_MOVIE7.DAT.

To change the strings of the movie catalog system, open the Window Editor
and read the following table to substitute the French equivalents of each
string for the English string. For instance, change the string Movie Catalog
System to Systeme de Catalogue de Films.

TABLE 11. String equivalents

English French German

Movie Catalog System Systeme de Catalogue Filmverwaltungspro-
de Films gramm

File Fichier Datei

Movie Film Film

Help Aide Hilfe

About Concernant Info

Exit Sortie Beenden

About Movie Catalog Concernant Ie Cata- Produktinforrnation
logue de Films

Create Creer Anlegen

Delete Supprimer Ldschen

Load Charger Laden

Store Archiver Speichern

Zinc Designer 183



Generating an Internationalized Application

TABLE 11. String equivalents

English French German

Movie Selection Selection d'un Film Film Auswahl

Title Titre Titel

OK OK OK

Cancel Annuler Abbruch

Movie Information Informations sur Ie Film Information
Film

Copyright Droits d' Auteur Copyright

Length (in minutes) Duree (en minutes) Dauer (in Minuten)

Director Directeur Regisseur

Actors Acteurs Schauspieler

Description Description Beschreibung

Save Sauvegarder Speichern

Close Fermer SchlieBen

Once the strings have been changed, we can save them to the delta file by
selecting Window IStore-now the delta storage contains the French equiv
alents of the original English strings.

184 Zinc Designer



We can do the same for the Movie Selection and Movie Information win
dows. Their French equivalents are shown below:

=-1 Selection de Films

.!.

-
Affair to Remember. An
Casablanca
Fiddler on the Roof
Field of 0 reams
Gone 'With the 'Wind
It.Happened One Night

Titre:
~===:::::::=========~

!l.K I I Annuler I I Aide

=-1 Information sur Ie Film

Titre: I I
Oroits d'Auteur:IO I Duree (en minutes) 10 I

oirecteur: I I
Acteurs:1 I

D•••,;Pb""I ...-~

ISauvegarder I Fermer I I Aide

Once we have saved the all the delta changes, finish by entering the Prefer
ences window and selecting Close from the Delta Storage group.

Zinc Designer 185



Generating an Internationalized Application

Now we've finalized the changes for these windows. We can do the same
thing to the German windows, but with the delta file P_MOVIE7.DE.
Here's what the Movie Catalog, Movie Selection, and Movie Information
windows look like in German.

=-1 Filmverwaltungsprogramm I...J·
Datei Film tiilfe
rcM~........l

Film: I

=-1 Film Auswahl

f•

Affair to Remember. An
Casablanca
Fiddler on the Roof
Field of Dreams
Gone Wilh the Wind
HHappened One Night

Titel:
:=:=::::=:========:====:=======::::;:==:i

1..-.....0.1(.............1I Abbruch I I !:!.ilfe

=-1 Film Information I:J ·1

Regisseur:

Tilel: 1 I

Copyright: ~IO===:::::..._Da_u_e_rl:-in_M_i_nu_te_n..:....1_-=1o===~1
I 1

Schauspieler: I 1

Beschreibung:

I__~
fuJeichern 1I SchlieRen 1I Hille

186 Zinc Designer



Enabling delta
storage in the
source code

The Message Editor works like the Window Editor, only without delta stor
age. Open either the P_MOVIE7.FR or P_MOVIE7.DE delta file, and
import the original message table from P_MOVIE7.DAT. Load the message
table by selecting Message I Load. Change the information associated with
each message by invoking the item's editor and changing the message field.

=-1 Message Information

Message: IErreul d'Emegishemenl: Ne peut pas sau'Il

NumbellD: 11 I
SIIinglD: IZMSG STORE ERROR

OK I I Cancel I I Help

Once all the changes have been made to the message table, store the infor
mation to the delta file by selecting Message I Store. Finally, we can change
help context information the same way, by opening the delta file, invoking
the Help Editor, importing the original help contexts from P_
MOVIE7.DAT, selecting Context I Load, changing the information, then
by selecting Context I Store.

We have now changed the language information associated with our Mes
sage Catalog System window, the Movie Selection window, the Movie Infor
mation window, the message table, and the help contexts. Save all these
changes by selecting File I Save.

We switch languages at run time exactly as we did earlier, by setting the
ZINC_LANG environment variable.

set ZINC LANG=fr FR- -

Now that we've saved our changes in the Designer, we need to enable delta
storage in the source code. Doing so requires five changes.

First, for each window constructor, we supply an extra parameter that gives
the delta storage object to the appropriate window. For example, the Movie
Control window originally took a pathname and supplied the default storage.
Now the Movie Control window calls the UIW_WINDOW constructor
with the pathname supplied twice, once for the original window name, and
once for the delta window name, the language extension, a pointer to the
default storage, and a pointer to the delta storage.

MOVIE_CONTROL::MOVIE_CONTROL(void) :

Zinc Designer 187



Generating an Internationalized Application

UIW_WINDOW(-pathName, -pathName, ZIL_NULLP(ZIL_ICHAR),
defaultStorage, _intlStorage)

We follow the same process for the Movie Selection and Movie Information
constructors, and the constructor for the exit window.

MOVIE_SELECTION::MOVIE_SELECTION(ZIL_STORAGE_READ_ONLY
*dataFile, ZIL_USER_EVENT _request) :

UIW_WINDOW(-pathName, -pathName, ZIL_NULLP(ZIL_ICHAR),
defaultStorage, MOVIE_CONTROL::_intlStorage)

MOVIE_INFORMATION::MOVIE_INFORMATION(ZIL_ICHAR *name)
UIW_WINDOW(-pathName, -pathName, ZIL_NULLP(ZIL_ICHAR),

defaultStorage, MOVIE_CONTROL::_intlStorage)

EVENT_TYPE MOVIE_CONTROL::Exit(UI_DISPLAY *,
UI_EVENT_MANAGER *, UI_WINDOW_MANAGER *windowManager)

II Read the exit window.
UI_ERROR_STUB: :Beep();
UIW_WINDOW *window = new UIW_WINDOWL exitName, exitName,

ZIL_NULLP(ZIL_ICHAR), MOVIE_CONTROL::defaultStorage,
_intlStorage);

The original windows are stored in the .DAT file, and a directory identified
by language contains the delta storage. When we run the application, our
defaultStorage pointer will point to the original window in the data file, and
the _intlStorage pointer will point to the differences contained in the lan
guage directory.

II Set up strings used to open general and delta storage
II files.
static ZIL_ICHAR _fileName[] =

{ 'p', '_', 'm', '0', 'v', 'i', 'eI, '7', '.1,0 };

static ZIL_ICHAR _extension[] = { 'd' ,'a', 't', O};
ZIL_ICHAR _intlFileName[32], _baseFileName[32];
strcpy( intlFileName, fileName);
strcat( intlFileName, languageManager.defaultName);
strcpy(_baseFileName, fileName);
strcat(_baseFileName, _extension);
II Create error and help systems.
UI_WINDOW_OBJECT::errorSystem = new UI_ERROR_SYSTEM;
UI_WINDOW_OBJECT::helpSystem =

new UI_HELP_SYSTEM(_baseFileName);
II Open general storage file which contains original windows.
UI_WINDOW_OBJECT::defaultStorage =

new ZIL_STORAGE_READ_ONLY(_baseFileName);
II Open delta storage file.
MOVIE_CONTROL::_intlStorage =

new ZIL_STORAGE_READ_ONLY(_intlFileName);

188 Zinc Designer



Naming Unicode
strings

The only code change required for the help context or error message strings
involves opening the delta storage file.

UI_WINDOW_OBJECT::helpSystem =

new UI_HELP_SYSTEM(_intlFileName);

_errorMsgTable = new ZIL_LANGUAGE(_tableName, _intlStorage);

Remember, we associated constant values with the help and the messages, so
the identifying number is still the same. Only the string in the delta file has
changed.

Unicode

As the coup de grace to this series of tutorials, we'll make MOVIE Unicode
compatible.

In a Unicode-compatible application, each letter gets two bytes of informa
tion instead of one.

Almost all of our string information is contained in .DAT files, which are
Unicode compatible by design; Zinc will automatically convert 8-bit values
into 16-bit values if the application is running in Unicode mode. The only
things that we need to replace to make them Unicode compatible are the def
initions for filenames and class names. These will always remain the same,
no matter what language we are using.

We can create Unicode-compatible strings one of two ways. The first way is
to use a message table as discussed in this chapter. We can put most strings
in a message table, but we still need to create a few in our source code that
will specify the name of the .DAT file containing the message table and the
name of the message table itself. We can't put these in a .DAT file. Instead,
we need to make them 16-bit Unicode values instead of 8-bit values.

Unfortunately, at present, most compilers do not support the naming of Uni
code strings easily. We get around this is by comma delimiting each charac
ter in the name. Here, we need to replace the base filename, the extension for
the base file, and the name of the message table.

Zinc Designer 189



Generating an Internationalized Application

The way to internationalize these is to pull out the embedded string and
make it either a static variable or a static member of a class. Here, in
MOVIE7.CPP, we make it a static variable. For instance, we now have a
static, global variable called _msgTableName that contains the name of the
message table.

static ZIL_ICHAR _msgTableName[] =

{ 'M', 'S', 'G', '_', 'T', 'A', 'B', 'L', 'E' ,0 };

UI_APPLICATION::Main() contains two more static variables, one for
the .DAT file name and one for the .DAT file extension.

static ZIL_ICHAR _fileName[] =

{ 'p','_',' m','o','v','i ' ,'e ' ,'7','.',O}i
static ZIL_ICHAR _extension[] = { 'ct', 'a' ,'t', O};

The other strings we need to make into static variables are the names of the
window resources in the .DAT file, which are loaded from the message table
and stored in static member variables.

II Initialize static name strings.
MOVIE_CONTROL::-pathName =

_nameMsgTable->GetMessage(ZMSG_CTRL_PATH_NAME);
MOVIE CONTROL:: exitName =- -

_nameMsgTable->GetMessage(ZMSG_CTRL_EXIT_NAME);
MOVIE_SELECTION::-pathName =

_nameMsgTable->GetMessage(ZMSG_SEL_PATH_NAME);
MOVIE_SELECTION::_allObjects =

_nameMsgTable->GetMessage(ZMSG_SEL_ALL_NAME);
MOVIE_INFORMATION::-pathName =

_nameMsgTable->GetMessage(ZMSG_INFO_PATH_NAME);

Changing these strings in the source code or loading them from a message
table allows us to compile our application for Unicode. We can see the
advantage of running in Unicode by running the DOS executable-with
Unicode, we can retrieve the Korean and Japanese language information in
our DOS application. In addition, we can run the application under environ
ments other than DOS with multiple languages running concurrently, as long
as the operating system supports that language in its font set.

190 Zinc Designer



Conclusion

We made MOVIE portable and internationalized following several steps.
First, we removed all language-dependent, embedded strings. For instance,
in our application, we replaced the load, delete, movie selection, and store
error strings with identifiers. Then we included the language and locale
information for French and German languages. We converted our screen
information by moving to each window, translating the information and sav
ing it out to a new a file for the desired language or locale. Next, we changed
the message tables. Finally, we changed the help contexts.

If the program is architected properly, globalizing an application is easy.
Once the program is globalized, we can translate all the data without touch
ing the executable. This means that to port our program to additional lan
guages and locales, we need only send the interface strings to a translator
and include the results with the program-without touching the executable.

This is the end of the MOVIE tutorial, as well as the end of our tutorial sec
tion. The next section is a reference concerning the different functionality of
Zinc Designer.

Enjoy Zinc!

Zinc Designer 191



Generating an Internationalized Application

192 Zinc Designer



section three
Zinc Designer
reference

Zinc Designer 193



194 Zinc Designer



Chapter 10 File Options

The File category options control the general operations of Zinc Designer
files. Selecting [ile causes the following menu to appear:

file .Edit
New .
Qpen .
1iave
Save As...
~Iose

Qelete ...

Ereferences ...

E2';it

Zinc Designer 195



File Options

Filename

List Fi les of Type

Directories

196

New

The ~ew... option allows you to create a new file. Selecting it causes a win
dow similar to the following to appear:

~I ~ File~w.•. =~1!

Filename: Qireclories:

I I c: \ziI400\design Ir UK I
127 c: ~

I I127 zil400 _I-"
~Cancel

f5 design 1= Help ILJ direcl

LJ file

LJ helD ~

Lis! Files of !ype: Driyes:

'·.dal I[!J IlSc: [!]

If you want to create a new file for an application, enter the name for the new
file here. If you do not include an extension yourself, a .DAT extension will
be automatically attached to the name when the file is actually created.

Other files that belong to the current directory-all of the type designated by
the List Files of lYpe field-are shown in the scrollable list below the File
name field. If one of these files is selected and the OK button is pressed, you
will be asked if you want to overwrite the existing file. (For information on
opening a previously created file, see the description of the Open option
below.)

This field determines the type of files, based on the file extension, to list in
the Filename field. Clicking on the arrow button reveals the other types of
files available. Selecting one of these extensions causes the files of that type
to be displayed in the Filename list. Selecting the *.* extension causes all
files in the current directory to be displayed.

The current directory is shown below the .Qirectories prompt. Your file will
be saved to this directory. Since this item is not selectable, if you want to
make a different directory the current one, it must be done by selecting a new
directory from the list below the current directory prompt. This list displays
other available directories of the current drive, the current directory being
highlighted and child directories shown below the current one and parent
directories above.

Zinc Designer



Drives

OK

Cancel

Help

This field displays the current drive. Clicking on the arrow button reveals the
other drives that are available on your system. Selecting a drive causes the
files and directories on that drive to be displayed in their respective fields.

Selecting this button causes a file to be created which will be given the name
entered at the Filename prompt. If creation of the file is successful, the New
window will close and the title bar of the control window will be updated to
include the name of the current file. If no information has been entered
within the New window and the OK button is selected, you will receive an
error message.

Selecting this button causes the window to close without executing any
changes.

Additional information about creating new files appears when this button is
selected.

Open

The Qpen... option allows you to open a previously created file. Selecting it
causes a window to appear that is similar to the New window:

=-1 =-
File. Open...

Filename: Qireclories:

I I c: \ziI400\design
I OK I

(27 c: ~
(27 zil400 l- I Cancel I
e design

Li direcl I Help I
Li file

Li help
f--
+

list Files of IYpe: Driyes:

I"·dal 10 lIS c: 0
.- ~._-

Zinc Designer 197



File Options

Filename

List Fi les of Type

Directories

Drives

OK

Cancel

Help

198

To open an existing file, either enter the name at the Filename prompt, or
select it from the list below, and the name of the file will automatically
appear at the prompt.

Other files that belong to the current directory-all of the type designated by
the List Files of Jype field-are listed in the scrollable list below the File
name field. As mentioned above, selecting one of these files causes the
name to appear in the Filename field. Double clicking on a name listed in
the files list will cause that file to be opened immediately.

This field determines the type of files, based on the file extension, to list in
the Filename list. Clicking on the arrow button reveals the other types of
files available. Selecting one of these extensions causes the files of that type
to be displayed in the Filename list. Selecting the *.* extension causes all
files of the current directory to be displayed.

The current directory is shown below the D,irectories prompt. Your file will
be saved to this directory. Since this item is not selectable, if you want to
make a different directory the current one, it must be done by selecting a new
directory from the list below the current directory prompt. This list displays
other available directories of the current drive, the current directory being
highlighted and child directories shown below the current one and parent
directories above.

This field displays the current drive. Clicking on the arrow button reveals the
other drives that are available on your system. Selecting a drive causes the
files and directories on that drive to be displayed in their respective fields.

Selecting this button causes the file specified at the Filename prompt to be
opened. If the open procedure is successful, the window will close and the
title bar of the control window will be updated to include the name of the
current file. If the file entered at the Filename prompt does not exist, or if no
information has been entered, you will receive an error message at this time.

Selecting this button causes the window to close without executing any
changes.

Additional information about opening existing files appears when this button
is selected.

Zinc Designer



Save

Selecting the Save option causes the current file to be saved in its present
condition. If the file has not been named, the Save As window will appear so
that you can give the file a name. (See the Save As section for details on how
to save a file for the first time.)

Upon every save operation, Zinc Designer automatically creates a .DAT file,
which contains the binary information associated with the objects saved in
the application. In addition, the following files are created by default but can
be bypassed by changing the information contained in .Eile I ~references:

· a .CPP file, which contains the definition for _objectTable, an array that
provides the functions needed to load objects saved to disk, as well as the
definition for _userTable, an array of function access points for user call
back and compare functions.

· an .HPP file, which contains the numeric identifications (identified using
the text entered for the object's name) unique to each field or help con
text.

· one or more .BK# (backup) files, specified in .Eile I ~references.
(NOTE: Only one backup file is created per Designer session and only if
a previous .DAT file existed.)

Zinc Designer 199



File Options

Save As

Save As... is usually used to either save a file that has not been previously
named or to save the current file under another name. Selecting it causes a
window to appear that is similar to the New and Open windows:

'=1 -- ~ - ----- File Selection
~----,

Filename:

tesl.dat

Qirectories:

c: \ziI400\design

127 c:

127 zil400

f5 design

LJ direct

LJlile

LJ help
h
+

OK I
Cancel I
Help I I

Filename

List Fi les of Type

Directories

200

List Files of !ype: Driyes:

L-Ia._da_t ---'I mIl-[.i§l_c_: ----'~

Enter a name for the file at the Filename prompt, or select it from the list
below, and the name of the file will automatically appear at the prompt. If
you do not include an extension yourself, a .DAT extension will be automat
ically attached to the name when the file is actually created. A new file will
be created under that name with the current modifications, if any.

Other files that belong to the current directory-all of the type designated by
the List Files of Jype field-are listed in the scrollable field below the File
name field. As mentioned above, selecting one of these files causes the
name to appear in the Filename field. Double clicking on a name listed in
the files list will cause a window to appear that asks if you want to overwrite
the existing file.

This field determines the type of file, based on the file extension, to list in
the Filename field. Clicking on the arrow button reveals the other types of
files available. Selecting one of these extensions causes the files of that type
to be displayed in the Filename list. Selecting the *.* extension causes all
files of the current directory to be displayed.

The current directory is shown below the I!irectories prompt. Your file will
be saved to this directory. Since this item is not selectable, if you want to
make a different directory the current one, it must be done by selecting a new
directory from the list below the current directory prompt. This list displays

Zinc Designer



Drives

OK

Cancel

Help

other available directories of the current drive, the current directory being
highlighted and child directories shown below the current one and parent
directories above.

This field displays the current drive. Clicking on the arrow button reveals the
other drives that are available on your system. Selecting a drive causes the
files and directories on that drive to be displayed in their respective fields.

Selecting this button causes the file to be saved under the name entered at the
Filename prompt. If the save operation is successful, the Save As window
closes.

If you have entered a file name that already exists, a modal window will
appear, indicating such. If you select the Yes button of this window, the cur
rent information replaces the previous information of that file, and both the
modal window and the Save As windows close. Selecting the No button sim
ply closes the modal window and allows you to enter information again in
the Save As window.

If no information has been entered within the Save As window and you
select the OK button, the window will close and no other action will take
place.

Selecting this button causes the window to close without executing any
changes.

Additional information about saving files appears when this button is
selected.

Close

Selecting the .close option causes the screen to be cleared and the current file
to close. The title bar of the control window will be updated immediately to
read P_TEMP.DAT, which is the default Designer file.

Zinc Designer 201



File Options

Filename

List Files of Type

Directories

202

Delete

The I!elete... option allows you to delete a file. Selecting it causes a window
similar to the following to appear:

=1
. .- - ,

File. Delete...
-.;;;;c-_ ._- - . ~

I

Filename: ~irectories:

I I c: \ziI400\design I OK I
10 c: ~
10 zil400 ...,I I Cancel -I

f::} design

LJ direcl
- I Help I

LJ lile

LJ help
I---,•

List Files 01 lYpe: Driyes:

I"_dal 1m Ira c: ~
- -

To delete a file, either enter the name at the Filename prompt, or select it
from the list below, and the name of the file will automatically appear at the
prompt.

Other files that belong to the current directory-all of the type designated by
the List Files of 1)rpe field-are listed in the scrollable field below the File
name field. As mentioned above, selecting one of these files causes the
name to appear in the Filename field. Double clicking on a name listed in
the files list will cause that file to be deleted immediately.

This field determines the type of file, based on the file extension, to list in
the Filename field. Clicking on the arrow button reveals the other types of
files available. Selecting one of these extensions causes the files of that type
to be displayed in the Filename list. Selecting the *.* extension causes all
files of the current directory to be displayed.

The current directory is shown below the I!irectories prompt. Your file will
be saved to this directory. Since this item is not selectable, if you want to
make a different directory the current one, it must be done by selecting a new
directory from the list below the current directory prompt. This list displays
other available directories of the current drive, the current directory being
highlighted and child directories shown below the current one and parent
directories above.

Zinc Designer



Drives

OK

This field displays the current drive. Clicking on the arrow button reveals the
other drives that are available on your system. Selecting a drive causes the
files and directories on that drive to be displayed in their respective fields.

Selecting this button causes a modal window to appear which is similar to
the following:

~I --:Rle, O'elete... : o.

Delele file "w·INDO'W.DAT"?

iVes: I I tlo

-

Cancel

Help

The purpose of this window is to make sure that you want to delete the file.
If you select the OK button, the file indicated at the Filename prompt is
deleted, and both the confirmation window and the Delete window close. If
you choose the Cancel button, the file is not deleted and just the modal win
dow closes.

If the name of the current file is entered, or if the file entered does not exist,
you will receive an error message when the OK button is selected.

If no information has been entered within the window, selecting OK causes
an error message to appear.

Selecting this button causes the window to close without executing any
changes.

Additional information about deleting files appears when this button is
selected.

Zinc Designer 203



File Options

Presentation

Delta storage

204

Preferences

The ~references... option allows you to change the default settings of Zinc
Designer. These settings are saved in the ZINC.CFG file. Selecting Prefer
ences causes a window similar to the one below to appear:

=-1 Window Editor Preferences

I"·""";" I";';~"@ Image buUons Widlh: c=J I~

o Image buUons wilh lexl Heigh!: c=J I~

Delta Storage file Options
; CUllen!: I<no file> I Backups (0..9):~

,j Palhname: I I Defaull Exlension:~

Exlension: I I Wrile HPP [EJ

Ir' starl II end I Wrile CPP [EJ

lI Save I I J;;,lose I I Help I
-

This field contains the options for the presentation of objects on the button
bar.

Image buttons. Allows only images to be displayed on an object button.

Image buttons with text. Allows both images and text to be displayed on an
object button.

This group gives you access to delta storage, which allows you to save only
the changes of the current file to another file. This feature is very useful in
some situations, such as when translating an application to another language,
where the fields do not change but the text must be replaced. Instead of
copying the original file and having two complete copies, delta storage
allows you to keep the original as the master file and another file that only
contains the alterations (e.g., the translated text) made to that master file.
The resulting saved memory can be significant when compared to maintain
ing two complete files.

The Delta Storage group contains the following fields:

Current. Displays the path name of the delta file. This field is not editable.
When no delta file is open, it displays <no file>.

Zinc Designer



Minicell

Fi Ie options

Pathname. Designates the name for the delta file. When no delta file is open,
this field is blank.

Extension. Designates the subdirectory where the delta object will be stored.
For example, entering the extension me causes the object to be stored in the
\delta\me directory of the current file.

Selecting the start button causes the delta file designated at the Pathname
prompt to be opened. Any modifications made to the current file thereafter
will be saved to the delta file only-the current, or original, file will remain
exactly as it was when it was last saved before the delta file was opened.

Selecting the end button causes the delta file designated at the Pathname
prompt to be closed. Thereafter, any changes to the current file will actually
be saved to that current, or original, file.

The Start and End buttons work independently of the three main buttons of
the Window Editor Preferences window. For example, when you select the
delta storage Start button, you are immediately in delta storage mode, even
if you subsequently select the main End button of the preferences window.

While you have opened a delta file and not yet closed it, a (D) appears on the
control window's title bar to the right of the file name. This serves as a
reminder that all changes are being saved to the delta file instead of to the
actual original file.

This field allows you to set the default minicell ratios. The default minicell
width and height are 1/1 0 of a cell.

This group contains options for file backups, file extensions, and files to
save. The options are:

Backups. Enter in this field the number of backups that you would like the
designer to maintain. Each backup file will be saved under the same name as
the main file but with an extension that indicates the backup number of the
copy. For example, a file with the name of TEST.DAT will have a backup
copy called TEST.BKI if only 1 is entered at the prompt.

If any number greater than 1 is entered at the prompt, each time a save oper
ation occurs another backup file will be created, up to the maximum speci
fied. For example, a 3 at the prompt will cause the creation of a TEST.BKI
file at the first save operation, a TEST.BK2 file at the second save, and a
TEST.BK3 at the third save. Thereafter, these three backup files would be

Zinc Designer 205



File Options

OK

Cancel

Help

206

updated on subsequent saves, with the most recent information being saved
in TEST.BKI and the oldest information in TEST.BK3. The Designer will
create up to nine backups.

Default Extension. This field designates the default extension for files saved
in the designer. Zinc's default is .DAT, but you can enter a different default
for your applications, if desired.

Write HPP. Selecting this option causes an .HPP file to be generated with
each save operation. When the option is not in effect, save operations will be
quicker. While it is not necessary to write an .HPP file while working in the
designer, it will be necessary to write one before actually compiling your
application.

Write CPP. Selecting this option causes a .CPP file to be generated with
each save operation. When the option is not in effect, save operations will be
quicker. While it is not necessary to write a .CPP file while working in the
designer, it will be necessary to write one before actually compiling your
application.

Selecting this button closes the Window Editor Preferences window and
causes the information selected to take effect. If no information has been
entered within the window, it will close and no other action will take place.

Selecting this button causes the window to close without executing any
changes.

Additional information about default settings appears when this button is
selected.

Exit

Selecting the E!it option allows you to exit Zinc Designer. If you have not
saved the current file, a modal window will appear that asks whether or not
you want to save it before exiting. Selecting the Xes button causes the file to
be saved and then exits out of the program. Selecting No causes the program

Zinc Designer



to exit without saving the current file-any changes made since the last save
operation will be lost. Selecting the Cancel button simply closes the modal
window.

If you have not made any changes within Zinc Designer, selecting Exit
causes a modal window to appear which is similar to the following:

=-1
,~~.~ - ~ iii<

Exit Application

Ii 0 This will close the application.

Ij r" jOKr I I .~ tancel

II

The purpose of this window is to make sure that you want to exit Zinc
Designer. If you select the OK button, the program exits. If you choose the
Cancel button, the program does not exit and the modal window closes.

Zinc Designer 207



File Options

208 Zinc Designer



Chapter 11 Edit Options

Edit category options are used to edit the appearance and performance of
objects within the current file. Selecting Edit causes the following menu to
appear:

~roup

.!1ngroup

Zinc Designer 209



Edit Options

210

Object

Each object created with Zinc Designer can be modified through interaction
with its object information notebook. Selecting Object... causes the informa
tion notebook for the current object to appear, which is similar to the follow
ing:

General I Subobjects ,
Position I Advanced 1

----- Support Features ----- ~
t8J Border I-l

Title: I<untilled> I t8J Maximize Bullon

t8J Minimize Bullon
Minlcon: I <none> 0 t8J System Bullon -o Geometry Management

Name: I<UNTiTlED> I o Vertical Scroll-Bar

Help: I<none> IiJ o Horizontal Scroll-Bar

----- Type -----

I OK I I Cancel I I Help I @ Default
f---,

() n;"lnn nh;.."t +

The object information notebook controls how the object looks. Each infor
mation notebook is divided into notebook pages that contain related infor
mation. To view the information contained in a page, click on its title tab
with the mouse. Since each object has its own specific requirements, each
information notebook's pages and their related fields will vary, but all con
tain one or more of those described in the next several sections.

(See Chapter 14 through Chapter 17 for more specific information regarding
individual field objects.

NOTE: The remainder of this section is identical to the information given in
Chapter 13.)

Each notebook page within the information notebook includes three buttons
which operate in the following manner:

OK. Selecting this button saves the edit information and closes the object
information notebook. The current object will reflect the editing changes
immediately. If no information has been entered within the object informa
tion notebook, its window will close with no other action taking place.

Cancel. Selecting this button causes the window to close without executing
any changes.

Zinc Designer



General page

Help. Additional information about the current object appears when this but
ton is selected. Help information is unique for each page. The contents
depend on the type of object and the current page.

The General notebook page, shown above, contains information related to
the specific object being edited. It is always the first page visible upon enter
ing the information notebook. Since each object is different, the editable
properties will vary, but the following fields are common to most objects:

Text or Value. This field allows you to enter information to be displayed
within the object exactly as you want it to appear in your application.
Objects that use the Text field are:

· string

· formatted string

· text

· button

• radio button

· check box

· pull-down item

· pop-up item

· prompt, and

· group.

Some objects have a field similar to Text, but the name Value is used in
place of Text. Objects that use the Value field are:

· date

· time

· bignum

· integer, and

· real.

Compare. Some objects allow a compare function, which is used to sort
information. If you want to have a compare function associated with the
object, you can enter the function's name in this field.

When using a compare function, the function itself must be defined some
where in your code under the same name that is entered in the information
notebook. This is necessary so that Zinc Designer can find it and execute the

Zinc Designer 211



Edit Options

212

designated action. (For more information on creating compare functions,
refer to the description of the object's constructor in the Programmer's Refer
ence.)

Name. This field contains the name, sometimes called a string identification,
for the object and is present in every object information notebook. The
default name for an unnamed object attached to another object is FIELD
plus a unique number corresponding with the order in which it was attached
to the parent window. For example, the default name for the second object
created within a resource window would be FIELD_2.

Because these objects appear in various lists throughout the program, it is
recommended that you override the default name and enter a string that more
specifically identifies the object. The name will appear in all locations
exactly as you have entered it in the object's information notebook.

Help. This field designates the help context to be associated with the object.
Select the combo box button to view a list of the available help contexts. If
you select one of the help contexts listed, the help message of that context
will be displayed whenever the user positions on the object and requests
help. (See Chapter 20 for information on creating help contexts.)

options list. This field is located on the right side of the General page. It dis
plays options which control the general presentation and operation of the
current object. All of these items are listed with either check boxes or radio
buttons. To toggle an option from noncurrent to current or vice versa, select
it by either clicking on it with the mouse or by scrolling to it and pressing
<space>. There is no limit to the number of check box options that can be in
effect at a given time. However, only one radio button option per designated
group can be in effect at one time.

Zinc Designer



Position page The Position notebook page contains information related to an object's posi
tion, border, region, and alignment. Selecting the Position tab causes a page
similar to the following to appear:

The fields of the Position page are the same for every object. They are as
follows:

Position/Size. This field allows you to alter the positioning and size of the
current object. The first row within the field contains the following three but
tons that determine the coordinate scale to be used:

· pixel. Depressing the left button causes screen coordinates to be based on
a pixel scale. This option allows for the greatest precision in positioning
and sizing. It is only applicable in graphics mode.

• mini-cell. Depressing the middle button causes screen coordinates to be
based on a mini-cell scale, which is 1/10 of a cell coordinate by default.
This option allows for more precision than the cell option, but less than
the pixel option. It is applicable in graphics mode only.

· cell. Depressing the right button causes screen coordinates to be based on
a whole cell scale. This is the default setting.

Underneath each button in the Position/Size field is a column of fields that
display the precise location and size of the object. These are based upon the
coordinate option selected, such as pixel, mini-cell, or cell. Only the column
underneath the currently selected option is selectable and editable.

The top two fields of each column, column and line, determine the object's
location. Changing the numbers in either or both of these fields will cause
the object to move to the corresponding coordinates on the screen.

Zinc Designer 213



Edit Options

Geometry page

214

The lower two fields, width and height, determine the object's size. Chang
ing the numbers in either or both of these fields will cause the object to alter
in size according to the coordinate scale being used. For example, if the cell
option is in effect, entering a width of 20 and a height of 10 in the cell col
umn would produce an object that is 20 cells wide and 10 cells high.

Border. The two buttons contained in this field determine whether or not the
object is displayed with a border. Depressing the left button causes the object
to be displayed without a border, while depressing the right button causes a
border to be displayed.

Region. The two buttons contained in this field determine the region allo
cated for the object. Depressing the left button causes the object to occupy
the region specified by the values displayed in the Position/Size field.
Depressing the right button causes the object to ignore its position and size
parameters and occupy the remaining available space in its parent window.

Alignment. The three buttons contained in this field determine the alignment
of the text within the object. Depressing the left button causes the text to be
justified to the left margin, depressing the middle button causes the text to be
centered, and depressing the right button causes the text to be justified to the
right margin. For objects that do not contain text, such as scroll bars, the
Alignment field is shaded, indicating that it is not selectable.

The Geometry notebook page allows you to place constraints on an object
that specify how the object should be sized and positioned under specific
conditions. For example, using geometry management, you can determine
how an object will react to resizing of its parent object-whether it stays at a
fixed location or moves relative to the parent, whether it stays the same size
or grows with the parent, etc.

Geometry management also allows you to establish a connection relation
ship between two child objects and to set size constraints for individual
objects.

Zinc Designer



Selecting the Geometry tab causes a page similar to the following to appear:

01( .c.ancel I I lielp

Advanced

Constraint Features
offset: 19 I

options: D slrelch ~
D opposile I"-
D hz-center r.,
~

anchor: <untilled> :!

Size Restrictions-----,
~ <=width<= ~

o::::=J <= height <= o::::=J

The following are the fields of the Geometry page, which are the same for
every object:

attachment group. This area, located on the left side of the page, is designed
to visually represent the relationship between the current object and its sur
roundings. The small square in the center represents the object itself, and the
four lines, one radiating from each side of the square, represent possible con
nections to the surrounding objects. Each line ends at a combo box field
which displays the type of connection for that line.

To change the type of connection, select the combo box button and a list of
available types will be displayed. The following three types are available:

· none. Indicates that no connection is in effect.

· relative. Causes the object's border to position itself within its parent rel
ative to the parent's borders. In this case, the value entered into the offset
field (described below) will represent a percentage ratio for placement.
For example, if an object's left connection has an offset value of 10, it
will always be placed within the parent's left border at a distance measur
ing 10 percent of the parent object's size. Therefore, if the parent object
measures 20 minicells wide, the child's left border will be two minicells
within the parent's left border. If the parent is subsequently enlarged to be
100 minicells wide, the child will reposition at the edge of the tenth min
icell.

NOTE: A relative connection is possible only between a child object and
its parent-not between two child window objects.

· absolute. Causes the object's border to position itself relative to its parent
or sibling object at a fixed distance. In this case, the value entered into
the offset field (described below) will represent a fixed measurement for

Zinc Designer 215



Edit Options

216

placement. For example, if an object's left connection has an offset value
of 10, it will always be placed within the parent's left border at a distance
measuring 10 units of whatever coordinate scale is in effect (i.e., pixel,
mini-cell or cell). Therefore, if the parent object measures 20 minicells
wide, the child's left border will be ten minicells within the parent's left
border. If the parent is subsequently enlarged to be 100 minicells wide,
the child will remain at the edge of the tenth minicell.

As connections increase, so do potential conflicts. For example, if an object
has a left absolute connection offset at 10 cells and a right absolute connec
tion offset at 20 cells, both constraints cannot always be accommodated.
When conflict arise, the objects follow an established priority schedule:

• 1st priority-left

• 2nd priority-top

· 3rd priority-right

· 4th priority-bottom

Therefore, in our example above, the left connection would consistently off
set the designated 10 cells, while the right connection would be overridden to
accommodate the left.

Constraint features. This group determines the constraint features of the cur
rent connection. It contains the following fields:

offset. Determines the offset of the current connection, or the amount of
space between its inside and outside anchors. The actual measurement of
the value depends upon whether the connection is relative, in which case
the value represents a percentage ratio, or absolute, in which case the
value represents a fixed measurement. (See the connections plane sec
tion above for further information on connection types.) The value of this
number also depends upon the coordinate scale in effect (either pixel,
minicell or cell) for the current object. For example, for an object using
pixel units, an absolute connection's offset of 20 would translate into a
blank space measuring 20 pixels. (For further information on coordinate
scales, see the Position page section, page 213 of this chapter.)

Zinc Designer



To change the value of offset, either enter a new number, or increment!
decrement the number by clicking on the appropriate spin control button.

· options. Presents several options that alter the typical behavior of the
connections. The following options are available:

• stretch. Causes the actual object to stretch or shrink as the anchor border
is moved. For example, an object with a bottom connection to its parent
window's bottom border will stretch vertically as the window's bottom
border is pulled downward.

• opposite. Causes the connection to be anchored to the opposite border of
the object designated in connect. For example, if object A is located to
the left of object B and its left border connection is set to run to object B,
then the connection will actually be anchored to object B's right border.

· hz-center. Causes the connection to be anchored from the horizontal cen
ter of the current object. This allows for more consistent placement, espe
cially when centering the object. This option is selectable for a relative
connection only.

· vt-center. Causes the connection to be anchored from the vertical center
of the current object. This allows for more consistent placement, espe
cially when centering the object. This option is selectable for a relative
connection only.

· anchor. This field determines what the current connection is anchored to.
As in the above examples, it is common for an object to run connections
to the border of its parent object, such as a parent resource window. How
ever, it is also possible to run absolute connections to other objects.

The anchor field applies to each connection individually, not to all four
collectively. Therefore, it is possible to have each border of the object
connected to a different object or parent border. The anchor field dis
plays the anchor for the connection currently being edited.

To choose an anchor for the current connection, first select a relative or
absolute connection, described above, then select the anchor field's
combo box button. A list that includes the surrounding objects and the
parent object will appear. Selecting one of these displays the object's
name in the anchor field.

NOTE: Since a relative connection can only be anchored to its parent object,
the anchor field is not selectable when a the current connection is relative.

· Size Restrictions. This field determines the minimum and maximum size
for the object. The first row determines the range of width values, while
the second row determines the range of height values. The first value of

Zinc Designer 217



Edit Options

Advanced page

218

each row represents the minimum size possible, and the second the max
imum possible. All of these values are measured in cell units. For exam
ple, an object with a minimum width value of 5 and a maximum value of
20 is constrained to be no less than 5 cells wide but no greater than 20
cells.

The Advanced notebook page contains information about an object's
advanced properties. It is designed for use by the experienced user only. The
following fields are common to most objects:

General I Position I Geometry f Advanced

NumberlD: 11 I ----- Interaction ----- ~

Callback: I 1m @ Normal interaction ....
o View only

o Non-selectable
UserObject: I I o Non-current

UserFlags: 10 I ----- Data Sellings -----

UserStatus: 10 I o Mark as INVALID

Derived Name: I<none> 1m o Mark as UNANSWERED

----- Miscellaneous -----

I OK I I Cancel I I Help I o Don't deallocate data
--;

n "'lin... nh;.... t .l,,,nn;nn +

NumberID. This field assigns a unique programmer number to the object. By
default this number corresponds to the order in which the object was created
in the program.

Callback. To associate a callback function or user function with the object,
enter the function's name in this field. A callback function causes a desig
nated action to occur when the user interacts with the object.

When using a callback function, the function itself must be defined some
where in your code under the same name that is entered in the information
notebook. This is necessary so that Zinc Designer can find it and execute the
designated action. (For more information on creating callback and compare
functions, refer to the description of the object's constructor in the Program
mer's Reference.)

User Object. This field designates a void pointer to a user-specified object.

UserFlags. This field contains any flags that are set and maintained by the
programmer.

Zinc Designer



UserStatus. This field contains any status flags that are set and maintained
by the programmer.

Derived Name. This field contains the name of the derived class to inherit
the properties of the current object. If a name is entered, the object table in
the .CPP file, generated by the Designer, will contain an entry for the
derived object's New( ) function. As part of the code for the derived class,
the programmer must create a static New( ) function that is able to call the
constructor for the derived class. The .HPP file will contain a definition of
the derived class' identification.

options list. This field is located on the right side of the Advanced page, and
it displays options which control the advanced properties and operations of
the current object. All of these items are listed with either check boxes or
radio buttons. To toggle an option from noncurrent to current or vice versa,
select it by either clicking on it with the mouse or by scrolling to it and press
ing <space>. There is no limit to the number of check box options that can
be in effect at a given time. However, only one radio button option per desig
nated group can be in effect at one time.

Options that are not applicable to the current object are grayed out, meaning
that they cannot be selected.

The first section of the list presents options that determine the extent to
which the end user can interact with or edit the object. Only one of these can
be current at a time. The options are:

· Normal interaction. Allows the end user to have normal interaction with
the object, including being able to select, position on and edit it (if it is an
editable object).

· View only. Prevents the object from being edited. If this flag is set, the
end user will not be able to edit an object's information but will be able to
browse through the information.

· Nonselectable. Prevents the object from being selected. If this flag is set,
the user will not be able to edit or position on the object's information.

· Noncurrent. The object cannot be made current. If this flag is set, users
will not be able to select the object from the keyboard nor with the
mouse.

Zinc Designer 219



Edit Options

The second section of the list presents options that determine the initial set
tings of the object. The options are:

. Mark as INVALID. Sets the initial status of the object to invalid. This
forces the user to enter an acceptable value before moving to another
field.

. Mark as UNANSWERED. Sets the initial status of the field to be unan
swered. An unanswered field is displayed as blank space on the screen.

The third section of the list presents options that determine other default set
tings for the object. The options are:

Don 't deallocate data. Causes the object to not allocate its own buffer for
data. If this option is set, you must allocate a buffer that will be used to
store the object's data.

Allow object dragging. Allows the object to be dragged.

Allow object dropping. Allows objects to be dropped onto the current
object.

Support object. Causes the object to be placed in the parent object's sup
port list. The support list is reserved for objects that are not displayed as
part of the user region of the window, such as a window's border and title.

Subobjects page Objects which can host other objects also contain a Subobjects notebook
page within their information notebooks. This page allows you to modify the
subobjects. It contains the following fields:

I'-Edit

I Md=1
1~-' Delete I
I-Wove Up I
IWove Down I

I Advanced r

I~ Window r;I. --.JI.=J

GenerallY --SUbobjects 'I Position
J-----'-~~~=~~=-.,:

:1' Objects: Directories:

i:::~':I~~()I~~~j~c::ts::- ~ r-<-u-nt-ille-=d-=>-=-=-------.,

1+ C NUMID_BORDER ..... EI NUMID_SYSTEM

';n El NUMID_MAXIMIZE

III NUMID_MINIMIZE

~, lEI NUMID_SYSTEM

NUMID_TITLE

--- Normal Objects --- +'Ii. '---------- '-- --J

II r-=~=a
I ~ I IlK I I~ kancel I ...1...H;;;;;"e1...p--,

Objects. This field displays the objects, listed in the order in which they were
created, that are attached to the current object. The list is divided into two
sections, the first for support objects, or objects that are not displayed as part
of the user region, and the second for normal objects. The information note-

220 Zinc Designer



book of anyone of these objects can be accessed by one of the following
methods: double click on the desired object with a mouse, scroll to it and
press <Space>, or click on the Edit button while it is highlighted in the list.

To move an object in the list up one line, either select the Move Up button, or
hit <Ctrl up-arrow>. To move an object down in the list one line, either
select the Move Down button, or hit <Ctrl down-arrow>. Moving an object
changes the tab order of objects on the screen. For list item objects, such as
pop-up items, it also changes the order that the items appear within the par
ent lists. To delete an object from the list, either select the Delete button, or
hit <Ctrl+Delete>.

Directories. This field displays the parent objects and subobjects related to
the current object. Double-clicking on one of the names (or pressing
<Space> while the name is current) causes the Objects field to display the
subobjects of the selected object. This feature allows you to move within an
extensive hierarchy-such as a pull-down menu-without having to interact
with every level.

Edit. Selecting this button causes the information notebook of the object high
lighted in the Objects list to appear.

Add. Selecting this button causes the object appearing in the combo box
(located in the lower right comer of the page) to be added to the current
object. The new subobject's name will immediately appear at the end of the
Objects list.

Delete. Selecting this button causes the highlighted object in the Objects list
to be deleted. «Ctrl Delete> also performs this action.)

Move Up. Selecting this button causes the highlighted object in the Objects list
to move up one line in the list. «Ctrl up-arrow> also performs this action.)
Moving an object changes the tab order of objects on the screen. For list item
objects, such as pop-up items, it also changes the order that the items appear
within the parent lists.

Move Down. Selecting this button causes the highlighted object in the Objects
list to move down one line in the list. «Ctrl down-arrow> also performs this
action.) Moving an object changes the tab order of objects on the screen. For
list item objects, such as pop-up items, it also changes the order that the items
appear within the parent lists.

Zinc Designer 221



Edit Options

222

Add object combo box. This field designates the type of object to be added
when the Add button (described above) is selected. Select the combo box
button to view a list of the available objects. If you select one of the objects
listed, it will be added to the current parent object whenever the Add button
is selected.

Cut

Selecting the Cut option removes the current object from the screen and
places it in a global paste buffer.

Copy

Selecting the !:opy option copies the current object and places the copy in a
global paste buffer.

Paste

Selecting ~aste allows you to recall and position on the screen the contents
of the global paste buffer (placed there by a Cut or Copy procedure). After
selecting ~aste, position the mouse cursor where you would like the paste to
occur and press the left mouse button.

Zinc Designer



Edit Options

Edit Group page

Subobjects page

224

Only one edit group is pennitted per window at one time. Upon grouping a
second region, the first group in the same window will be ungrouped.

A group can be edited collectively by double-clicking on any part of the gray
area. The following information notebook will appear:

General .• Subobjects T Pos~ion I Geometry T Advanced-- --
D Sort objects on screen location.

D LeU justify objects.

D Center justif, objects.

D Right justify obiects.

The Edit Group notebook page contains the following options:

Sort objects on screen location. Causes the objects within the group to be
sorted in top-left to bottom-right priority. This change in priority can be seen
in the Objects field of the Subobjects page, where the group's objects will
be reordered in the list according to their screen position, instead of accord
ing to their order of creation.

Left justify objects. Causes all of the objects within the group to be displayed
next to the left border of the gray area.

Center justify objects. Causes all of the objects within the group to be dis
played in the center of the gray area.

Right justify objects. Causes all of the objects within the group to be dis
played next to the right border of the gray area.

The objects contained within the group can be modified through interaction
with the Subobjects page. For detailed information on the Subobjects page,
refer to the general description on page 220.

The default add object (shown in the lower right combo box field) for an edit
group is a string.

Zinc Designer



Delete

Selecting !!elete removes the current object from the screen and deletes it
from the file.

Move

Selecting Move allows you to move the current object by using the arrow
keys.

Size

Selecting Size allows you to size the selected region relative to the top left
comer using the arrow keys.

Group

Selecting !iroup allows you to select a region of objects to be combined into
one unit, referred to as an edit group. After selecting !iroup place the mouse
cursor at a comer of the region to be grouped and drag the mouse to the
opposite comer. Any object overlapped by the drag process will be included
in the group. Upon releasing the mouse, the background of the entire region
will be marked by a light-gray shadow. This designates the area encompass
ing the group.

NOTE: Grouping objects can also be accomplished by pressing <Ctrl> and
then dragging the mouse to mark the desired region.

Zinc Designer 223



Position page

Geometry page

Advanced page

The Position page contains the information related to an edit group's posi
tion, border, region and alignment. For detailed information on the Position
page, refer to the general description on page 213.

The Geometry notebook page allows you to place constraints on an object
that specify how the object should be sized and positioned under specific
conditions. For detailed information on the Geometry page, refer to the gen
eral description on page 214.

The Advanced page contains information relating to the advanced proper
ties of an edit group. It is designed for use by the experienced user only. For
detailed information on the Advanced page, refer to the general description
on page 218.

Ungroup

Selecting IIngroup causes the group within the current window to be dis
solved. In other words, the grey shadow surrounding the grouped objects
disappears, and the objects behave once again as separate entities. If the cur
rent window does not contain an edit group, IIngroup has no effect.

NOTE: Creating another group will also dissolve an edit group.

Zinc Designer 225



Edit Options

226 Zinc Designer



Chapter 12 Window Options

The Window category options allow you to create, modify and retrieve
window resources in the current file. Selecting Window causes the follow
ing menu to appear:

~reate

!:oad...

~tore

Store As ...

Clear
Clear All
Qelete ...

lest...

Zinc Designer

~: [32.9

~: 150,7

place object:

227



Window Options

Imporl

Import allows you to import a resource window from another .DAT file or
Windows .Re file. This process involves two simple steps, the first of which
is selecting the file containing the desired resource. Consequently, upon
selecting Import, a window similar to the File I Open window appears:

Filename:

List Files of !.vpe:

I',dat

.-
File Selection

", ~-_·-c

~irectories:

c: \ziI400\design OK
Dc: ~

D zil400 - I;.ancel

f':]dellign

LJ direct
Help

LJ file

i

LJ help
-
+

Driyes:

100 lIS c: m

Enter the name of the desired file at the Filename prompt and select the OK
button. (Refer to the File I Open section on page 197 for further instructions
on interacting with the File I Import window.) After the File I Import win
dow closes, another window, similar to the following, immediately opens:

=1 ._- - - -- -- - Resource. Import...

Objectname: ~irectories:

- -- -- -- ---- _.-

~ EXIT_APPLICATION

~ NAME_INFORMATION

~ STATUS_W'INDOW'

~ ZAF_SERVICE_MANAGER

OK

I;.ancel

I Help

228

This window requests the actual resource to be imported from the designated
file. Interaction with its fields is described below.

Objectname. To import a resource window, either enter the name at the
Objectname prompt, or select it from the list below, and the name of the
resource will automatically appear at the prompt.

Zinc Designer



Other resources that belong to the current directory are listed, in alphabetic
order, in the scrollable field below the Objectname field. As mentioned
above, selecting one of these resources causes the name to appear in the
Objectname field. Double clicking on a name listed in the resource list will
cause that resource to be imported immediately.

Directories. The current directory is shown below the Directories prompt.
Since this item is not selectable, if you want to make a different directory the
current one, it must be done by selecting a new directory from the list below
the current directory prompt. This list displays other available directories of
the current .DAT file. The .. characters represent the parent directory, and, if
selected, will display the other sub-directories of the current path, all of
which are also selectable.

OK. Selecting this button causes the resource specified at the Objectname
prompt to be imported. If the import procedure is successful, the window
will close. If the resource entered at the Objectname prompt does not exist,
or if no information has been entered, you will receive an error message at
this time.

=1

o
Error

The specified operation cannot be completed because the
resource 'WINDOW' cannot be found.

I
Once the resource has been imported, it can be accessed through Window I

Load... (See page 233 of this chapter for more information on loading
resources.).

Cancel. Selecting this button causes the window to close without executing
any changes.

Help. Additional information about importing resources appears when this
button is selected.

Zinc Designer 229



Window Options

Export

Export allows you to export a resource window to another file. This process,
much like the importing process, involves two simple steps, the first of
which is selecting the file to which you would like to export the resource
window. Consequently, upon selecting Export, a window similar to the File
IOpen window appears:

Filename:

.File Selection
Q.irecIOlies:

c: \ziI400\design OK

Dc: ~
D zil400 I- Cancel

~dellign
HelpU direcl

ufile

u helD
1-=
+

Lisl Files of Dope: Driyes:

I-·dal 1m 1[23 c: [it
-

Enter the name of the desired file at the Filename prompt and select the OK
button. (Refer to the .Eile I ,Qpen section on page 197 for further instructions
on interacting with the File I Export window.) After the File I Export win
dow closes, another window, similar to the following, immediately opens:

Objeclname:

~\11INDO\lll

Object Selection

Q.irecIOlies:

-ur....._\11INDO\ll

~ ....

OK

J;.ancel

Help

230

This window requests the actual resource window to be exported to the des
ignated file. Interaction with its fields is described below.

Objectname. To export a resource window, either enter the name at the
Objectname prompt, or select it from the list below, and the name of the
resource window will automatically appear at the prompt.

Zinc Designer



Other resource windows that belong to the current directory are listed, in
alphabetic order, in the scrollable field below the Objectname field. As
mentioned above, selecting one of these resource windows causes the name
to appear in the Objectname field. Double clicking on a name listed in the
resource window list will cause that resource window to be exported imme
diately.

Directories. The current directory is shown below the ,Qirectories prompt.
Since this item is not selectable, if you want to make a different directory the
current one, it must be done by selecting a new directory from the list below
the current directory prompt. This list displays other available directories of
the current drive, the current directory being highlighted and child directo
ries shown below the current one and parent directories above.

OK. Selecting this button causes the resource window specified at the
Objectname prompt to be exported. If the export procedure is successful,
the window will close. If the resource window entered at the Objectname
prompt does not exist, or if no information has been entered, you will receive
an error message at this time.

Cancel. Selecting this button causes the window to close without executing
any changes.

Help. Additional information about exporting resource windows appears
when this button is selected.

Zinc Designer 231



Window Options

232

Create

Selecting !:reate automatically places the following window on the screen,
complete with a title bar, a system button, and minimize and maximize but
tons.

<untitled>

To modify the properties of the window resource, call its information note
book by double clicking with the mouse anywhere within the border. The
following window appears:

General 1 Subobjects I Position 1 A.dvanced l~

----- Support Features ----- .!. :

[gI Border -
Tille: I<untilled> I [gI Maximize Bullon

[gI Minimize Bullon
Mini can: I <none> 0 [gI System Bullon

o Geomelry lot anagement
--

Name: I<UNTITLED> I o Vertical Scroll-Bar

t Help: I<none> I!J o Horizontal Scroll-Bar

----- Type -----

@Default
I OK I I Cancel I I Help I ~

I (\ n;~lnn nh;a~' +

For information on interacting with the resource window's information note
book, refer to the Subwindow section of Chapter 17 on page 329.

Any object can be attached to the resource window by selecting it from the
button bar, or from the Object menu, and positioning it in the window. (See
Chapter 13 for more information on creating window objects.)

Zinc Designer



Load

Load... is used to recall a previously created resource window from the cur
rent file. Selecting it causes a window similar to the following to appear:

.. ~ '"~,~_."-~~-"".

Resource. Load...
Objeclname: QifeclOlies:

-UIW_WINDOW I! OK

Cancel

Ie. .!ielp

Objectname. To load a resource window, either enter the name at the
Objectname prompt, or select it from the list below, and the name of the
resource will automatically appear at the prompt.

Other resources that belong to the current directory (including those
imported from other files) are listed, in alphabetical order, in the scrollable
field below the Objectname field. As mentioned above, selecting one of
these resources causes the name to appear in the Objectname field. Double
clicking on a name listed in the files list will cause that resource to be loaded
immediately.

Directories. The current window directory is shown below the !!irectories
prompt. Other window directories of the current file are listed in the field
below the current directory prompt. These two fields are for informational
purposes only and cannot be edited.

OK. Selecting this button causes the resource specified at the Objectname
prompt to be loaded. If the load procedure is successful, the Resource I
Load window will close and the resource window, containing its child
objects (if any), appears on the screen in the exact location and condition it
was last stored.

If the resource entered at the Objectname prompt does not exist, or if no
information has been entered, you will receive an error message at this time.

Zinc Designer 233



Window Options

234

Cancel. Selecting this button causes the window to close without executing
any changes.

Help. Additional information about loading resources appears when this but
ton is selected.

Once the resource has been loaded and appears on the screen, it is the current
object and can be modified in any way. When the ,Resource IS,tore option is
subsequently selected, the resource will be saved in its present condition,
replacing the original version. (See the Store and Store As sections of this
chapter for more information on storing resources.)

Store

Selecting the Store option causes the current resource window to be saved in
its present condition to the current file. The name given the resource will be
the name which appears at the Name prompt of the resource window's infor
mation notebook. If you have not entered a name for the resource in its infor
mation notebook or through a Store As operation, you will be queried for a
name before you can store the resource.

NOTE: Each time a store operation is performed, the previous contents of
the resource are completely replaced by the current information.

Zinc Designer



Store As

Store As... is generally used to store the current resource under another
name. Selecting it causes a window to appear that is similar to the following:

Objeclname:

~ REPORT_WINDOW

Resource. Store As...

.!2ireclories:

-- ---- .-

Cancel

Help

Objectname. Enter a name for the resource at the Objectname prompt, or, if
you want to replace a previously created resource with the current informa
tion, select one from the field below, and the name for that resource will
automatically appear at the prompt.

Other resources that belong to the current directory are listed, in alphabetical
order, in the scrollable field below the Objectname field. As mentioned
above, selecting one of these resources causes the name to appear in the
Objectname field. Double-clicking on a name listed in the files list will
cause that resource to be stored immediately.

Directories. The current window directory is shown below the I!irectories
prompt. Other window directories of the current file are listed in the field
below the current directory prompt. These two fields are for informational
purposes only and cannot be edited.

OK. Selecting this button causes the resource to be stored under the name
entered at the "Objectname" prompt. If the store operation is successful, the
"Resource IStore As..." window closes.

If you have entered a window name that already exists, a modal window will
appear, indicating such. If you select the "Yes" button of this window, the
current information replaces the original information of that file, and both

Zinc Designer 235



Window Options

236

the modal window and the "Store As" window close. Selecting the "No"
button simply closes the modal window and allows you to enter information
again in the "Store As" window.

Cancel. Selecting this button causes the window to close without executing
any changes.

Help. Additional information about storing resources appears when this but
ton is selected.

Clear

Selecting Clear causes the current resource window to be removed from the
screen. It does not, however, delete the resource from the file. If you have
not stored the current resource immediately before, selecting Clear causes a
modal window to appear that asks if you want to store it before clearing it
from the screen. Selecting Yes causes it to be stored and then cleared, select
ing No causes it to be cleared without storing it first, and selecting Cancel
simply closes the modal window and the resource is neither stored nor
cleared.

NOTE: In order to avoid unintentional clearing, Clear does not have a hot
key assignment. It can only be activated by selecting it from the menu with a
mouse or by scrolling to it and pressing <Enter>.

Clear All

Selecting Clear All causes all resource windows currently displayed to be
removed from the screen. It does not, however, delete any of those resources
from the file. If you have not stored any of the resources immediately before,
selecting Clear All causes a modal window to appear that asks if you want
to store them before clearing them from the screen. Selecting Yes causes the

Zinc Designer



window resources to be stored and then cleared, selecting No causes them to
be cleared without storing them first, and selecting Cancel simply closes the
modal window and the resources are neither stored nor cleared.

NOTE: In order to avoid unintentional clearing, Clear All does not have a
hot key assignment. It can only be activated by selecting it from the menu
with a mouse or by scrolling to it and pressing <Enter>.

Delete

The I!elete... option allows you to delete a resource window from the current
file. Selecting it causes a window similar to the following to appear:

=1
Objeclname:

._.- -
Resource. Delete...

!2ireclories:

-UI'w'_WINDOW

-

OK
~ REPORT_WINDOW

Ii

Cancel

Help

Objectname. Enter the name for the resource to be deleted at the Object
name prompt, or select one from the field below, and the name for that
resource will automatically appear at the prompt.

Other resources that belong to the current directory are listed, in alphabetical
order, in the scrollable field below the Objectname field. As mentioned
above, selecting one of these resources causes the name to appear in the
Objectname field.

Directories. The current window directory is shown below the I!irectories
prompt. Other window directories of the current file are listed in the field
below the current directory prompt. These two fields are for informational
purposes only and cannot be edited.

Zinc Designer 237



Window Options

OK. Selecting this button causes a modal window to appear which is similar
to the following:

~I Window. Delete...
1

238

Delele window '''WINDO'Wl''?

The purpose of this window is to make sure that you want to delete the
resource. If you select the OK button, the resource indicated at the Name
prompt is deleted from the current file, and both the confirmation window
and the Delete Resource window close. If you choose the Cancel button, the
resource is not deleted and just the confirmation window closes.

If the resource entered does not exist, you will receive an error message
when the OK button is selected.

If no information has been entered within the window, selecting OK causes
an error message to appear.

If the delete operation is successful, the Delete Resource window closes,
and the resource window, including its child objects (if any), is removed
from the screen and is deleted from the current file.

Cancel. Selecting this button causes the window to close without executing
any changes.

Help. Additional information about deleting resources appears when this
button is selected.

Zinc Designer



Test

The lest option allows you to test the objects of your current application
resource so that you can see how they will function for an end user. Selecting
lest causes the control window to be cleared from the screen and moves
your application into test mode, which looks similar to the following:

=1

Name:

Address:

Information 1"'1'"

In test mode the objects of your application will look and act as they will for
an end user. For example, check boxes and radio buttons will actually toggle
and scroll bars will actually scroll information. No objects can be created or
modified while in test mode.

When you have finished testing the resource, select the Exit Test button and
the screen will return to normal mode. The control window will be displayed
again, and you will be able to modify your application in any manner.

Zinc Designer 239



Window Options

240 Zinc Designer



Chapter 13 Object Options

The Object category provides options that allow you to actually create
objects. Selecting Qbject causes the following menu to appear:

Each of the options on this menu is a category under which several window
objects are classified. Selecting one of the options causes another associated
menu to appear, which lists the actual window objects of that category.

To create an object, select it from the associated menu. Position the mouse
cursor where you want the object to appear on the resource window and
press the left mouse button. Subsequently pressing the right mouse button
creates another instance of the most recently placed object which can then be
placed on the window.

Zinc Designer 241



Object Options

NOTE: All objects must be attached to a resource parent window; they can
not be attached directly to the screen. (See Chapter 12 for more information
on creating resource windows.)

The information notebook of each of these objects can be accessed by either
of the following methods:

. Select Edit IObject while the object is current

. Double-click on the object with the mouse

Each object created with Zinc Designer can be modified through interaction
with its object information notebook. Selecting Edit I Object causes the
information notebook for the current object to appear, which is similar to the
following:

...!lK Cancel I 1 H..,e'p",--..I

Name: I<UNTITLED>

Help: IINonel

----- Support Featules ----

~ BOlder

I ~ Naximize Bullon
Title: I<untilled> .

I
l:l:t ~ Ninimize Bullon

Ninlcon: _1_N_on_e_l --,---JI.:J ~ System Button

o Geometry Management

I 0 Veltical Scroll-Bar

Iii 0 Horizontal Scroll-Bar
... _. Type .....

@Default-

The object information notebook controls the general presentation of the
object. Each information notebook is divided into notebook pages that con
tain related information. To summon the information contained in a page,
simply click on its title tab with the mouse. Since each object has its own
specific requirements, each information notebook's pages and their related
fields will vary, but all contain one or more of the pages described in the next
several sections.

(See Chapter 14 through Chapter 17 for more specific information regarding
individual field objects.)

(NOTE: The remainder of this chapter is identical to the information given
in the Object section of the Edit chapter.)

Each notebook page within the information notebook includes three buttons
which operate in the following manner:

242 Zinc Designer



General page

OK. Selecting this button saves the edit information and closes the object
information notebook. The current object will reflect the editing changes
immediately. If no information has been entered within the object informa
tion notebook, its window will close with no other action taking place.

Cancel. Selecting this button causes the window to close without executing
any changes.

Help. Additional information about the current object appears when this but
ton is selected. Help information is unique for each page. The contents
depend on the type of object and the current page.

The General notebook page (shown above) contains information related to
the specific object being edited. It is always the first page visible upon enter
ing the information notebook. Since each object is different, the editable
properties will vary, but the following fields are common to most objects:

Text or Value. This field allows you to enter information to be displayed
within the object exactly as you want it to appear in your application.
Objects that use the Text field are:

· string

· formatted string

· text

· button

· radio button

· check box

· pull-down item

· pop-up item

· prompt, and

· group.

Some objects have a field similar to Text, but the name Value is used in
place of Text. Objects that use the Value field are:

· date

· time

· bignum

· integer, and

· real.

Zinc Designer 243



Object Options

244

Compare. Some objects allow a compare function, which is typically used to
sort information. If you want to have a compare function associated with the
object, you can enter the function's name in this field.

When using a compare function, the function itself must be defined some
where in your code with the same name that is entered in the information
notebook. This is necessary so that Zinc can find it and execute the desig
nated action. (For more information on creating compare functions, refer to
the description of the object's constructor in the Programmer's Reference.)

Name. This field contains the name (sometimes called a string identification)
for the object and is present in every object information notebook. The
default name for an unnamed object attached to another object is FIELD
plus a unique number corresponding with the order in which it was attached
to the parent window. For example, the default name for the second object
created within a resource window would be FIELD_2.

Because these objects appear in various lists throughout the program, it is
recommended that you override the default name and enter a string that more
specifically identifies the object. The name will appear in all locations
exactly as you have entered it in the object's information notebook.

Help. This field designates the help context to be associated with the object.
Select the combo box button to view a list of the available help contexts. If
you select one of the help contexts listed, the help message of that context
will be displayed whenever the user positions on the object and requests
help. (See the Help Editor section of Chapter 18 for information on creating
help contexts.)

options list. This field is located on the right side of the General page. It dis
plays options which control the general presentation and operation of the
object. All of these items are listed with either check boxes or radio buttons.
To toggle an option from selected to unselected or vice versa, select it by
either clicking on it with the mouse or by scrolling to it and pressing
<space>. There is no limit to the number of check box options that can be in
effect at a given time. However, only one radio button option per designated
group can be in effect at one time.

Zinc Designer



Position page The Position notebook page contains information related to an object's posi
tion, border, region, and alignment. Selecting the Position tab causes a page
similar to the following to appear:

General Geometry Advanced

[Q]
column: 8=:J c=J E:J
line:~ c=J~

width: 8=:J L:=J~
height: c=J [==:J~

II"",,;;; ~I I !:!elp

The fields of the Position page are the same for every object. They are as fol
lows:

Position/Size. This field allows you to alter the positioning and size of the
object. The first row within the field contains the following three buttons that
determine the coordinate scale to be used:

· pixel. Depressing the left button causes screen coordinates to be based on
a pixel scale. This option allows for the greatest precision in positioning
and sizing. It is only applicable in graphics mode.

• mini-cell. Depressing the middle button causes screen coordinates to be
based on a mini-cell scale, which is 1110 of a cell coordinate by default.
This option allows for more precision than the cell option, but less than
the pixel option. It is applicable in graphics mode only.

· cell. Depressing the right button causes screen coordinates to be based on
a whole cell scale. This is the default setting.

Underneath each button in the Position/Size field is a column of fields that
display the precise location and size of the object. These are based upon the
coordinate option selected, such as pixel, minicell, or cell. Only the column
underneath the currently selected option is selectable and editable.

The top two fields of each column, column and line, determine the object's
location. Changing the numbers in either or both of these fields will cause
the object to move to the corresponding coordinates on the screen.

Zinc Designer 245



Object Options

Geometry page

246

The lower two fields, width and height, determine the object's size. Chang
ing the numbers in either or both of these fields will cause the object to alter
in size according to the coordinate scale being used. For example, if the cell
option is in effect, entering a width of 20 and a height of lOin the cell col
umn would produce an object that is 20 cells wide and 10 cells high.

Border. The two buttons contained in this field determine whether or not the
object is displayed with a border. Depressing the left button causes the object
to be displayed without a border, while depressing the right button causes a
border to be displayed.

Region. The two buttons contained in this field determine the region allo
cated for the object. Depressing the left button causes the object to occupy
the region specified by the values displayed in the Position/Size field.
Depressing the right button causes the object to ignore its position and size
parameters and occupy the remaining available space in its parent window.

Alignment. The three buttons contained in this field determine the alignment
of the text within the object. Depressing the left button causes the text to be
justified to the left margin, depressing the middle button causes the text to be
centered, and depressing the right button causes the text to be justified to the
right margin. For objects that do not contain text, such as scroll bars, the
Alignment field is shaded, indicating that it is not selectable.

The Geometry notebook page allows you to place constraints on an object
that specify how the object should be sized and positioned under specific
conditions. For example, using geometry management, you can determine
how an object will react to re-sizing of its parent object-whether it stays at
a fixed location or moves relative to the parent, whether it stays the same
size or grows with the parent, etc.

Geometry management also allows you to establish a connection relation
ship between two child objects and to set size constraints for individual
objects.

Zinc Designer



Selecting the Geometry tab causes a page similar to the following to appear:

General Position GeomehV Advanced

OK Cancel I I Help

Constraint Features
offset: 12 I

options: o stretch ~o opposite ....
o hz-center

~~

anchor: I<untilled> Ii]
Size Restrictions--------,
[II:=J <= width <= [II:=J
rr=:::J <= height <= rr=:::J

The fields of the Geometry page are the same for every object. They are as
follows:

attachment group. This area, located on the left side of the page, is designed
to visually represent the relationship between the current object and its sur
roundings. The small square in the center represents the object itself, and the
four lines, one radiating from each side of the square, represent possible con
nections to the surrounding objects. Each line ends at a combo box field
which displays the type of connection for that line.

To change the type of connection, select the combo box button and a list of
available types will be displayed. The following three types are available:

· none. Indicates that no connection is in effect.

· relative. Causes the object's border to position itself within its parent rel
ative to the parent's borders. In this case, the value entered into the offset
field (described below) will represent a percentage ratio for placement.
For example, if an object's left connection has an offset value of 10, it
will always be placed within the parent's left border at a distance measur
ing 10 percent of the parent object's size. Therefore, if the parent object
measures 20 minicells wide, the child's left border will be two minicells
within the parent's left border. If the parent is subsequently enlarged to be
100 rninicells wide, the child will reposition at the edge of the tenth min
icell.

NOTE: A relative connection is possible only between a child object and
its parent-not between two child window objects.

· absolute. Causes the object's border to position itself relative to its parent
or sibling object at a fixed distance. In this case, the value entered into
the offset field (described below) will represent a fixed measurement for

Zinc Designer 247



Object Options

248

placement. For example, if an object's left connection has an offset value
of 10, it will always be placed within the parent's left border at a distance
measuring 10 units of whatever coordinate scale is in effect (i.e., pixel,
mini-cell, or cell). Therefore, if the parent object measures 20 minicells
wide, the child's left border will be ten minicells within the parent's left
border. If the parent is subsequently enlarged to be 100 minicells wide,
the child will remain at the edge of the tenth minicell.

It should be noted that the more connections are made on an object the more
likely it is that conflicts will arise. For example, if an object has a left abso
lute connection offset at 10 cells and a right absolute connection offset at 20
cells, it is reasonable to assume that both constraints cannot always be
accommodated. In such cases, an established priority schedule is put into
effect that settles the conflict. The priority schedule is as follows:

· 1st priority-left

• 2nd priority-top

• 3rd priority-right

• 4th priority-bottom

Therefore, in our example above, the left connection would consistently off
set the designated 10 cells, while the right connection would be overridden
to accommodate the left.

Constraint features. This group determines the constraint features of the
connection in the attachment group currently being edited. It contains the
following fields:

offset. Determines the offset of the current connection, or the amount of
space between its inside and outside anchors. The actual measurement of
the value depends upon whether the connection is relative, in which case
the value represents a percentage ratio, or absolute, in which case the
value represents a fixed measurement. (See the attachment group sec
tion above for further information on connection types.) The value of this
number also depends upon the coordinate scale in effect (either pixel,
minicell, or cell) for the current object. For example, for an object using
pixel units, an absolute connection's offset of 20 would translate into a
blank space measuring 20 pixels. (For further information on coordinate
scales, see the Position page section, page 245, of this chapter.)

options. Presents several options that alter the typical behavior of the
connections. The following options are available:

Zinc Designer



stretch. Causes the actual object to stretch or shrink as the anchor border
is moved. For example, an object with a bottom connection to its parent
window's bottom border will stretch vertically as the window's bottom
border is pulled downward.

opposite. Causes the connection to be anchored to the opposite border of
the object designated in connect. For example, if object A is located to
the left of object B and its left border connection is set to run to object
B, then the connection will actually be anchored to object B's right bor
der.

hz-center. Causes the connection to be anchored from the horizontal
center of the current object. This allows for more consistent placement,
especially when centering the object. This option is selectable for a rela
tive connection only.

vt-center. Causes the connection to be anchored from the vertical center
of the current object. This allows for more consistent placement, espe
cially when centering the object. This option is selectable for a relative
connection only.

. anchor. This field determines what the current connection is anchored to.
As in the above examples, it is common for an object to run connections
to the border of its parent object, such as a parent resource window. How
ever, it is also possible to run absolute connections to other objects.

The anchor field applies to each connection individually, not to all four
collectively. Therefore, it is possible to have each border of the object
connected to a different object or parent border. The anchor field dis
plays the anchor for the connection currently being edited.

To choose an anchor for the current connection, first select a relative or
absolute connection (described above), then select the anchor field's
combo box button. A list that includes the surrounding objects and the
parent object will appear. Selecting one of these displays the object's
name in the anchor field.

NOTE: Since a relative connection can only be anchored to its parent
object, the anchor field is not selectable when the current connection is
relative.

Size Restrictions. This field determines the minimum and maximum size for
the object. The first row determines the range of width values, while the sec
ond row determines the range of height values. The first value of each row
represents the minimum size possible, and the second the maximum possi-

Zinc Designer 249



Object Options

Advanced page

250

ble. All of these values are measured in cell units. For example, an object
with a minimum width value of 5 and a maximum value of 20 is constrained
to be no less than 5 cells wide but no greater than 20 cells.

The Advanced notebook page contains information relating to the advanced
properties of an object. It is designed for use by the experienced user only.

General 1 Position I Geometry I Adyanced

~ NumberlD: 11 I ----- Interaction ----- ~

Callback: I 1m @ Normal_intc,raction i-'
o View only

o Non-selectable
UserObjecl: 1 1 o Non-current

UserFlags: 10 I ----- Data Settings -----

UserStatus: 10 I D Mark as INVALID

Deriyed Name: I(None) 1m D Mark as UNANSWERED

----- Miscellaneous -----

I OK I I Cancel I I I
D Don't deallocate data

f-Help n Allnlll nhi..... t .l."nn;nn +

The following fields are common to most objects:

Number/D. This field assigns a unique programmer number to the object. By
default this number corresponds to the order in which the object was created
in the program.

Callback. If you want to have a callback function, or user function, associ
ated with the object, you can enter the function's name in this field. A call
back function causes a designated action to occur when the user interacts
with the object.

When using a callback function, the function itself must be defined some
where in your code with the same name that is entered in the information
notebook. This is necessary so that Zinc Designer can find it and execute the
designated action. (For more information on creating callback and compare
functions, refer to the description of the object's constructor in the Program
mer's Reference.)

UserObject. This field designates a void pointer to a user-specified object.

UserFlags. This field contains any flags that are set and maintained by the
programmer.

Zinc Designer



User Status. This field contains any status flags that are set and maintained
by the programmer.

Derived Name. This field contains the name of the derived class to inherit
the properties of the current object. If a name is entered, the object table in
the .CPP file, generated by the Designer, will contain an entry for the
derived object's New( ) function. As part of the code for the derived class,
the programmer must create a static New( ) function that is able to call the
constructor for the derived class. The .HPP file will contain a definition of
the derived class' identification.

options list. This field is located on the right side of the Advanced page, and
it displays options which control the advanced properties and operations of
the current object. All of these items are listed with either check boxes or
radio buttons. To toggle an option from selected to unselected or vice versa,
select it by either clicking on it with the mouse or by scrolling to it and press
ing <space>. There is no limit to the number of check box options that can
be in effect at a given time. However, only one radio button option per desig
nated group can be in effect at one time.

Options that are not applicable to the current object are grayed out, meaning
that they cannot be selected.

The first section of the list presents options that determine the extent to
which the end user can interact with or edit the object. Only one of these can
be current at a time. The options are:

· Normal interaction. Allows the end user to have normal interaction with
the object, including being able to select, position on and edit it (if it is an
editable object).

· View only. Prevents the object from being edited. If this flag is set, the
end user will not be able to edit an object's information but will be able to
browse through the information.

· Nonselectable. Prevents the object from being selected. If this flag is set,
the user will not be able to edit or position on the object's information.

· Noncurrent. The object cannot be made current. If this flag is set, users
will not be able to select the object from the keyboard nor with the
mouse.

Zinc Designer 251



Object Options

Subobjects page

The second section of the list presents options that determine the initial set
tings of the object. The options are:

. Mark as INVALID. Sets the initial status of the object to be invalid. This
forces the user to enter an acceptable value before moving to another
field.

• Mark as UNANSWERED. Sets the initial status of the field to be unan
swered. An unanswered field is displayed as blank space on the screen.

The third section of the list presents options that determine other default set
tings for the object. The options are:

Don't allocate data. Causes the object to not allocate its own buffer for
data. If this option is set, you must allocate a buffer that will be used to
store the object's data.

Allow object dragging. Allows the object to be dragged in a drag and
drop operation.

Allow object dropping. Allows objects to be dropped onto the current
object in a drag and drop operation.

Support object. Causes the object to be placed in the parent object's sup
port list. The support list is reserved for objects that are not displayed as
part of the user region of the window, such as a window's border and title.

Objects which can host other objects also contain a Subobjects notebook
page within their information notebooks. This page allows you to modify the
subobjects.

General T Subobjects I Position l' Geometry Advanced I

..:::.. ~.':'I.J:lI;I.?~~ ..~.~j.~l::.t.~ :.:.: ~ <untilled>
C NUMID_BOROER 1-0 El NUMIO SYSTEM

G NUMIO_MAXIMIZE

G NUMIO_MINIMIZE

El NUMIO_SYSTEM

NUMIO_TITLE
t--_-__ -No-rm-a-IO-b--=je=--ct-s-------I".-

Objects: Directories:

Edit I
Add I

Delete I
I Move Up I
IMove Down I

252

OK I I Cancel I I Help

It contains the following fields:

Zinc Designer

1_~_w_i_nd_Ow ---J~



Objects. This field displays the objects, listed in the order in which they were
created, that are attached to the current object. The list is divided into two
sections, the first for support objects, or objects that are not displayed as part
of the user region, and the second for normal objects. The information note
book of anyone of these objects can be accessed by one of the following
methods: double click on the desired object with a mouse, scroll to it and
press <Space>, or click on the Edit button while it is highlighted in the list.

To move an object in the list up one line, either select the Move Up button,
or hit <Ctrl up-arrow>. To move an object down in the list one line, either
select the Move Down button, or hit <Ctrl down-arrow>. Moving an object
changes the tab order of objects on the screen. For list item objects, such as
pop-up items, it changes the order that the items appear within the parent
lists. To delete an object from the list, either select the Delete button, or hit
<Ctrl Delete>.

Directories. This field displays the other objects-both parent and subob
jects-that are related to the current object. Double clicking on one of the
names (or hitting <Enter> while the name is current) causes the Objects
field to display the subobjects of the selected object. This feature allows you
to move within an extensive hierarchy-such as a pull-down menu-without
having to interact with every level of it.

Edit. Selecting this button causes the information notebook of the object
highlighted in the Objects list to appear.

Add. Selecting this button causes the object appearing in the combo box
(located in the lower right corner of the page) to be added to the object being
edited. The new subobject's name will immediately appear at the end of the
Objects list.

Delete. Selecting this button causes the highlighted object in the Objects list
to be deleted. «Ctrl Delete> also performs this action.)

Move Up. Selecting this button causes the highlighted object in the Objects
list to move up one line in the list. «Ctrl up-arrow> also performs this
action.) Moving an object changes the tab order of objects on the screen. For
list item objects, such as pop-up items, it changes the order that the items
appear within the parent lists.

Zinc Designer 253



Object Options

254

Move Down. Selecting this button causes the highlighted object in the
Objects list to move down one line in the list. «Ctrl down-arrow> also per
forms this action.) Moving an object changes the tab order of objects on the
screen. For list item objects, such as pop-up items, it changes the order that
the items appear within the parent lists.

add object combo box. This field designates the type of object to be added
when the Add button (described above) is selected. Select the combo box
button to view a list of the available objects. If you select one of the objects
listed, it will be added to the current parent object whenever the Add button
is selected.

To test how an object will actually appear and function for the end user, try it
in test mode, which is accessed by selecting Window IJest while the parent
resource window is active. (See Chapter 12 for more information on testing
objects.)

A description of each window object, grouped according to its category type,
is documented in the following four chapters. For more specific information
on how these objects are created, refer to the Programmer's Reference.

Zinc Designer



Chapter 14 Input Objects

The input category includes objects that are used specifically for data input.
Selecting the Input option causes the following associated menu to appear:

ISO - Window Editor - <no file>

Bignum
Integer
Real

Date
Time

String
Formatted String
Text

Input
Control
Selection
Other

size:

~indow Qbject tielp

type: I
name: 'I-==-=---

file Edit

Zinc Designer 255



Input Objects

General

256

String

A string object is used to present and collect alphanumeric string information.
Selecting String causes the following object to appear:

Istring

The string object may be placed by clicking on the window with the left
mouse button. To modify the string object, call its information notebook by
double clicking the mouse on the object. The following window will appear:

General f Position J GeometrY 1 Advanced i- ----- Inpul Formal -----

I..@.!ormal

o Lower-case
Tex!: 1siring I

132 I
o Upper-case

cLength: o Password (....)

----- Inpul Conversion .....

Name: IFIELD_1 I D Spaces 10 underscores

Help: 1<none> m~ Automalil::all, highlighl data

I OK I I Cancel I I Help I

The General page contains information related specifically to the string
object being edited. It contains the following fields:

Text. This field allows you to enter information to be displayed within the
object exactly as you want it to appear in your application. If it contains
more characters than the Length limitation allows, only the number of char
acters that fall within the limit will be displayed. If the string object is not
long enough to display all of the entered text, it can be sized using the mouse
or the arrow keys.

Length. The number in this field determines the number of characters that
the string object will display. The default length is 32. The maximum length
is 32,767.

Name. Enter in this field a name that will distinguish the string object from
other objects on the window.

Zinc Designer



Position

Geometry

Advanced

Help. This field designates the help context to be associated with the string.
Select the combo box button to view a list of the available help contexts. If
you select one of the help contexts listed, the help message of that context
will be displayed whenever the user positions on the string and requests help.
(See Chapter 20 for information on creating help contexts.)

options list. The options that control the presentation of the string object are
listed in the field on the right half of the window. The first section presents
options for formatting the string's input. Only one of these can be selected at
a time. The options are:

· Normal. Causes the character input to be displayed exactly as it is
entered.

· Lowercase. Converts all character input to lowercase values.

· Uppercase. Converts all character input to uppercase values.

· Password. Causes the characters entered into the string field to not be
echoed to the screen; rather, the default character that is environment spe
cific is printed for each character typed.

The second section of the list presents options for converting character input.
The options are:

· Spaces to underscores. Converts the space character to an underscore
value.

· Automatically highlight data. Causes the string to be highlighted when
the user tabs to the string field (from another window field). If the user
presses a key, without first having pressed any movement or editing keys,
the string buffer will be cleared immediately.

The Position page contains information related to the string's position, bor
der, region and alignment. For detailed information on the Position page,
refer to the general description on page 213.

The Geometry notebook page allows you to place constraints on a string
object that specify how the object should be sized and positioned under spe
cific conditions. For detailed information on the Geometry page, refer to the
general description on page 214.

The Advanced page contains information related to the advanced properties
of the string. It is designed for interaction by the experienced user only. For
detailed information on the Advanced page, refer to the general description
on page 218.

Zinc Designer 257



Input Objects

Formatted string

A formatted string object is used to display and collect information that
requires a specific format. For example, telephone numbers and zip codes
are best presented as formatted strings. Selecting Formatted String causes
the following object to appear:

Ilu) u.-u.

To modify the formatted string object, call its information notebook. The fol
lowing window appears:

Genelal J Position I Geometry I Advanced

Text: 1 . .

Edit: ILNNNLLNNNLNNNN

Delete: 11 ) --.-----

Name: IFIELD 1

Help: I<none>

OK I I Cancel I I Help

I
Ii]

----- Input Conversion -----

[gfA~i~;;;~ii~~iiY'hi~hii'~ht'd~i~"'"

General

258

The General page contains information related specifically to the formatted
string object being edited. It contains the following fields:

Text. Enter text in this field as you want it to initially appear in the formatted
string object. It must conform to the specifications set by the Edit and Delete
fields. For example, a string 8017858900 would be appropriate for a U.S.
formatted telephone number.

Zinc Designer



Edit. This field determines the type of characters that the formatted string
will accept. The following characters can be used to define the edit mask:

a. Allows the end user to enter a space (' ') or any letter (i.e., 'a' through
'z' or 'A' through 'Z').

A. Same as the' a' character option except that a lowercase letter is auto
matically converted to an uppercase letter.

c. Allows the end user to enter a space (' '), a number (i.e., '0' through
'9'), or any alphabetic character (i.e., 'a' through 'z' or'A: through 'Z').

C. Same as the 'c' character option except that a lowercase character is
automatically converted to uppercase.

L. Uses this position as a literal place holder. Using this character causes
the formatted string to get the character to be read and displayed from the
literal mask. The end user cannot edit this character.

• N. Allows the end user to enter any digit.

• x. Allows the end user to enter any printable character (i.e., , , through
'-').

• X. Same as the 'x' character option except that a lowercase letter is auto-
matically converted to an uppercase alphanumeric letter.

Enter in the Edit field a string of characters that will define the acceptable
format for the string. For example, an edit mask of LNNNLLNNNLNNNN
would be appropriate for a U.S. formatted telephone number.

Delete. Enter into this field a string ofliteral characters that will be used when
ever a character is deleted from a particular position in the formatted string. For
example, a string of ( .. ) ... -.... would be appropriate for a U.S. formatted
telephone number.

Name. Enter in this field a name that will distinguish the formatted string
object from other objects on the window.

Help. This field designates the help context to be associated with the format
ted string. Select the combo box button to view a list of the available help
contexts. If you select one of the help contexts listed, the help message of
that context will be displayed whenever the user positions on the formatted
string and requests help. (See Chapter 20 for information on creating help
contexts.)

Zinc Designer 259



Input Objects

Position

Geometry

Advanced

260

options list. The options that control the presentation of the string object are
listed in the field on the right half of the window. The following input con
version option is available:

. Automatically highlight data. Causes the current formatted string value
to be highlighted when the user tabs to the field (from another window
field). If the user presses a key, without first having pressed any move
ment or editing keys, the formatted string buffer will be cleared immedi
ately.

The Position page contains information related to the string's position, bor
der, region and alignment. For detailed information on the Position page,
refer to the general description on page 213.

The Geometry notebook page allows you to place constraints on a string
object that specify how the object should be sized and positioned under spe
cific conditions. For detailed information on the Geometry page, refer to the
general description on page 214.

The Advanced page contains information related to the advanced properties
of the string. It is designed for interaction by the experienced user only. For
detailed information on the Advanced page, refer to the general description
on page 218.

Text

A text object is used to present and collect alphanumeric textual information
in a multi-line format. Selecting Text causes the following box to appear:

D
Zinc Designer



General

To modify the text object, call its information notebook. The following win
dow will appear:

General~= I Position ·1 Geometry 1 Advanced 1

'-:-j'"" ~
----- Supporl Fealures -----

~ Vertical scroll-bar

D Horizonlal scroll-bar
..... Inpul Formal -----

~ Don't wrap-text in field
Length: 1256 I ~ .Automatically highlight data

IFIELD I
-

Name: 1

Help: I<none> I!J

I OK I I .l;.ancel I I .!::!.elp I
-

The General page contains information related specifically to the text object
being edited. It contains the following fields:

Text. This field allows you to enter information to be displayed within the
object exactly as you want it to appear in your application. If it contains
more characters than the Length limitation allows, only the number of char
acters that fall within the limit will be displayed. If the text object is not large
enough to display all of the entered text, it can be sized using the mouse or
the arrow keys.

Length. The number in this field determines the number of characters that
the text object will display. The default length is 256. The maximum length
is 32,767.

Name. Enter in this field a name that will distinguish the text object from
other objects.

Help. This field designates the help context to be associated with the text
object. Select the combo box button to view a list of the available help con
texts. If you select one of the help contexts listed, the help message of that
context will be displayed whenever the user positions on the text object and
requests help. (See Chapter 20 for information on creating help contexts.)

Zinc Designer 261



Input Objects

Position

Geometry

Advanced

262

options list. The options that control the presentation of the text object are
listed in the field on the right half of the window. The first section presents
options for support features. The options are:

· Vertical scroll bar. Adds a vertical scroll bar inside the right border of the
text field.

· Horizontal scroll bar. Adds a horizontal scroll bar inside the bottom bor
der of the text field.

The second section of the list presents options for formatting input. The
options are:

· Don't wrap text infield. Disables the default word wrap in the text field.

· Automatically highlight data. Causes the current text value to be high
lighted when the user tabs to the field (from another window field). If the
user presses a key, without first having pressed any movement or editing
keys, the text buffer will be cleared immediately.

The Position page contains information related to the text object's position,
border and alignment. For detailed information on the Position page, refer to
the general description on page 213.

The Geometry notebook page allows you to place constraints on a text
object that specify how the object should be sized and positioned under spe
cific conditions. For detailed information on the Geometry page, refer to the
general description on page 214.

The Advanced page contains information related to the advanced properties
of the text object. It is designed for interaction by the experienced user only.
For detailed information on the Advanced page, refer to the general descrip
tion on page 218.

Date

A date field displays and collects date information. Selecting nate causes a
date field to appear that contains the current date, similar to the figure below:

10/26/1994

Zinc Designer



General

To modify the date, call its information notebook. The following window
will appear:

General 1 Position T Geometry I Advanced I
II ..... Display Format ----- I.!.

D Short alphanumeric day I-

Value: IAugust 26. 1994 I D Alphanumeric day·ol·week

I.' Range: I I
D Short alphanumeric month

D Alphanumeric month

D Short year

Name: IFIELD 1 I D Format upper·case

Help: I<none> Iii D Pad date with zeros

D Fill blanks with system values

I OK I I Cancel I I Help I
IZI Automatically highlight data

f---,
••••• <:An~,~lno~ ••••• +

The General page contains information related specifically to the date
object being edited. It contains the following fields:

Value. Enter in this field the date that you want to appear in the date object.
In the U.S., the default format to which this date will be automatically con
verted is month, day, year, with the month spelled out.

Range. If you want to specify a certain range of acceptable dates, enter in
this field the valid date ranges. This range is in a universal year-month-day
format. For example, if you want to accept only those dates within the 1995
calendar year, enter the range of 1995-1-1.. 1995-12-31. If no range is
entered, any date will be accepted.

Name. Enter in this field a name that will distinguish the date object from
other objects in the window.

Help. This field designates the help context to be associated with the date
object. Select the combo box button to view a list of the available help con
texts. If you select one of the help contexts listed, the help message of that
context will be displayed whenever the user positions on the date object and
requests help. (See Chapter 20 for information on creating help contexts.)

options list. The options that control the presentation of the date object are
listed in the field on the right half of the window. The first section presents
options for formatting input. The options are:

. Short alphanumeric day. Adds a shortened day-of-week text to the date.

Zinc Designer 263



Input Objects

264

o Alphanumeric day-of-week. Adds an ASCII day-of-week string to the
date.

o Short alphanumeric month. Uses a shortened alphanumeric month in the
date.

o Alphanumeric month. Formats the month to be displayed as an ASCII
string value.

· Short year. Forces the year to be displayed as a two-digit value.

• Format uppercase. Converts the alphanumeric date to uppercase.

o Pad date with zeros. Forces the year, month and day values to be zero
filled when their values are less than 10.

o Fill blanks with system value. Fills a blank date with the system date. For
example, if a blank date were entered by the end user and this option
were set, the date would be set to the system date.

o Automatically highlight data. Causes the current date value to be high
lighted when the user tabs to the date field (from another window field).
If the user presses a key, without first having pressed any movement or
editing keys, the date buffer will be cleared immediately.

The second section presents options for separating date values. The options
are:

• System defaults. Separates each date value according to the default set
tings for the current system, which is typically using hyphens as separa
tors for U.S. formats.

o Dash separators. Separates each date value with a dash, regardless of the
default country date separator.

o Slash separators. Separates each date value with a slash, regardless of
the default country date separator.

Zinc Designer



Position

Geometry

Advanced

The third section presents options for formatting according to country and
military standards. The options are:

· System default format. Formats the date according to the default settings
for the current system (e.g., month/day/year for U.S. formats).

· European format. Forces the date to be displayed and interpreted in the
European format (i.e., day/month/year), regardless of the default country
information.

· Asian format. Forces the date to be displayed and interpreted in the Far
East Asian format (i.e., year/month/day), regardless of the default coun
try information.

• Military format. Forces the date to be displayed and interpreted in the
U.S. Military format (i.e., day month year where month is a 3 letter
abbreviated word), regardless of the default country information.

· U.S. format. Forces the date to be displayed and interpreted in the U.S.
format (i.e., month/day/year), regardless of the default country informa
tion.

The Position page contains information related to the date object's position,
border, region and alignment. For detailed information on the Position page,
refer to the general description on page 213.

The Geometry notebook page allows you to place constraints on an object
that specify how the object should be sized and positioned under specific
conditions. For detailed information on the Geometry page, refer to the gen
eral description on page 214.

The Advanced page contains information related to the advanced properties
of the date object. It is designed for interaction by the experienced user only.
For detailed information on the Advanced page, refer to the general descrip
tion on page 218.

Zinc Designer 265



Input Objects

General

266

Time

A time field displays and collects time information. Selecting lime causes a
time field to appear that contains the current time, similar to the figure
below:

To modify the time object, call its information notebook. The following win
dow will appear:

General I Position T Geometry T Advanced

----- Display Format ----- ~
I ~ o Include hundredths ~

II
Value: 110:50 a_m_ I o Include seconds

Il
o No minutes

Range: I I o No hours

I: o Pad date with zeros

II
Name: IFIELD 1 I o Fill blanks with system values

Help: I<none> Iii [8] Automatically highlight data

----- Separators -----

I !!K I I Cancel I I Help I
@ System defaults

hn .... n"..n .., ..lm" +

The General page contains information related specifically to the time
object being edited. It contains the following fields:

Value. Enter in this field the time that you want to appear in the time object.
This time will be automatically converted to the appropriate country format.
For example, the format in the U.S. is hour:minutes a.m. or hour:minutes
p.m. A space between numbers will be interpreted as a colon, and necessary
periods (for a.m. and p.m.) are automatically inserted. Since any hour value
under 12 is interpreted as morning, it is necessary to enter p.m. if the hour
value is meant to be in post-meridian time and you are using a 12-hour
clock. If you enter the time value according to a 24-hour clock, there is no
need to enter a.m. or p.m.-the object will interpret and convert the value
into the default format. Again, the time value's default formatting is country
dependant.

Range. If you want to specify a certain range of acceptable time values, enter
in this field the valid time ranges. For example, if you want to accept only
those times whose values fall in post-meridian time, enter the range of
12:00.. 23:59:59. If no range is entered, any time value will be accepted.

Zinc Designer



Name. Enter in this field a name that will distinguish the time object from
other objects on the window.

Help. This field designates the help context to be associated with the time
object. Select the combo box button to view a list of the available help con
texts. If you select one of the help contexts listed, the help message of that
context will be displayed whenever the user positions on the time object and
requests help. (See Chapter 20 for information on creating help contexts.)

options list. The options that control the presentation of the time object are
listed in the field on the right half of the window. The first section presents
options for display format. The options are:

· Include hundredths. Includes the hundredths value in the time. (By
default the hundredths value is not included.)

· Include seconds. Includes the seconds value in the time. (By default the
seconds value is not included.)

· No minutes. Does not display nor interpret a minute value for the time
object.

· No hours. Does not display nor interpret an hour value for the time
object.

· Pad date with zeros. Forces the hour, minute and second values to be zero
filled when their values are less than 10.

· Fill blanks with system values. Fills a blank time with the system time.
For example, if a blank ASCII time value were entered by the end user
and the this option were set, the time would be set to the current system
time.

· Automatically highlight data. Causes the current time value to be high
lighted when the user tabs to the time field (from another window field).
If the user presses a key, without first having pressed any movement or
editing keys, the time buffer will be cleared immediately.

The second section presents options for separating time values. The options
are:

· System defaults. Separates each time value according to the default set
tings for the current system. For example the U.S. format separator is a
colon.

· No separators. Does not use any separator characters to delimit the time
values.

· Colon separators. Separates each time value with a colon.

Zinc Designer 267



Input Objects

Position

Geometry

Advanced

268

The third section presents options for formatting time input. The options are:

· Normal. Does not convert the input into lower nor uppercase, but dis
plays it as it is entered by the end-user.

· Format lowercase. Converts the time to lowercase.

· Format uppercase. Converts the time to uppercase.

The fourth section presents options for formatting according to country stan
dards. The options are:

· System default format. Formats the date according to the default settings
for the current system. For example, the U.S. format is based on a 12
hour clock.

· 24 hour. Forces the time to be displayed and interpreted using a 24-hour
clock, regardless of the default country information.

· 12 hour. Forces the time to be displayed and interpreted using a l2-hour
clock, regardless of the default country information.

The Position page contains information related to the time object's position,
border, region and alignment. For detailed information on the Position page,
refer to the general description on page 213.

The Geometry notebook page allows you to place constraints on an object
that specify how the object should be sized and positioned under specific
conditions. For detailed information on the Geometry page, refer to the gen
eral description on page 214.

The Advanced page contains information related to the advanced properties
of the time object. It is designed for interaction by the experienced user only.
For detailed information on the Advanced page, refer to the general descrip
tion on page 218.

Zinc Designer



Bignum

A bignum object is used to display and collect numeric information. It can be
formatted in various ways, such as for numbers presented as percentages,
currency and credit. Selecting Bignum causes the following object to
appear:

10.00000000

To modify the bignum object, call its information notebook. The following
window will appear:

t.ancel I I Help

Advanced

----- Display Formal ----

D CURRENCY symbols

D CREDIT symbols

D COMMA separators

D PERCENT symbol

----- Input Formal -----

I ~ Automatically highlighi data

Ii]

I
I (-1 ..9)

PositionGeneral

cName: IFIELD 1

Help: 1<none>

Value: 10.00000000

PJecision: 1-1
~======....:~:....----,

Range: ......, ----'

General The General page contains information related specifically to the bignum
object being edited. It contains the following fields:

Value. Enter in this field the number that you want to appear in the bignum
field. The number will be displayed with the number of decimal places des
ignated by the Precision field. A bignum object can have up to thirty digits
to the left of the decimal place and up to eight digits to the right of the deci
mal place.

Precision. Enter in this field the number of decimal places to be displayed.
Any whole number from -1 to 9 is acceptable.

Range. If you want to specify a certain range of acceptable bignum values,
enter in this field the valid bignum range. For example, if you want to accept
only numbers between 100 and 100,000, enter the range of 100.. 100000. If
no range is entered, any numeric value will be accepted.

Zinc Designer 269



Input Objects

Position

Geometry

270

NOTE: When specifying the range, Zinc requires that decimal places be
separated by periods, regardless of the country's standard format.

Name. Enter in this field a name that will distinguish the bignum object from
other objects on the window.

Help. This field designates the help context to be associated with the bignum
object. Select the combo box button to view a list of the available help con
texts. If you select one of the help contexts listed, the help message of that
context will be displayed whenever the user positions on the bignum object
and requests help. (See Chapter 20 for information on creating help con
texts.)

options list. The options that control the presentation of the bignum object are
listed in the field on the right half of the window. The first section presents
options for formatting how the bignum is displayed. The options are:

· CURRENCY symbols. Displays the number with the country-specific
currency symbol.

· CREDIT symbols. Displays the number with the country-specific credit
symbols whenever the number is negative (e.g., '(' and 'r in U.S for
mat).

· COMMA separators. Displays the number with commas.

· PERCENT symbol. Displays the number with a percentage symbol.

The second section presents the following option for formatting input:

· Automatically highlight data. Causes the current bignum value to be
highlighted when the user tabs to the field (from another window field).
If the user presses a key, without first having pressed any movement or
editing keys, the bignum buffer will be cleared immediately.

The Position page contains information related to the bignum object's posi
tion, border, region and alignment. For detailed information on the Position
page, refer to the general description on page 213.

The Geometry notebook page allows you to place constraints on an object
that specify how the object should be sized and positioned under specific
conditions. For detailed information on the Geometry page, refer to the gen
eral description on page 214.

Zinc Designer



Advanced

General

The Advanced page contains information related to the advanced properties
of the bignum object. It is designed for interaction by the experienced user
only. For detailed information on the Advanced page, refer to the general
description on page 218.

Integer

An integer object is used to present and collect numeric information for inte
gers. It cannot be formatted. (The bignum object must be used for numbers
requiring special formatting capabilities.) Selecting Integer causes the fol
lowing object to appear:

10

To modify the integer object, call its information notebook. The following
window appears:

General I Position l' Geometry T Advanced

----- Input Conversion -----

[gI Automatically highlight data

Value: 10 1

Range: 1 1

Name: 1FIELD_l 1

Help: I<none> liJ

1- 0K I I ,C.ancel I I Help I

The General page contains information related specifically to the integer
object being edited. It contains the following fields:

Value. Enter in this field the integer that you want to appear in the integer
field.

Zinc Designer 271



Input Objects

Position

Geometry

Advanced

272

Range. If you want to specify a certain range of acceptable integer values,
enter in this field the valid integer ranges. For example, if you want to accept
only numbers between 100 and 10,000, enter the range of 100.. 10000. If no
range is entered, any integer value will be accepted.

Name. Enter in this field a name that will distinguish the integer object from
other objects on the window.

Help. This field designates the help context to be associated with the integer
field. Select the combo box button to view a list of the available help con
texts. If you select one of the help contexts listed, the help message of that
context will be displayed whenever the user positions on the integer field
and requests help. (See Chapter 20 for information on creating help con
texts.)

options list. The options that control the input conversion of the integer object
are listed in the field on the right half of the window. The following option is
available:

. Automatically highlight data. Causes the current integer value to be high
lighted when the user tabs to the integer field (from another window
field). If the user presses a key, without first having pressed any move
ment or editing keys, the integer buffer will be cleared immediately.

The Position page contains information related to the integer object's posi
tion, border, region and alignment. For detailed information on the Position
page, refer to the general description on page 213.

The Geometry notebook page allows you to place constraints on an object
that specify how the object should be sized and positioned under specific
conditions. For detailed information on the Geometry page, refer to the gen
eral description on page 214.

The Advanced page contains information related to the advanced properties
of the integer object. It is designed for interaction by the experienced user
only. For detailed information on the Advanced page, refer to the general
description on page 218.

Zinc Designer



General

Real

A real number object is used to present and collect floating-point numeric
information. Decimal numbers will be displayed using decimal notation.
When the decimal strings are too large for the input field, they are automati
cally converted to scientific notation. Selecting ,Real causes the following
object to appear:

10

To modify the real number object, call its information notebook. The follow
ing window appears:

.~ General I Position J Geometry 1 Advanced
i ~

----- Input Conversion -----:,
r ~

10 1
[gj Automatically highlight data, ~ Value:

Precision: 1-1 1 (-1..9)
D SCIENTIFIC notation

Range: 1 1

i Name: IFIELD_1 1

Help: I<none> Iii
r I I Cancel4 II flK I' Ir Help

: ,

The General page contains information related specifically to the real num
ber object being edited. It contains the following fields:

Value. Enter in this field the number that you want to appear in the real num
ber field.

Precision. Enter in this field the number of decimal places to be displayed.
Any whole number from -1 to 9 is acceptable.

Range. If you want to specify a certain range of acceptable real number val
ues, enter in this field the valid real number range. For example, if you want
to accept only numbers between 10.0 and 1000.0, enter the range of
10.0.. 1000.0. If no range is entered, any real number value will be accepted.

Name. Enter in this field a name that will distinguish the real number object
from other objects on the window.

Zinc Designer 273



Input Objects

Position

Geometry

Advanced

274

Help. This field designates the help context to be associated with the real
number field. Select the combo box button to view a list of the available help
contexts. If you select one of the help contexts listed, the help message of
that context will be displayed whenever the user positions on the real num
ber field and requests help. (See Chapter 20 for information on creating help
contexts.)

options list. The options that control the input conversion of the real number
object are listed in the field on the right half of the window. These options
are:

. Automatically highlight data. Causes the current real value to be high
lighted when the user tabs to the real number field (from another window
field). If the user presses a key, without first having pressed any move
ment or editing keys, the real number buffer will be cleared immediately.

. Scientific notation. Displays the number using scientific notation.

The Position page contains information related to the real number object's
position, border, region and alignment. For detailed information on the Posi
tion page, refer to the general description on page 213.

The Geometry notebook page allows you to place constraints on an object
that specify how the object should be sized and positioned under specific
conditions. For detailed information on the Geometry page, refer to the gen
eral description on page 214.

The Advanced page contains information related to the advanced properties
of the real number object. It is designed for interaction by the experienced
user only. For detailed information on the Advanced page, refer to the gen
eral description on page 218.

Zinc Designer



Chapter 15 Control Objects

The control category includes objects that are used to control the various
operations of an application, its windows and window objects. Selecting the
Control option causes the following associated menu to appear:

Horizontal Slider
Vertical Slider

Combo Box
Spin Control

Pull-Down Item

Zinc Designer 275



Control Objects

Button

A button is used to provide a selectable object that performs an action when
selected. Selecting Button causes the following object to appear:

To modify the button, call its information notebook. The following window
will appear:

-
General Position Geometry

jfl. l-state (no toggle)

Text: lbullon o 2-slate [on/olf)

Value: 10 ----- Height-----

I 0
o Cell based

Image: <none> @ Auto-sized

----- Depth -----

Name: IFIELD , 1 o Flat

Help: I<none> Iii @Normal3-D

-----Action -----

OK I I Cancel I I Help +

General page The General page contains information related specifically to the button
object being edited. It contains the following fields:

Text. Enter in this field text exactly as you want it to appear on the button. It
will be centered vertically automatically. If the text string is longer than the
length of the button, the button must be sized in order to display the entire
text.

Value. This field allows you to enter a value that serves as a unique identifi
cation for a button. For example, you could associate the value 0 with an OK
button, and a value of 1 with a Cancel button. This allows you to define one
callback function that looks at the button values, instead of several functions
that are tied to each button object. If the Send user message option is set, the
value must be an event type, and a callback function should be assigned in
the Advanced page.

276 Zinc Designer



Image. This field designates the bitmap image to be associated with the but
ton. Select the combo box button to view a list of the available bitmaps. If
you select one of the bitmaps listed, it will be displayed on the button. (See
Chapter 19 for information on creating bitmap images.)

Name. Enter in this field a name that will distinguish the button object from
other objects on the window.

Help. This field designates the help context to be associated with the button.
Select the combo box button to view a list of the available help contexts. If
you select one of the contexts listed, the help message of that context will be
displayed whenever the user positions on the button and requests help. (See
Chapter 20 for information on creating help contexts.)

options list. The options that control the presentation and operation of the
button are listed in the field on the right half of the window. The first section
presents options that determine the type of button. These options are:

· Normal. Causes the button to be presented as a normal three-dimensional
button.

• Radio-button. Causes the button to appear and function as a radio button.
All of the radio buttons in a group, list box, or window are considered to
be members of the same group. Only one radio button in a group may be
selected at anyone time.

(NOTE: A radio button can also be created by selecting Qbject ICon
troll Radio Button or by selecting it from the object bar. For more infor
mation on radio buttons, see the Radio Button section in this chapter.)

· Check box. Creates a check box that can be toggled when selected. More
than one check box in a group may be selected at anyone time. (NOTE:
A check box can also be created by selecting Qbject IControl ICheck
Box or by selecting it from the button bar. For more information on check
boxes, see the Check Box section in this chapter.)

Zinc Designer 277



Control Objects

278

The second section presents options that determine the button's settings. The
options are:

Send user message. Causes an event to be created from the button's value
and put on the event queue when the button is selected. Any temporary
windows are removed from the display when this message is sent. No
callback function should be assigned in the Advanced page.

Set as default button. Causes the button to be the default button on the
window. A default button is selected when the user hits <Enter> from
anywhere on the window. Only one button per window should be marked
as a default button.

The third section presents options that determine the state of the button. The
options are:

• one-state (no toggle). Does not toggle the button's state. A single-state
button simply performs its action when selected. It does not remain in a
selected state.

• two-state (on/off). Toggles the button's state. A two-state button performs
its action when selected, but remains in a selected state until it is un
selected. The button will be drawn differently to signify that it is in a
selected state. (The button will also have its WOS_SELECTED status
flag set when it is in a selected state.)

The fourth section presents options that determine the sizing of the button.
The options are:

• Cell based. The button's height is set to one cell height, or about the same
height as a string object.

• Auto-sized. Automatically computes the run-time height of the button. If
the application is running in text mode, the height is set to 1. If the appli
cation is running in graphics mode, the button is approximately 120% of
the default cell height.

The fifth section presents options that determine the appearance of depth for
the button. The options are:

• Flat. Causes the button to be displayed without a three dimensional
appearance.

· Normal 3-D. Causes the button to be displayed with a three dimensional
appearance.

Zinc Designer



Position page

Geometry page

Advanced page

The sixth section presents the options that determine when the button's
action is performed. The options are:

· Action on UP-CLICK. Completes the button action on a down-click and
release action.

· Action on DOWN-CLICK. Completes the button action on a button
down-click, rather than on a down-click and release action.

· Action on DOUBLE-CLICK. Completes the button action when the but
ton has been selected twice in rapid succession.

· Action on TIME INTERVALS. Continuously repeats the action if the user
continues to hold the mouse button down on the button.

The Position page contains information related to the buttons's position, bor
der, region, and alignment. For detailed information on the Position page,
refer to the general description on page 213.

The Geometry notebook page allows you to place constraints on a button
object that specify how the object should be sized and positioned under spe
cific conditions. For detailed information on the Geometry page, refer to the
general description on page 214.

The Advanced page contains information related to the advanced properties
of the button. It is designed for use by the experienced user only. For detailed
information on the Advanced page, refer to the general description on
page 218.

Radio button

A radio button is a type of button that displays not only text, but also an indi
cator that toggles. All of the radio buttons in a group, list box, or window are
considered to be members of the same group. Only one radio button in a
group may be selected at anyone time. (NOTE: The radio button's parent

Zinc Designer 279



Control Objects

must not have the Select multiple children option set, or multiple radio but
tons would be able to be selected.) Selecting Radio Button causes the fol
lowing object to appear:

o radio-buUon

NOTE: To use multiple radio button groups on the same window, use the
group object. (See "Group" on page 317 for information on creating groups.)

To modify the radio button object, call its information notebook. The follow
ing window will appear:

General Pos~ion Geometry

o l-stale (no loggle)

, Text: Iradio-bullon @ 2-stale (on/off)

Value: 10
----- Heighl-----

@ Cell based

I 0Image: <none> o Aulo-sized

----- Deplh -----

Name: IFIELD_l 1 @Flat

Help: I<none> Iii o Normal 3-D

-----Aclion -----

I I
@ Aclion on UP-CLICK

Help ..

NOTE: The information notebook for the radio button is actually the infor
mation notebook for the standard button object but with the Radio button
option set. If the Normal or Check box options are selected, the button will
no longer be displayed as a radio button.

General page The General page contains information related specifically to the radio but
ton object being edited. It contains the following fields:

Text. Enter in this field text exactly as you want it to appear on the radio but
ton. It will be centered vertically automatically. If the text string is longer
than the length of the radio button, the button must be sized in order to dis
play the entire text.

Value. This field allows you to enter a value that serves as a unique identifi
cation for a radio button. For example, you could associate the value 0 with
an OK button and a value of I with a Cancel button. This allows you to
define one callback function that looks at the radio button values, instead of

280 Zinc Designer



several functions that are tied to each button object. If the Send user message
option is set, the value must be an event type, and a callback function should
be assigned in the Advanced page.

Image. This field designates the bitmap image to be associated with the radio
button. (NOTE: Do not attach a bitmap to a radio button since radio buttons
by nature do not have bitmaps.)

Name. Enter in this field a name that will distinguish the radio button object
from other objects on the window.

Help. This field designates the help context to be associated with the radio
button. Select the combo box button to view a list of the available help con
texts. If you select one of the contexts listed, the help message of that context
will be displayed whenever the user positions on the radio button and
requests help. (See Chapter 20 for information on creating help contexts.)

options list. The options that control the presentation and operation of the
radio button are listed in the field on the right half of the window. The first
section presents options that determine the type of button. These options are:

· Normal. Causes the button to be presented as a normal three-dimensional
button.

· Radio-button. Causes the button to appear and function as a radio button.
All of the radio buttons in a group, list box, or window are considered to
be members of the same group. Only one radio button in a group may be
selected at anyone time. (NOTE: A radio button can also be created by
selecting Qbject I Control I Radio Button or by selecting it from the but
ton bar.)

· Check-box. Creates a check box that can be toggled when selected. More
than one check box in a group may be selected at anyone time.

(NOTE: A check box can also be created by selecting .Qbject IControl I
Check Box or by selecting it from the button bar. For more information
on check boxes, see the Check Box section in this chapter.)

Zinc Designer 281



Control Objects

282

The second section presents options that determine the radio button's set
tings. The options are:

Send user message. Causes an event to be created from the radio button's
value and put on the event queue when the radio button is selected. Any
temporary windows are removed from the display when this message is
sent. No callback function should be assigned in the Advanced page.

Set as default button. Causes the radio button to be the default button on
the window. A default button is selected when the user hits <Enter> from
anywhere on the window. Only one button per window should be marked
as a default button. Generally, a radio button should not be designated to
be a default button.

The third section presents options that determine the state of the radio but
ton. The options are:

· one-state (no toggle). Does not toggle the radio button's state. A single
state button simply performs its action when selected. It does not remain
in a selected state. A radio button is a two-state button by nature.

· two-state (on/off). Toggles the radio button's state. A two-state button
performs its action when selected, but remains in a selected state until it
is un-selected. The radio button will be drawn differently to signify that it
is in a selected state. (The radio button will also have its
WaS_SELECTED status flag set when it is in a selected state.)

The fourth section presents options that determine the sizing of the radio but
ton. The options are:

• Cell based. The radio button's height is set to one cell height, or about the
same height as a string object. A radio button is always cell based.

• Auto-sized. Automatically computes the run-time height of the radio but-
ton. If the application is running in text mode, the height is set to 1.

The fifth section presents options that determine the appearance of depth for
the radio button. The options are:

· Flat. Causes the radio button to be displayed without a three dimensional
appearance. A radio button is always flat.

· Normal 3-D. Causes the radio button to be displayed with a three dimen
sional appearance.

Zinc Designer



Position page

Geometry page

Advanced page

The sixth section presents the options that determine when the radio button's
action is performed. The options are:

· Action on UP-CLICK. Completes the radio button action on a down-click
and release action.

· Action on DOWN-CLICK. Completes the radio button action on a radio
button down-click, rather than on a down-click and release action.

· Action on DOUBLE-CLICK. Completes the radio button action when the
radio button has been selected twice in rapid succession.

· Action on TIME INTERVALS. Continuously repeats the action if the user
continues to hold the mouse radio button down on the radio button.

The Position page contains information related to the radio buttons's posi
tion, border, region, and alignment. For detailed information on the Position
page, refer to the general description on page 213.

The Geometry notebook page allows you to place constraints on a radio but
ton that specify how the object should be sized and positioned under specific
conditions. For detailed information on the Geometry page, refer to the gen
eral description on page 214.

The Advanced page contains information related to the advanced properties
of the radio button. It is designed for use by the experienced user only. For
detailed information on the Advanced page, refer to the general description
on page 218.

Checkbox

A check box is a type of button that displays not only text, but also an indica
tor that toggles. Any number of check boxes in a group may be selected at
one time (the check box's parent should have the Select multiple children
option set). Selecting Check box causes the following object to appear:

o check-box

Zinc Designer 283



Control Objects

To modify the check box object, call its information notebook. The follow
ing window will appear:

General Position Geometry

o l-state (no toggle)

Text: !check-box @ 2-state (on/off)

Value: 10 ----- Height-----

I [!J
@ CeO based

Image: <none> o Auto-sized

----- Depth -----

Name: IFlELD_1 I @Flat

Help: I<none> I!J o Normal 3-D

-----Action -----

@ Action on UP-CLICK!---OK-"
"'

I Cancel I I Help +

NOTE: The information notebook for the check box is actually the informa
tion notebook for the standard button object but with the Check-box option
set. If the Normal or Radio-button options are selected, the button will no
longer be displayed as a radio button.

General page The General page contains information related specifically to the check box
object being edited. It contains the following fields:

Text. Enter in this field text exactly as you want it to appear on the check
box. It will be centered vertically automatically. If the text string is longer
than the length of the check box, the button must be sized in order to display
the entire text.

Value. This field allows you to enter a value that serves as a unique identifi
cation for a check box. For example, you could associate the value 0 with an
OK button and a value of 1 with a Cancel button. This allows you to define
one callback function that looks at the check box values, instead of several
functions that are tied to each button object. If the Send user message option
is set, the value must be an event type. No callback function should be
assigned in the Advanced page.

Image. This field designates the bitmap image to be associated with the
check box. (NOTE: Do not attach a bitmap to a check box, since check
boxes do not have bitmaps.)

Name. Enter in this field a name that will distinguish the check box object
from other objects on the window.

284 Zinc Designer



Help. This field designates the help context to be associated with the check
box. Select the combo box button to view a list of the available help con
texts. If you select one of the contexts listed, the help message of that context
will be displayed whenever the user positions on the check box and requests
help. (See Chapter 20 for information on creating help contexts.)

options list. The options that control the presentation and operation of the
check box are listed in the field on the right half of the window. The first sec
tion presents options that determine the type of button. These options are:

· Normal. Causes the button to be presented as a normal three-dimensional
button.

· Radio-button. Causes the button to appear and function as a radio button.
All of the radio buttons in a group, list box, or window are considered to
be members of the same group. Only one radio button in a group may be
selected at anyone time. (NOTE: A radio button can also be created by
selecting Qbject IControl IRadio Button, or by selecting it from the
button bar.)

· Check-box. Creates a check box that can be toggled when selected. More
than one check box in a group may be selected at anyone time. (NOTE:
A check box can also be created by selecting Qbject IControl ICheck
Box, or by selecting it from the button bar. For more information on
check boxes, see the Check Box section in this chapter.)

The second section presents options that determine the check box's settings.
The options are:

Send user message. Causes an event to be created from the check box's
value and put on the event queue when the check box is selected. Any
temporary windows are removed from the display when this message is
sent. No callback function should be assigned in the Advanced page.

Set as default button. Causes the check box to be the default button on the
window. A default button is selected when the user hits <Enter> from
anywhere on the window. Only one button per window should be marked
as a default button. Generally, a check box should not be designated to be
a default button.

Zinc Designer 285



Control Objects

Position page

286

The third section presents options that determine the state of the check box.
The options are:

· one-state (no toggle). Does not toggle the check box's state. A single
state button simply performs its action when selected. It does not remain
in a selected state. A check box is a two-state button by nature.

· two-state (on/off). Toggles the check box's state. A two-state button per
forms its action when selected, but remains in a selected state until it is
un-selected. The check box will be drawn differently to signify that it is
in a selected state. (The check box will also have its WOS_SELECTED
status flag set when it is in a selected state.)

The fourth section presents options that determine the sizing of the check
box. The options are:

· Cell based. The check box's height is set to one cell height, or about the
same height as a string object. A check box is always cell based.

· Auto-sized. Automatically computes the run-time height of the check
box. If the application is running in text mode, the height is set to 1.

The fifth section presents options that determine the appearance of depth for
the check box. The options are:

· Flat. Causes the check box to be displayed without a three dimensional
appearance. A check box is always flat.

· Normal 3-D. Causes the check box to be displayed with a three dimen-
sional appearance.

The sixth section presents the options that determine when the check box's
action is performed. The options are:

· Action on UP-CLICK. Completes the check box action on a down-click
and release action.

• Action on DOWN-CLICK. Completes the check box action on a check
box down-click, rather than on a down-click and release action.

• Action on DOUBLE-CLICK. Completes the check box action when the
check box has been selected twice in rapid succession.

· Action on TIME INTERVALS. Continuously repeats the action if the user
continues to hold the mouse check box down on the check box.

The Position page contains information related to the check box's position,
border, region and, alignment. For detailed information on the Position
page, refer to the general description on page 213.

Zinc Designer



Geometry page

Advanced page

The Geometry notebook page allows you to place constraints on a check
box that specify how the object should be sized and positioned under spe
cific conditions. For detailed information on the Geometry page, refer to the
general description on page 214.

The Advanced page contains information related to the advanced properties
of the check box. It is designed for use by the experienced user only. For
detailed information on the Advanced page, refer to the general description
on page 218.

Horizontal slider

A horizontal slider is typically used to visually indicate the current value rel
ative to the range of possible values and to allow the setting of a value. For
example, a slider could be used as a volume control for an application. It is
different from a horizontal scroll bar, which is designed to scroll another
object, such as a horizontal list. A slider is typically added directly to the
current resource window, independent of any other object. In most environ
ments a slider and a scroll bar look different, in that the slider track is
narrower than that of a scroll bar. Also, a vertical slider's thumb button
moves up as the slider's value increases, whereas a scroll bar's thumb button
moves down as the scroll bar's value increases. Selecting Horizontal Slider
causes the following object to appear:

m~b~~L4.~=~ ~~~i

Zinc Designer 287



Control Objects

To modify the horizontal slider, call its information notebook. The following
window will appear:

<$> HOlizontal slider/scale

o Vellical SCIoli bal

~ 0 HOIizonlal scroll bal

o Comel SCIoli box

Help

Position Geometry Advanced 11
~=~~=~=;:::::::::::::::::::::::=======:::::::::::==~i

----- Type -----

o Vellical slidelscale

I:============;:;;;:I!I

General

Minimum: 10
~===:

Maxililum: 11
~====:

Current 1,-1O--,--~~---'

NOTE: The information notebook for the horizontal slider is actually an
information notebook for a generic scroll bar object but with the Horizontal
slider/scale option set. If this option is toggled off, or if another type is set,
the object will no longer be a horizontal slider.

General page The General page contains information related specifically to the horizontal
slider object being edited. It contains the following fields:

Minimum. This field specifies the minimum value of the slider range. The
actual number entered will not have meaning to the Designer, except that it
is used, in conjunction with a maximum value, to determine the slider's
incremental scale. For example, if the slider has a minimum value of 2 and a
maximum value of 10, the slider thumb will be able to scroll eight incre
ments from the leftmost to the rightmost position.

Maximum. This field specifies the maximum value of the slider range. The
actual number entered will not have meaning to the Designer, except that it
is used, in conjunction with a minimum value, to determine the slider's
incremental scale.

Current. This field specifies the initial value of the slider, or the initial posi
tion of the slider thumb. The value entered must be within the range set by
the minimum and maximum values. For example, if the slider has a mini
mum value of 2, a maximum value of 10, and a current value of 4, the slider
thumb will initially be positioned two increments to the right of the leftmost
position.

288 Zinc Designer



Position page

Geometry page

Advanced page

Name. Enter in this field a name that will distinguish the horizontal slider
from other objects on the window.

Help. This field designates the help context to be associated with the hori
zontal slider. Select the combo box button to view a list of the available help
contexts. If you select one of the contexts listed, the help message of that
context will be displayed whenever the user positions on the slider and
requests help. (See Chapter 20 for information on creating help contexts.)

options list. The options that determine the type of slider are listed in the
field on the right half of the window. These options are:

· Vertical slider/scale. Defines the object to be a vertical slider.

· Horizontal slider/scale. Defines the object to be a horizontal slider.

· Vertical scroll bar. Defines the object to be a vertical scroll bar.

· Horizontal scroll bar. Defines the object to be a horizontal scroll bar.

· Corner scroll box. Defines the object to be a comer scroll box.

The Position page contains information related to the horizontal slider's
position, border, region, and alignment. For detailed information on the
Position page, refer to the general description on page 213.

The Geometry notebook page allows you to place constraints on a horizon
tal slider that specify how the object should be sized and positioned under
specific conditions. For detailed information on the Geometry page, refer to
the general description on page 214.

The Advanced page contains information related to the advanced properties
of the horizontal slider. It is designed for use by the experienced user only.
For detailed information on the Advanced page, refer to the general descrip
tion on page 218.

Zinc Designer 289



Control Objects

General page

290

Vertical slider

A vertical slider is typically used to visually indicate the current value rela
tive to a range of possible values and to allow the setting of a value. For
example, a slider could be used as a volume control for an application. It is
different from a vertical scroll bar, which is designed to scroll another object,
such as a vertical list. A slider is typically added directly to the current
resource window, independent of any other object. In most environments a
slider and a scroll bar look different, in that the slider track is narrower than
that of a scroll bar. Also, a vertical slider's thumb button moves up as the
slider's value increases, whereas a scroll bar's thumb button moves down as
the scroll bar's value increases. Selecting Vertical Slider causes the follow
ing object to appear:

To modify the vertical slider, call its information notebook. The following
window will appear:

, General I Position I Geometry 1 AdvdYlced

~ ----- Type -----

Minimum: 10 1 @ Vertical slide/scale -
; Maximum: 11 I o Horizontal slider/scale

: Current: 10 I
o Vertical scroll bar

o Horizontal scroll bar

:i o Corner scroll box

Name: IFIELD_1 1
, t,~

Help: I<none> IiJ

I ,Cancel 1 -I
I

V Q.K I I Help

: ,

-

NOTE: The information notebook for the vertical slider is actually an infor
mation notebook for a generic scroll bar object but with the Vertical slider/
scale option set. If this option is toggled off, or if another type is set, the
object will no longer be a vertical slider.

The General page contains information related specifically to the vertical
slider object being edited. It contains the following fields:

Zinc Designer



Position page

Minimum. This field specifies the minimum value of the slider range. The
actual number entered will not have meaning to the Designer, except that it
is used, in conjunction with a maximum value, to determine the slider's
incremental scale. For example, if the slider has a minimum value of 2 and a
maximum value of 10, the slider thumb will be able to scroll eight incre
ments from the leftmost to the rightmost position.

Maximum. This field specifies the maximum value of the slider range. The
actual number entered will not have meaning to the Designer, except that it
is used, in conjunction with a minimum value, to determine the slider's
incremental scale.

Current. This field specifies the initial value of the slider, or the initial posi
tion of the slider thumb. The value entered must be within the range set by
the minimum and maximum values. For example, if the slider has a mini
mum value of 2, a maximum value of 10, and a current value of 4, the slider
thumb will initially be positioned two increments above the bottommost
position.

Name. Enter in this field a name that will distinguish the vertical slider from
other objects on the window.

Help. This field designates the help context to be associated with the vertical
slider. Select the combo box button to view a list of the available help con
texts. If you select one of the contexts listed, the help message of that context
will be displayed whenever the user positions on the slider and requests help.
(See Chapter 20 for information on creating help contexts.)

options list. The options that determine the type of slider are listed in the
field on the right half of the window. These options are:

· Vertical slider/scale. Defines the object to be a vertical slider.

· Horizontal slider/scale. Defines the object to be a horizontal slider.

· Vertical scroll bar. Defines the object to be a vertical scroll bar.

· Horizontal scroll bar. Defines the object to be a horizontal scroll bar.

· Corner scroll box. Defines the object to be a comer scroll box.

The Position page contains information related to the vertical slider's posi
tion, border, region, and alignment. For detailed information on the Position
page, refer to the general description on page 213.

Zinc Designer 291



Control Objects

Geometry page

Advanced page

292

The Geometry notebook page allows you to place constraints on a vertical
slider that specify how the object should be sized and positioned under spe
cific conditions. For detailed information on the Geometry page, refer to the
general description on page 214.

The Advanced page contains information related to the advanced properties
of the vertical slider. It is designed for use by the experienced user only. For
detailed information on the Advanced page, refer to the general description
on page 218.

Combo box

A combo box is a combination of a string field and a scrollable list box. It is
used to display a list of selectable items without requiring a lot of screen
space. Selecting Combo Box causes the following object to appear:

l--__---l! m
The scrollable list is displayed when the button to the right of the string field
is selected. If the end user types in a string of characters, the item on the list
that most closely matches the character string will be highlighted. When one
of the items of the list is selected, it is copied into the string field and the list
box disappears.

Objects are added to the combo box's list by selecting them from the menu or
button bar and placing them on the combo box object. By default, they will
be automatically aligned in a single column in the order in which they were
created.

Zinc Designer



To modify the combo box object, call its information notebook. The follow
ing window will appear:

Listheight: 14
~=====-~----,

List name: IFIELD_2 1

:========~
Compare: ,'---_-,--_-,--_--11 rn

Name: IFIELD 1 I
Help: I<none} I!I

l.-1IIOiiiiIo......' I Cancel I I Help

D Alphabetical sorting

D Bitmap children

~ Don't wrap kevsllokes

Advanced

General page The General page contains information related specifically to the combo box
object being edited. It contains the following fields:

List Height. This field determines the height of the combo box's drop-down
list. By default it is measured in cell coordinates, unless pixel or minicell
coordinate scales have been selected on the Position page.

List Name. Enter in this field a name for the drop-down list portion of the
combo box.

Name. Enter in this field a name that will distinguish the combo box from
other objects on the window.

Help. This field designates the help context to be associated with the combo
box. Select the combo box button to view a list of the available help con
texts. If you select one of the contexts listed, the help message of that context
will be displayed whenever the user positions on the combo box and requests
help. (See Chapter 20 for information on creating help contexts.)

options list. The options that control the presentation and operation of the
combo box are listed in the field on the right half of the window. The first
section presents the following option:

• Vertical scroll-bar. Adds a vertical scroll bar to the drop-down list of the
combo box.

Zinc Designer 293



Control Objects

Subobjects page

Position page

Geometry page

Advanced page

294

The second section presents options that alter interaction with the combo
box's drop-down list. The options are:

• Alphabetic sort. Causes the list options to be sorted and displayed in
alphabetical order.

• Bitmap children. Allows objects that contain bitmaps to be added to the
combo box.

• Don 't wrap keystrokes. Prevents arrowing up or down to wrap from the
end of the list to the beginning or vice versa.

The objects contained within the combo box's drop-down list can be modi
fied through interaction with the Subobjects page. For detailed information
on the Subobjects page, refer to the general description on page 220.

The default add object (shown in the lower right combo box field) for a
combo box is a button.

The Position page contains information related to the combo box's position,
border, region, and alignment. For detailed information on the Position
page, refer to the general description on page 213.

The Geometry notebook page allows you to place constraints on a combo
box that specify how the object should be sized and positioned under spe
cific conditions. For detailed information on the Geometry page, refer to the
general description on page 214.

The Advanced page contains information related to the advanced properties
of the combo box. It is designed for use by the experienced user only. For
detailed information on the Advanced page, refer to the general description
on page 218.

Zinc Designer



Spin control

A spin control object is used to allow the user to select a value from a finite
range of values. The spin control can be used to set integer, real and bignum
values, as well as times and dates. The user can type a value into the field, or
he can spin through the values by clicking on the spinner's up or down
arrows until the desired value is displayed. Selecting Spin Control causes
the following object to appear:

10 ftl

General page

To modify the spin control object, call its information notebook. The follow
ing window appears:

General I Position r Geometry J Advanced

Type: IB Inleger 0
Delta: 11

Name: IFIELD 1 I
Help: I<none> Ii)

.Q.K I I Cancel I I Help

The General page contains information related specifically to the spin con
trol object being edited. It contains the following fields:

Type. This field determines the type of object to be associated with the spin
control. Select the combo box button to view a list of the available object
types. Selecting one of these causes the spin control to appear as that object
but with the associated spinner arrow buttons.

Edit... Selecting this button brings up the information notebook for the type
of object associated with the spin control, since that object is what deter
mines the spin control's specifications. For example, if time is the object
type, selecting Edit... causes the time object information notebook to appear.
Any changes made in this information notebook will be reflected in the spin
control's time field.

Zinc Designer 295



Control Objects

Delta. This field assigns the value by which the object value will be adjusted
when the object is spun. It should be specified in units appropriate to the
object type. For example, if the object type is a time object, the delta value
must be given in hundredths of seconds.

Name. Enter in this field a name that will distinguish the spin control from
other objects on the window.

Help. This field designates the help context to be associated with the spin
control. Select the combo box button to view a list of the available help con
texts. If you select one of the contexts listed, the help message of that context
will be displayed whenever the user positions on the spin control and
requests help. (See Chapter 20 for information on creating help contexts.)

Pull-down item

A pull-down item serves as the first level of selection in a pull-down menu.
The figure below shows a pull-down menu with one pull-down item attached
to it:

r. item
<untitled>

296

The multi-level effect of a pull-down menu is achieved by adding pop-up
items to the pull-down item.

Zinc Designer



General page

To modify the pull-down item, the information notebook must be called.
This can only be done by selecting the item from the Subobjects page of the
pull-down menu's infonnation notebook. Upon doing so, the following win
dow appears:

General I Subobjecls I Position I Geometry J Advanced 1
----- Interaction -----

o Alphabetical sOlting

Text: litem I o Don't wrap keystrokes

Value: 10 I
o Select multiple

o Send user message

Name: IFIELD 2 I
Help: I<none> Iii

I .ilK I I ,ancerl I-Help I

The General page contains information related specifically to the pull-down
item being edited. It contains the following fields:

Text. Enter in this field text exactly as you want it to appear on the pull-down
item. It will be centered vertically automatically.

Value. This field allows you to enter in a value that serves as a unique identi
fication for a pull-down item. This allows you to define one callback func
tion that looks at the pull-down item values, instead of several functions that
are tied to each pull-down item object. If the Send user message option is set,
the value must be an event type. And no callback function should be
assigned in the Advanced page.

Name. Enter in this field a name that will distinguish the pull-down item
from other objects on the window.

Help. This field designates the help context to be associated with the pull
down item. Select the combo box button to view a list of the available help
contexts. If you select one of the contexts listed, the help message of that
context will be displayed whenever the user positions on the pull-down item
and requests help. (See Chapter 20 for information on creating help con
texts.)

Zinc Designer 297



Control Objects

Subobjects page

Position page

Geometry page

Advanced page

298

options list. The options that control interaction with the pull-down item are
listed in the field on the right half of the window. The options are:

• Alphabetic sort. Causes the menu items to be sorted in alphabetical order.

• Don 't wrap keystrokes. Prevents the current item in the pop-up menu
from wrapping between the top and bottom items when arrowing through
the list.

• Select multiple. Allows more than one item in the pop-up menu to
become selected at the same time. If this flag is set, the pop-up menu will
still close when a selection is made, but selecting another option later will
not cause the previously selected item to be un-selected.

• Send user message. Causes the event associated with the pull-down
item's value to be created and put on the event queue when the pull-down
item is selected. Any temporary windows are removed from the display
when this message is sent. No callback function should be assigned in the
Advanced page.

The objects contained within the pull-down item's pop-up menu can be mod
ified through interaction with the Subobjects page. For detailed information
on the Subobjects page, refer to the general description on page 220.

The default add object (shown in the lower right combo box field) for a pull
down item is a pop-up item.

The Position page contains information related to the pull-down item's posi
tion, border, region, and alignment. For detailed information on the Position
page, refer to the general description on page 213.

The Geometry notebook page allows you to place constraints on a pull
down item that specify how the object should be sized and positioned under
specific conditions. For detailed information on the Geometry page, refer to
the general description on page 214.

The Advanced page contains information related to the advanced properties
of the pull-down item. It is designed for use by the experienced user only.
For detailed information on the Advanced page, refer to the general descrip
tion on page 218.

Zinc Designer



Pop-up item

A pop-up item is used to display and select options associated with a list of
menu items. It can be attached to a pull-down item (as the second level of
selection within a pull-down menu), or to another pop-up item. A pop-up
item can only be added by selecting it from within its parent information
notebook's add-item field (located on the Subobjects notebook page).

The multi-level effect of a pop-up menu or a pull-down menu is further
achieved by adding sub-pop-up items to the parent pop-up item. Zinc
Designer will allow you to continue adding additional levels as long as there
is available memory for them.

To modify the pop-up item, the information notebook must be called. This
can only be done by selecting the item from the Subobjects page of either the
parent pop-up item's information notebook or the pull-down item's informa
tion notebook. Upon doing so, the following window appears:

r OK .•·" .. 1 Cancel I ...1 -:;:;H;.,elp;......,J +

----- Hem Features ----

D Mark as separator

D Allow check-mark

D Send user message

----- Sub-Menu Options ----

D Alphabetical sorting

I D Don't wrap keystrokes

Iii D Select multiple children

----- Item Message -----

@ Normal operation

Text: litem
~===~-~--'

Value: 10 I.

Name: IFIELD 3

Help: I<none>

General

General page The General page contains information related specifically to the pop-up
item being edited. It contains the following fields:

Text. Enter in this field text exactly as you want it to appear on the pop-up
item. It will be centered vertically automatically.

Value. This field allows you to enter in a value that serves as a unique identi
fication for a pop-up item. This allows you to define one callback function
that looks at the pop-up item values, instead of several functions that are tied
to each pop-up item object. If the Send user message option is set, the value
must be an event type.

Zinc Designer 299



Control Objects

300

Name. Enter in this field a name that will distinguish the pop-up item from
other objects on the window.

Help. This field designates the help context to be associated with the pop-up
item. Select the combo box button to view a list of the available help con
texts. If you select one of the contexts listed, the help message of that context
will be displayed whenever the user positions on the pop-up item and
requests help. (See Chapter 20 for information on creating help contexts.)

options list. The options that determine the item's features are listed in the
field on the right half of the window. The options are:

Mark as separator. Causes the pop-up item to be a separator that will
appear as a horizontal line when placed in a pop-up menu.

Allow check-mark. Causes the pop-up item to display a check mark at the
front of the text when the pop-up item is selected.

Send user message. Causes the event associated with the pop-up item's
value to be created and put on the event queue when the pop-up item is
selected. Any temporary windows are removed from the display when
this message is sent. And no callback function should be assigned in the
Advanced page.

The second section presents options that apply to any pop-up menu lists
associated with the pop-up item. The options are:

· Alphabetic sort. Causes the menu items to be sorted in alphabetical order.

· Don't wrap keystrokes. Prevents the current item in the pop-up menu
from wrapping between the top and bottom items when arrowing through
the list.

· Select multiple. Allows more than one item in the pop-up menu to
become selected at the same time. If this flag is set, the pop-up menu will
still close when a selection is made, but selecting another option later will
not cause the previously selected item to be un-selected.

Zinc Designer



Subobjects page

Position page

Geometry page

Advanced page

The third section presents options for associating messages with the item.
The options are:

Normal operation. Does not cause any message to be sent.

Send MAXIMIZE message. Causes the window to be maximized when
the pop-up item is selected.

Send MINIMIZE message. Causes the window to be minimized when the
pop-up item is selected.

Send MOVE message. Causes the window to enter a mode that allows it
to be moved.

· Send SIZE message. Causes the window to enter a mode that allows it to
be sized.

· Send SWITCH message. Causes the operating system's task list or win
dow list to display. This option only works in Windows and OS/2.

· Send RESTORE message. Causes the window to be restored to its origi
nal size if it is in a maximized or minimized state.

• Send CLOSE message. Causes the window to be closed when the pop-up
item is selected.

The objects contained within the pop-up item's pop-up menu can be modi
fied through interaction with the Subobjects page. For detailed information
on the Subobjects page, refer to the general description on page 220.

The default add object (shown in the lower right combo box field) for a pop
up item is a pop-up item.

The Position page contains information related to the pop-up item's position,
border, region, and alignment. For detailed information on the Position
page, refer to the general description on page 213.

The Geometry notebook page allows you to place constraints on a pop-up
item that specify how the object should be sized and positioned under spe
cific conditions. For detailed information on the Geometry page, refer to the
general description on page 214.

The Advanced page contains information related to the advanced properties
of the pop-up item. It is designed for use by the experienced user only. For
detailed information on the Advanced page, refer to the general description
on page 218.

Zinc Designer 301



Control Objects

302 Zinc Designer



Chapter 16 Selection Objects

The selection category includes objects that are used to display select
able objects. Selecting the Selection option causes the following associated
menu to appear:

Zinc Designer 303



Selection Objects

General page

304

Horizontal list

A horizontal list is used to display related information in a multiple-column
fashion within a window. The list is only scrollable horizontally. Selecting
Horizontal List causes the following object to appear:

=1 <untitled>

D
Notice that the list is initially empty. A horizontal list is actually a frame
work to which other objects can be attached. For example, a list of strings
could be added to a horizontal list by repeatedly selecting the string object
and placing it within the list. The items will be aligned automatically in rows
and columns.

To modify the horizontal list object, call its information notebook. The fol
lowing window will appear:

General I Subobjects i Position I Geometry I Advanced

----- Support Features -----

Field width: 110 I ~ Horizontal scron·bar

Field height: 11 I ._._. Interaction -----

o Alphabetical sorting
Compare: ·1 I!!I o Bitmap children

ii
~ Don't wrap keystrokes

Name: IFiElD 1 I o Select on down-click
i,' ;-

.Help: 1<none> Iii ~ Continue selection on drag

o Select multiple itemsi

I, OK I 1
Cancel I I Help I

The General page contains information relating specifically to the horizontal
list being edited. It contains the following fields:

Field width. Enter in this field a number to specify the maximum cell width
of a single list item. If the list is wider than the specified width, it will be dis
played with multiple columns. The default width is 10.

Zinc Designer



Field height. Enter in this field a number to specify the maximum cell height
of a single list item. If the list is taller than the specified height, it will be dis
played with multiple rows. The default height is 1.

Compare. If you want to have a compare function associated with the list,
you can enter the name of it in this field. The function must be defined some
where in your code with the same name that is entered so that Zinc Designer
can find it and execute the designated action. (For more information on cre
ating compare functions, refer to the description of the object's constructor in
the Programmer's Reference.)

Name. Enter in this field a name that will distinguish the horizontal list
object from other objects on the window.

Help. This field designates the help context to be associated with the hori
zontal list. Select the combo box button to view a list of the available help
contexts. If you select one of the contexts listed, the help message of that
context will be displayed whenever the user positions on the horizontal list
and requests help. (See Chapter 20 for information on creating help con
texts.)

options list. The options that control the presentation and operation of the
horizontal list are listed in the field on the right half of the window. The first
section presents the following support feature option:

· Horizontal scroll-bar. Causes a horizontal scroll bar to be added to the
list.

The second section presents options that determine interaction with the list.
The options are:

· Automatic sorting. Causes the options to be sorted in alphabetical order.

· Bitmap children. Indicates that some of the objects contain bitmaps. Set
ting this flag will affect the spacing of objects in the list. Normally,
objects are spaced according to a pre-determined cell height value. If this

Zinc Designer 305



Selection Objects

Subobjects page

Position page

Geometry page

Advanced page

306

flag is set, however, the objects will be spaced according to the actual
height of the objects. This flag should be set when adding check boxes or
radio buttons to the horizontal list.

· Don 't wrap keystrokes. Will not allow arrowing up, down, left or right to
wrap from the end of the list to the beginning or vice versa.

· Select on down-click. Selects the item on a button down-click, rather than
on a down-click and release action.

· Continue selection on drag. Allows the end-user to drag through the list
options with the mouse button pressed. If this flag is not set, the highlight
on the list items will not follow the dragging mouse.

· Select multiple items. Allows more than one object to be selected at a
time.

The objects contained within the horizontal list can be modified through
interaction with the Subobjects page. For detailed information on the Subob
jects page, refer to the general description on page 220.

The default add object (shown in the lower right combo box field) for a hor
izontal list is a button.

The Position page contains information related to the horizontal list's posi
tion, border, region, and alignment. For detailed information on the Position
page, refer to the general description on page 213.

The Geometry notebook page allows you to place constraints on a horizon
tal list that specify how the object should be sized and positioned under spe
cific conditions. For detailed information on the Geometry page, refer to the
general description on page 214.

The Advanced page contains information relating to the advanced proper
ties of the horizontal list. It is designed for use by the experienced user only.
For detailed information on the Advanced page, refer to the general descrip
tion on page 218.

Zinc Designer



Vertical list

A vertical list is used to display items in a single-column fashion. The list is
only scrollable vertically. Selecting Vertical List causes the following object
to appear:

-=1 <untitled>

D
1·['"

General page

Notice that the list is initially empty. A vertical list is actually a framework to
which other objects can be attached. For example, a list of strings could be
added to a vertical list by repeatedly selecting the string object and placing
the string within the list. These objects will be aligned in a single-column
fashion automatically.

To modify the vertical list object, call its information notebook. The follow
ing window will appear:

~ .. ~

II General I Subobjects I Position I Geometry f Advanced 1
Ii

----- Support Featu/es -----

rzJ Vertical scroll-bar

Compare: I 10
----- Inte/action -----

o Alphabetical sOlting

o Bitmap child/en

rzJ Don't wrap keystrokes

Name: IFIELD_' I o Select on down-click.

Help: 1<none> IiJ rzJ Continue selection on drag

o Select multiple items

I OK I 1 Cancel I 1 Help !

The General page contains information relating specifically to the vertical
list being edited. It contains the following fields:

Compare. To have a compare function associated with the list, enter the
name of it in this field. The function must be defined somewhere in your
code with the same name that is entered so that Zinc Designer can find it and

Zinc Designer 307



Selection Objects

Subobjects page

308

execute the designated action. (For more information on creating compare
functions, refer to the description of the object's constructor in the Program
mer's Reference.)

Name. Enter in this field a name that will distinguish the vertical list object
from other objects on the window.

Help. This field designates the help context to be associated with the vertical
list. Select the combo box button to view a list of the available help contexts.
If you select one of the contexts listed, the help message of that context will
be displayed whenever the user positions on the vertical list and requests
help. (See Chapter 20 for information on creating help contexts.)

options list. The options that control the presentation and operation of the
vertical list are listed in the field on the right half of the window. The first
section presents the following support feature option:

• Vertical scroll-bar. Causes a vertical scroll bar to be added to the list.

The second section presents options that determine interaction with the list.
The options are:

· Alphabetic sort. Causes the options to be sorted in alphabetical order.

· Bitmap children. Indicates that some of the objects contain bitmaps. Set
ting this flag will affect the spacing of objects in the list. Normally,
objects are spaced according to a pre-determined cell height value. If this
flag is set, however, the objects will be spaced according to the actual
height of the objects. This flag should be set when adding check boxes or
radio buttons to the vertical list.

· Don't wrap keystrokes. Will not allow arrowing up, down, left or right to
wrap from the end of the list to the beginning or vice versa.

· Select on down-click. Selects the item on a button down-click, rather than
on a down-click and release action.

• Continue selection on drag. Allows the end-user to drag through the list
options with the mouse button pressed. If this flag is not set, the highlight
on the list items will not follow the dragging mouse.

• Select multiple items. Allows more than one object to be selected at a
time.

The objects contained within the vertical list can be modified through inter
action with the Subobjects page. For detailed information on the Subob
jects page, refer to the general description on page 220.

Zinc Designer



Position page

Geometry page

Advanced page

The default add object (shown in the lower right combo box field) for a ver
tical list is a button.

The Position page contains information related to the vertical list's position,
border, region, and alignment. For detailed information on the Position
page, refer to the general description on page 213.

The Geometry notebook page allows you to place constraints on a vertical
list that specify how the object should be sized and positioned under specific
conditions. For detailed information on the Geometry page, refer to the gen
eral description on page 214.

The Advanced page contains information relating to the advanced proper
ties of the vertical list. It is designed for use by the experienced user only.
For detailed information on the Advanced page, refer to the general descrip
tion on page 218.

Tool bar

A tool bar is used as a controlling structure for a set of selectable window
objects. It differs from the pull-down menu in that a variety of objects can be
added to it-not just textual items. The tool bar will automatically occupy
the upper-most area available in a window, positioning itself directly below
the pull-down menu, if one exists. Multiple tool bars may be added to a win
dow. Selecting Tool Bar and attaching it to a window causes the following
object to appear:

=-1 <untitled>

Zinc Designer 309



Selection Objects

General page

310

An object can be added to the tool bar by selecting the desired object from
the control window's menu or button bar and placing it on the resource win
dow's tool bar. The control window's button bar itself is an example of a
group of bitmapped buttons that have been attached to a tool bar.

To modify the tool bar, call its information notebook. The following window
will appear:

General I Subobjects I Position I Geometry I Advanced
~

----- Interaction -----

c D Bitmap children

D Select multiple objects
" D Don't wrap keystrokes
'-

"
Name: IFIELD 3 I
Help: I(None) iii

I OK I I Cancel I I Help I

The General page contains information relating specifically to the tool bar
object being edited. It contains the following fields:

Name. Enter in this field a name that will distinguish the tool bar from other
objects on the window.

Help. This field designates the help context to be associated with the tool
bar. Select the combo box button to view a list of the available help contexts.
If you select one of the contexts listed, the help message of that context will
be displayed whenever the user positions on the tool bar and requests help.
(See Chapter 20 for information on creating help contexts.)

Zinc Designer



Subobjects page

Position page

Geometry page

Advanced page

options list. The options that control interaction with the tool bar are listed in
the field on the right half of the window. The options are:

Bitmap children. Indicates that some of the objects contain bitmaps. Set
ting this flag will affect the spacing of objects in the list. Nonnally,
objects are spaced according to a pre-determined cell height value. If this
flag is set, however, the objects will be spaced according to the actual
height of the objects.

Select multiple objects. Allows more than one object to be selected at a
time. This option must be set if check boxes are added to the tool bar.

Don't wrap keystrokes. Causes objects placed in the tool bar to be posi
tioned according to their specified coordinates. By default, objects within
a tool bar are automatically positioned so that they are edge-to-edge from
left-to-right, in the order in which they were created. If more objects are
added than can fit on a single line of the tool bar, the tool bar will wrap
and place the remaining objects on the next line. If this option is set,
however, objects on the tool bar will not be automatically positioned, but
will be positioned to the location at which they were placed.

The objects contained within the tool bar can be modified through interac
tion with the Subobjects page. For detailed infonnation on the Subobjects
page, refer to the general description on page page 220.

The default add object (shown in the lower right combo box field) for a tool
bar is a button.

The Position page contains information related to the tool bar's position,
border, region, and alignment. For detailed information on the Position
page, refer to the general description on page 213.

The Geometry notebook page allows you to place constraints on a tool bar
that specify how the object should be sized and positioned under specific
conditions. For detailed information on the Geometry page, refer to the gen
eral description on page 214.

The Advanced page contains information relating to the advanced proper
ties of the tool bar. It is designed for use by the experienced user only. For
detailed information on the Advanced page, refer to the general description
on page 218.

Zinc Designer 311



Selection Objects

General page

312

Pull-down menu

A pull-down menu acts as a structure for selectable menu items that appear
in a single horizontal line. It automatically occupies the length of the top por
tion of the window to which it is attached. Selecting the Pull-Down Menu
option and attaching it to a window causes the following object to appear:

<=1 <untitled> ·.1:"'1:'"
item

A multi-level selectable menu is created by adding pull-down items and pop
up items to the pull-down menu. The pull-down menu object is created with
one pull-down item automatically attached to it.

To modify the pull-down menu, call its information notebook from its parent
window's Subobjects page. The following window will appear:

-General l Subobjects I Position I Geometry l Advanced

----- Interaction -----

o Alphabetical sorting

Indent 10 I

Name: IFIELD_l I
Help: I<none> Iii

1-1l.1( I I kancel~1 I Helpc I
I

The General page contains information relating specifically to the pull-down
menu being edited. It contains the following fields:

Indent. This field determines the blank space, measured in cell units,
between the first menu item and the left edge of the menu. (This applies only
to the first item. Subsequent menu items will be automatically positioned
next to the previous menu item.)

Zinc Designer



Subobjects page

Position page

Geometry page

Advanced page

Name. Enter in this field a name that will distinguish the pull-down menu
object from other objects on the window.

Help. This field designates the help context to be associated with the pull
down menu. Select the combo box button to view a list of the available help
contexts. If you select one of the contexts listed, the help message of that
context will be displayed whenever the user positions on the pull-down
menu and requests help. (See Chapter 20 for information on creating help
contexts.)

options list. The options that control interaction with the pull-down menu are
listed in the field on the right half of the window. The following option is
available:

. Alphabetic sort. Causes the menu items to be sorted and displayed in
alphabetical order.

The objects contained within the pull-down menu can be modified through
interaction with the Subobjects page. For detailed information on the Sub
objects page, refer to the general description on page 220.

The default add object (shown in the lower right combo box field) for a pull
down menu is a pull-down item.

The Position page contains information related to the pull-down menu's
position, border, region, and alignment. For detailed information on the
Position page, refer to the general description on page 213.

The Geometry notebook page allows you to place constraints on a pull
down menu that specify how the object should be sized and positioned under
specific conditions. For detailed information on the Geometry page, refer to
the general description on page 214.

The Advanced page contains information relating to the advanced proper
ties of the pull-down menu. It is designed for use by the experienced user
only. For detailed information on the Advanced page, refer to the general
description on page 218.

Zinc Designer 313



Selection Objects

314 Zinc Designer



Chapter 17 Other Objects

The final object category includes window objects that do not fit into the
other general object categories. Selecting the Other option causes the fol
lowing associated menu to appear:

type: I
name: f-I===-

pos:

size:

Status-Bar
Notebook
Table

Sub-Window

Zinc Designer 315



Other Objects

General page

Position page

Geometry page

316

Prompt

A prompt object is used to provide lead information for another window
object. Selecting Prompt causes the following object to appear:

prompt

To modify the prompt object, call its information notebook. The following
window will appear:

I General I Pos~ion I Geometry 1 Advanced

Tellt: Iprompt

I-
Name: IFIELD_l

Ii If I I!lK tancel Help

:!

The General page contains information relating specifically to the prompt
object being edited. It contains the following fields:

Text. Enter in this field text exactly as you want it to appear in the prompt. It
will be automatically centered vertically. If the text string is longer than the
length of the prompt field, the field must be sized in order to display the
entire text.

Name. Enter in this field a name that will distinguish the prompt object from
other objects on the window.

The Position page contains information related to the prompts's position,
border, region, and alignment. For detailed information on the Position
page, refer to the general description on page 213.

The Geometry page allows you to place constraints on a prompt object that
specify how the object should be sized and positioned under specific condi
tions. For detailed information on the Geometry page, refer to the general
description on page 214.

Zinc Designer



Advanced page

General page

The Advanced page contains information relating to the advanced proper
ties of the prompt. It is designed for use by the experienced user only. For
detailed information on the Advanced page, refer to the general description
on page 218.

Group

The group object is used to allow physical grouping of window objects. For
example, a series of radio buttons can be grouped together by first creating a
group object and then adding the radio buttons. Selecting Group causes the
following object to appear:

D
To modify the group object, call its information notebook. The following
window will appear:

General I Subobjects T Position I Geometry I Advanced

----- Inleraclion -----
i

[gJ Automatic item selection

Text: IGroup I
D Selecl multiple children

D Don't wrap kevslrokes

IFIELD
r

Name: 1 I
Help: I<none> Iii

i

I, I OK I I Cancel I I Help I

The General page contains information relating specifically to the group
object being edited. It contains the following fields:

Zinc Designer 317



Other Objects

Subobjects page

Position page

Geometry page

318

Text. Enter in this field text exactly as you want it to appear in the upper left
corner of the group object's border. If the text string is longer than the width
of the group box, only the portion that fits will be displayed.

Name. Enter in this field a name that will distinguish the group object from
other objects on the window.

Help. This field designates the help context to be associated with the group
box. Select the combo box button to view a list of the available help con
texts. If you select one of the contexts listed, the help message of that context
will be displayed whenever the user positions on the group box and requests
help. (See Chapter 20 for information on creating help contexts.)

options list. The options that control interaction with the group object are
listed in the field on the right half of the window. These options are:

Automatic item selection. Causes each object in the group to be automat
ically selected when it becomes current. Typically this option is used
when the group contains radio buttons. If the user arrows through the
radio buttons, the current button will always be the selected button.

Select multiple children. Allows more than one item in the group to
become selected at the same time. This option is typically used if the
group contains check boxes.

Don't wrap keystrokes. Prevents arrowing up or down to wrap from the
end of the group's items to the beginning or vice versa.

The objects contained within the group object can be modified through inter
action with the Subobjects page. For detailed information on the Subob
jects page, refer to the general description on page page 220.

The default add object (shown in the lower right combo box field) for a
group box is a button.

The Position page contains information related to the group's position, bor
der, region, and alignment. For detailed information on the Position page,
refer to the general description on page 213.

The Geometry page allows you to place constraints on a group object that
specify how the object should be sized and positioned under specific condi
tions. For detailed information on the Geometry page, refer to the general
description on page 214.

Zinc Designer



Advanced page The Advanced page contains information relating to the advanced proper
ties of the group box. It is designed for use by the experienced user only. For
detailed information on the Advanced page, refer to the general description
on page 218.

Icon

An icon is used to display a 32x32 pixel image on the screen. It is often
present in an application as an indicator of some sort that cannot be inter
acted with; however, an icon can also be created for interaction purposes,
such as a question mark icon that displays help when selected. Selecting
Icon causes the following object to appear:

To modify the icon, call its information notebook. The following window
will appear:

@ Action onUP·CLlCK

Tille: I I 0 Action on DOUBLE·CLlCK

Image: I~<n=on=e=>=====::::;:[3:::::;:!

Name: IFIELD 1

Help: I<none>

OK I I Cancel I I Help

I
IiJ

Advanced

General page The General page contains information relating specifically to the icon
object being edited. It contains the following fields:

Title. If you want a title to appear in the rectangular region below the icon,
enter in this field the exact text for the title.

Zinc Designer 319



Other Objects

Position page

Geometry page

Advanced page

320

Image. This field designates the image to be associated with the icon. Select
the combo box button to view a list of the available images. If you select one
of the images listed, it will be displayed on the icon. (See Chapter 19 for
information on creating icon images.)

Name. Enter in this field a name that will distinguish the icon object from
other objects on the window.

Help. This field designates the help context to be associated with the icon.
Select the combo box button to view a list of the available help contexts. If
you select one of the contexts listed, the help message of that context will be
displayed whenever the user positions on the icon and requests help. (See
Chapter 20 for information on creating help contexts.)

options list. The options that determine how to activate an action associated
with the icon are listed in the field on the right half of the window. These
options are:

• Action on UP-CLICK. Completes the action on a down-click and release
action.

. Action on DOUBLE-CLICK. Completes the action when the icon has
been selected twice in rapid succession.

The Position page contains information related to the icons's position, bor
der, region, and alignment. For detailed information on the Position page,
refer to the general description on page 213.

The Geometry page allows you to place constraints on an icon object that
specify how the object should be sized and positioned under specific condi
tions. For detailed information on the Geometry page, refer to the general
description on page 214.

The Advanced page contains information relating to the advanced proper
ties of the icon. It is designed for use by the experienced user only. For
detailed information on the Advanced page, refer to the general description
on page 218.

Zinc Designer



Status bar

A status bar presents status information to the user. It is not interactive, but is
a means of displaying information. A status bar is like a modified window
that always occupies the bottom width of the parent window. Selecting Sta
tus Bar and attaching it to a window causes the following object to appear:

The following objects can be added to a status bar: string, date, time, and
number objects; icons; and buttons.

To modify the status bar, call its information notebook. The following win
dow will appear:

- General I Subobjects T Pos~ion I Geometry T Advanced
_.~,-~ ~

Height: LI' ---'

I II Cancel I 1..1....H;;;;;"e...lp---,

Name: IFIElD ,

Help: I<none>
I

111

General page The General page contains information relating specifically to the status bar
being edited. It contains the following fields:

Height. This field designates the height of the status bar within the window.

Name. Enter in this field a name that will distinguish the status bar from
other objects.

Help. This field designates the help context to be associated with the status
bar. Select the combo box button to view a list of the available help contexts.
If you select one of the contexts listed, the help message of that context will
be displayed whenever the user positions on the status bar and requests help.
(See Chapter 20 for information on creating help contexts.)

Zinc Designer 321



Other Objects

Subobjects page

Position page

Geometry page

Advanced page

322

The objects contained within the status bar can be modified through interac
tion with the Subobjects page. For detailed information on the Subobjects
page, refer to the general description on page page 220.

The default add object (shown in the lower right combo box field) for a sta
tus bar is a string.

The Position page contains information related to the status bar's position,
border, region, and alignment. For detailed information on the Position
page, refer to the general description on page 213.

The Geometry page allows you to place constraints on a status bar that spec
ify how the object should be sized and positioned under specific conditions.
For detailed information on the Geometry page, refer to the general descrip
tion on page 214.

The Advanced page contains information relating to the advanced proper
ties of the status bar. It is designed for use by the experienced user only. For
detailed information on the Advanced page, refer to the general description
on page 218.

Notebook

A notebook is used to display multiple pages of related objects. Each of
these pages has a tab at the top of it which, when selected by the mouse,
causes the complete page to be displayed. Selecting Notebook and attaching
it to a window causes the following object to appear:

page 1

II
I'
Ii

Zinc Designer



The notebook object itself is actually an invisible framework for notebook
pages, which become the notebook's subobjects. When you create a note
book object in the designer, it is automatically created with one page. Since
the pages within the notebook are actually modified windows, adding more
pages is accomplished by selecting the window object and placing it within
the notebook structure. All of the information notebooks for window objects
in the designer are examples of the notebook object.

To modify the notebook, call its information notebook. The following win
dow will appear:

General

General page

Subobjects page

Nam~ I I
;:=======;~

Help: LI ----lolil...f

OK Cancel I I Help

The General page contains information relating specifically to the notebook
object being edited. It contains the following fields:

Name. Enter in this field a name that will distinguish the notebook object
from other objects on the window.

Help. This field designates the help context to be associated with the note
book. Select the combo box button to view a list of the available help con
texts. If you select one of the contexts listed, the help message of that context
will be displayed whenever the user positions on the notebook and requests
help. (See Chapter 20 for infonnation on creating help contexts.)

The objects, including the actual window pages, contained within the note
book structure can be modified through interaction with the Subobjects
page. For detailed information on the Subobjects page, refer to the general
description on page 220.

The default add object (shown in the lower right combo box field) for a
notebook is a window.

Zinc Designer 323



Other Objects

Position page

Geometry page

Advanced page

324

The Position page contains information related to the notebook's position,
border, region, and alignment. For detailed information on the Position
page, refer to the general description on page 213.

The Geometry page allows you to place constraints on a notebook that spec
ify how the object should be sized and positioned under specific conditions.
For detailed information on the Geometry page, refer to the general descrip
tion on page 214.

The Advanced page contains information relating to the advanced proper
ties of the notebook. It is designed for use by the experienced user only. For
detailed information on the Advanced page, refer to the general description
on page 218.

Table

A table object is used to create a table of records, which can be scrolled both
vertically and horizontally. Records in the table can have one or more fields
which may be of different types. One use of the table object would be a
spreadsheet. Selecting Table causes the following object to appear:

A table object differs in one important way from the other objects of the
Designer, in that it is merely a template for a table. The data for the fields in
the table cannot be initialized from within the Designer; it must be set at run
time. For example, though we may designate one cell of the table as a string
field, we cannot specify the string's initial data from within the Designer.
This is different from a horizontal list with a string field, which displays
information that we assign to it.

The table object requires four layers to accomplish its purpose. These layers
are described below.

Zinc Designer



1. The base layer of the table object is the table framework itself, which
hosts the other components and allows them to function together.

2. The second layer includes the horizontal, vertical, and corner scroll bars,
and the column, row, and corner headers, represented by the gray regions
on the left side and top of the table.

3. The third layer consists of table records, which are the actual regions to
which specific fields are attached, such as string, date, or number fields.
Table records are used in the headers to display information-typically
labels that identify the contents of the row or column-and in the table
directly, to display or collect data. By default, the table object is created
with four table records-one each in the column and row headers (where
the 'XXX' prompts are displayed), one in the corner header, and one
within the actual table (shown with a dotted border surrounding it). Only
one table record should be added to the table directly. The table will use a
virtual record to draw all the other displayed records, using the data
passed to the table at run-time.

4. Finally, the fourth layer of the table object is its object data fields, which
are added directly to the table records. As mentioned, the column and
row header records each appear by default with one prompt field. The
text of these prompt fields can be modified by traversing through the
associated headers' information notebooks. The record of the actual table
(shown with a dotted border surrounding it) will accept any input or con
trol types of objects. Simply select the desired object and place it within
the table border. These fields become subobjects of the table record.

Zinc Designer 325



Other Objects

In summary, the four levels of the table object can be visually represented in
the following figure:

o header • record oheader

•

Label

Object 2

• object

Label

Object 1Label

o header

326 Zinc Designer



General page

To modify the table object, call its information notebook. The following
window will appear:

General 1 Subobjects '( Position f Geometry '( Advanced 1
----- Support Features -----

ISl Vertical Scroll-Bar

I' ISl Horizontal Scroll-Bar
I: ISl Column Heading

ISl Row Heading

----- 0 ptions -----

.' Name: IFIELD 1 I D Draw Grid

Help: I iii

I OK I I J;;.ancel I I .!::!.elp I

The General page contains information relating specifically to the table
object being edited. It contains the following fields:

Name. Enter in this field a name that will distinguish the table object from
other objects on the window.

Help. This field designates the help context to be associated with the table.
Select the combo box button to view a list of the available help contexts. If
you select one of the contexts listed, the help message of that context will be
displayed whenever the user positions on the table and requests help. (See
Chapter 20 for information on creating help contexts.)

options list. The options that determine the presentation of the table are
listed in the field on the right half of the window. The first section presents
options that determine the support features of the table. These options are:

Vertical scroll bar. Places a vertical scroll bar inside the right border of
the table.

. Horizontal scroll bar. Places a horizontal scroll bar inside the bottom bor
der of the table.

NOTE: A corner scroll bar is automatically added when both a vertical
and a horizontal scroll bar are selected.

Column heading. Places a column header, with one prompt field attached
to it, at the top of the table.

. Row heading. Places a row header, with one prompt field attached to it, at
the left side of the table.

Zinc Designer 327



Other Objects

Subobjects page

Position page

Geometry page

Advanced page

328

NOTE: A comer header is automatically added when both a vertical and
a horizontal header are selected.

The second section presents the following option:

. Draw grid. Displays lines that divide the table's columns and rows.

The objects, including the header, scroll bars, and records, contained within
the table structure can be modified through interaction with the Subobjects
page. For detailed information on the Subobjects page, refer to the general
description on page 220.

The default add object, shown in the lower right combo box field, for a table
is a string.

The Position page contains information related to the table's position, bor
der, region, and alignment. For detailed information on the Position page,
refer to the general description on page 213.

The Geometry page allows you to place constraints on a table that specify
how the object should be sized and positioned under specific conditions. For
detailed information on the Geometry page, refer to the general description
on page 214.

The Advanced page contains information relating to the advanced proper
ties of the table. It is designed for use by the experienced user only. For
detailed information on the Advanced page, refer to the general description
on page 218.

Zinc Designer



Subwindow

A window is used as a controlling structure for displaying and interacting
with other objects. This object is known as a subwindow or child window in
order to distinguish it from the main resource window to which it must be
attached. Selecting Subwindow causes the following object to appear:

-=1 <untitled>

By default, the window is created with a title, a system button, a maximize
button, and a minimize button. Other objects can be added by simply select
ing them from the menu or button bar and placing them on the window.

To modify the child window object, call its information notebook. The fol
lowing window will appear:

•

PositionSubobjecls

Name: I<UNTITLED>

Help: I<none>

----- Supporl Fealures ----

~ Border

Title: ' 1< unlitled> I ~ Maximize Bulton
["";If ~ Minimize Button

Ninlcon: I,---<n_on_e_> ---11.=.1 ~ S tern Button

D Geometry Managemenl

I D Verlical Scroll-Bar

I:!J D Horizonlal Scroll-Bar

----- Type -----

@Default

General page The General page contains information relating specifically to the child
window object being edited. It contains the following fields:

Title. Enter in this field text exactly as you want it to appear in the window's
title. It will be automatically centered vertically.

Zinc Designer 329



Other Objects

330

MinIcon. This field designates the icon to be associated with the window
when it is minimized. Select the combo box button to view a list of the avail
able icons. If you select one of the icons listed, it will be used to represent
the window when the window is in a minimized state. (See Chapter 19 for
information on creating icon images.)

Name. Enter in this field a name that will distinguish the subwindow from
other objects on the window.

Help. This field designates the help context to be associated with the child
window. Select the combo box button to view a list of the available help con
texts. If you select one of the contexts listed, the help message of that context
will be displayed whenever the user positions on the child window and
requests help. (See Chapter 20 for information on creating help contexts.)

options list. The options that control the presentation and operation of the
subwindow are listed in the field on the right half of the window. The first
section presents options that determine the support features of the subwin
dow. These options are:

· Border. Draws a thin border around the outer perimeter of the window.

· Maximize button. Attaches a maximize button to the window that will
enlarge the window to its maximum size when selected.

· Minimize button. Attaches a minimize button to the window that will
reduce the window to its minimum size when selected.

· System button. Attaches a system button to the window. When selected, a
system button displays the following selectable options: Restore, Move,
~ize, Minimize, Ma!imize, and £lose.

· Geometry management. Enables the geometry management feature for
the subwindow, meaning that objects which are attached to the window
can then be positioned and sized according to their own geometry man
agement specifications. If this option has not been previously set and one
of the child objects is using geometry management, it will automatically
be turned on. (For more information on geometry management, see
Chapter 11 and Chapter 13.)

Vertical scroll bar. Places a vertical scroll bar inside the right border of
the child window.

· Horizontal scroll bar. Places a horizontal scroll bar inside the bottom bor
der of the child window.

Zinc Designer



The second section presents options that determine the type of subwindow.
The options are:

Default. Creates a normal window.

Dialog object. Creates the window as a dialog box. A dialog box is a
temporary window used to display or receive information from the user.
Using this flag will cause a dialog style border to be displayed.

MDlobject. Creates the window as an MDI window. An MDI parent
must have a pull-down menu. In general, other than the standard support
objects (i.e., system button, border, title, etc.) and the pull-down menu,
MDI parent windows should only contain MDI children.

If the MDI window is added directly to another MDI window, it will
become an MDI child object. MDI child windows can be moved or sized
but will remain entirely within the MDI parent window.

Zinc Designer 331



Other Objects

Subobjects page

332

The third section presents options that determine interaction with the sub
window. The options are:

· Alphabetical sort. Causes the objects to be sorted and displayed in alpha
betical order on the window.

· Select multiple objects. Allows more than one object to be selected at a
time.

· Select on drag operation. Causes any objects overlapped by a drag oper
ation to be selected.

· Allow normal hotkeys. Allows the user to select an option using its hot
key by pressing the hotkey by itself, without the <Alt> key otherwise
required. Care should be taken when using this option in a window, as
editable objects will no longer work properly.

· Don't size. Prevents the user from changing the size of the window at
run-time. This option should be set if the window is to be a non-MDI
child.

· Don't move. Prevents the user from changing the screen location of the
window at run-time. This flag should be set if the window is to be a non
MDI child.

· Modal. Prevents any other window from receiving event information. A
modal window receives all event information until it is removed from the
screen.

· Locked. Prevents the user from removing the window from the screen.

· Temporary. Causes the window to only occupy the screen temporarily.
Once another window is selected, the temporary window is removed.
Once removed, a temporary window will be destroyed if the Don't
destroy object option is not set.

· Don't destroy object. Prevents the window from being destroyed when it
is closed. If this option is set, the window can be removed from the dis
play, but the programmer is responsible for destroying the window.

The fourth section presents the following special option:

· Renumber subobjects. Causes the objects within the window to be
renumbered sequentially. This is especially useful after several delete,
cut, or similar actions that result in gaps in the original numbering of the
objects.

The objects contained within the child window can be modified through
interaction with the Subobjects page. For detailed information on the Sub
objects page, refer to the general description on page 220.

Zinc Designer



Position page

Geometry page

Advanced page

The default add object (shown in the lower right combo box field) for a
child window is a string.

The Position page contains information related to the child window's posi
tion, border, region, and alignment. For detailed information on the Position
page, refer to the general description on page 213.

The Geometry page allows you to place constraints on a child window that
specify how the object should be sized and positioned under specific condi
tions. For detailed information on the Geometry page, refer to the general
description on page 214.

The Advanced page contains information relating to the advanced proper
ties of the child window. It is designed for use by the experienced user only.
For detailed information on the Advanced page, refer to the general descrip
tion on page 218.

Zinc Designer 333



Other Objects

334 Zinc Designer



Chapter 18 Help Options

The Help category allows us to receive help at any time during a Zinc
Designer session. This chapter discusses the different help areas in Zinc
Designer we can use.

Selecting Help causes the following menu to appear:

file
Edit
~indow

.Qbject

About Window Editor

Zinc Designer 335



Help Options

336

Index

The Index... option allows you to view all help topics created within Zinc
Designer. Selecting it causes an index list to appear, from which we can
select these help topics. When we select a specific help topic from the list, its
help window appears.

File

Selecting Eile displays help regarding the Window Editor's File options.

Edit

Selecting Edit displays help regarding the Window Editor's Edit options.

Window

Selecting Window displays help regarding the Window Editor's Window
options.

Object

Selecting Qbject displays help regarding the Window Editor's Object
options.

Zinc Designer



About ffindow Editor

Selecting About Window Editor causes information to be displayed regard
ing Zinc Designer's current version number and copyright information.

Zinc Designer 337



Help Options

338 Zinc Designer



Chapter 19 Image Editor

The Image Editor provides options that allow you to create icon, bitmap, and
mouse cursor images that can be used throughout your application.

Control window layout

Invoking the Image Editor causes the following control window to appear:

Zinc Designer 339



Image Editor

The menu bar

340

Using the options presented in the menus of the Image Editor control win
dow, bitmaps, icons and mouse cursor images can be created and saved for
use with Zinc resources. Selecting some menu items causes an action to take
place immediately, while selecting others causes a related window to appear,
from which more options are available. Menu items that cause another win
dow to appear are distinguished by ellipses (...). A brief explanation of each
menu item follows:

file. This menu is nonselectable in the Image Editor, since all file-related
operations are handled in the Window Editor.

lidit. This menu consists of options that edit images. The edit options are:

· Grid

· Roller Size

· Pattern

· Erase

· Cut

• ~opy

· ~aste

· .Qelete

· !iroup..., and

· llngroup.

llitmap. This menu consists of options that control the creation of bitmap
images specifically. The selectable items on this menu are:

· Import...

· ,Export...

• ~reate

· Load...

· ~tore

· Store As...
· Clear

· Clear All, and

· .Qelete...

Zinc Designer



Icon. This menu consists of options that control the creation of icon images
specifically. The selectable items on this menu are:

· Import...

· Export...

· !:reate

· Load...

· ~tore

· Store As...
· Clear

· Clear All, and

· !!elete...

Mouse. This menu consists of options that control the creation of mouse cur
sor images specifically. The selectable items on this menu are:

· Import...

· Export...

· !:reate

· Load...

· ~tore

· Store As...
· Clear

· Clear All, and

· !!elete...

Help. This option provides general help for the Image Editor. The selectable
items on this menu are:

· Index...

· .Eile

· Edit

· !!itmap

· Icon

• Mouse, and

· About Image Editor.

Zinc Designer 341



Image Editor

The button bar

The color bars

Grid

342

All of these menu items are discussed in more detail in their respective sec
tions that follow.

The button bar presents the pencil, brush, line, rectangle, rectangle solid,
ellipse, ellipse solid, and fill options. It is designed to allow you to easily
select these options with a mouse. For details on how to use the button bar in
creating images, refer to the creation window sections below.

The available colors are displayed in this area. To select a color, click on it
with the left or right mouse button in the corresponding palette. For more
details on how to use the color bars in creating images, refer to the creation
window sections below.

Edit

The Edit category options are used to edit the appearance and performance
of images within the current file. Selecting Edit causes the following menu
to appear:

Q.roup
!!ngroup

Selecting the Grid option causes a grid coordinate system to be displayed in
the image creation field. When this option is in effect, a check mark is dis
played next to it.

Zinc Designer



Roller Size

Pattern

Selecting the Roller Size option causes another menu to appear which lists
roller size choices. The size of roller affects how wide the brush stroke is
when using the roller brush. The choices range from 1 pixel by 1 pixel
through 1 pixel by 5 pixels (Ixl to lx5).

Selecting the Pattern option allows you to choose what type ofdrawing tool or
pattern to use. It causes another menu to appear with the following options:

Pencil. This option sets the current drawing pen to the width of a pencil (one
pixel wide).

Roller. This option sets the current drawing device to be a roller brush. In
other words, it has the capacity to draw with a width greater than one pixel at
a time. The actual width is determined by Edit IRoller Size.

Line. This option allows you to draw a line. A line is drawn by clicking the
left mouse button (specifying the beginning point) and moving the mouse
cursor to the ending point and releasing the mouse button.

Rectangle. This option allows you to create un unfilled rectangle. A rectan
gle is made by clicking the left mouse button (specifying the beginning
point) and, while keeping the mouse button depressed, moving the mouse
cursor to the ending point and releasing the mouse button.

Fill Rectangle. This option allows you to create a filled rectangle. A rectan
gle is made by clicking the left mouse button (specifying the beginning
point) and, while keeping the mouse button depressed, moving the mouse
cursor to the ending point and releasing the mouse button.

Ellipse. This option allows you to create un unfilled ellipse. An ellipse is
made by clicking the left mouse button (specifying the beginning point of a
rectangle that defines the ellipse) and, while keeping the mouse button
depressed, moving the mouse cursor to the ending point of the defining rect
angle and releasing the mouse button.

Fill Ellipse. This option allows you to create a filled ellipse. An ellipse is
made by clicking the left mouse button (specifying the beginning point of
the defining rectangle) and, while keeping the mouse button depressed, mov
ing the mouse cursor to the ending point of the defining rectangle and releas
ing the mouse button.

Zinc Designer 343



Image Editor

Erase

Cut

Copy

Paste

Delete

Group

344

Fill. This option allows you to perfonn a flood fill with the current drawing
color. A flood fill is similar to pouring paint on an area. The color will spread
and fill every blank pixel until it reaches an enclosing border. If the "paint" is
poured in the middle of an ellipse, for example, the color will fill the blank
spaces of the ellipse only. If, on the other hand, the ellipse is missing part of
its border, the paint will "leak" out and fill the entire image field.

Selecting Erase causes the current image to be erased from the image field.
It does not delete the image from the file.

NOTE: In order to avoid unintentional erasing, Erase does not have a hot
key assignment. It can only be activated by selecting it from the menu with a
mouse or by scrolling to it and pressing <Enter>.

Selecting the Cut option removes the current image group from the screen
and places it in a global paste buffer. This option only has effect if a group is
designated within the image field. (See the Group section below.)

Selecting the .copy option copies the current image group and places the
copy in a global paste buffer. This option only has effect if a group is desig
nated within the image field. (See the Group section below.)

Selecting ~aste allows you to recall and position on the screen the contents
of the global paste buffer (placed there by Cut or Copy procedures). After
selecting ~aste, position the mouse cursor where you would like the paste to
occur and press the left mouse button.

Selecting !!elete allows you to delete an image from the current file.

Selecting !iroup... allows you to select a region on the image field to
become its own unit, or image group. After selecting !iroup place the mouse
cursor at a corner of the region to be grouped and drag the mouse to the oppo
site corner. Any pixel overlapped by the drag process will be included in the
group. Upon releasing the mouse, the region will be marked by a colored
border. This designates the area encompassing the group. NOTE: Grouping
a region can also be accomplished by pressing <Ctrl> and then dragging the
mouse to mark the desired area.

Only one image group is permitted at a time. Upon grouping a second
region, the first group in the image will be dissolved (ungrouped).

Zinc Designer



Ungroup

Import

This image group can be moved with the cursor, and it can be copied, cut, or
pasted as described above.

Selecting !Ingroup causes the group within the current image field to be dis
solved. In other words, the cyan border surrounding the group disappears,
and the section once again becomes a part of the original image. If the cur
rent image field does not contain an image group, !Ingroup has no effect.

NOTE: Creating another group will also dissolve an edit group.

Bitmap menu options

The Bitmap category options are used to create bitmap images. Selecting
!!itmap causes the following menu to appear:

Selecting the Import option allows you to import an image from another
file. Bitmap images can be imported from .BMP (MS Windows and OS/2),
.XPM (OSF/Motif), and .DAT (Zinc) files. This process involves two simple

Zinc Designer 345



Image Editor

steps, the first of which is selecting the file containing the desired image.
Consequently, upon selecting Import, a window similar to the Window Edi
tor's File I Open window appears:

:'~ File Selection < Ii
Filename: j!irectories:

I I c: \ziI400\design I .!It:: I
121 c: .!.

121 zil400 - I Cancel I ·
e- design

LJ direcl II Help I
LJ file

LJ help
-+

List Files of lYpe: Driyes:

I··dat I [!I lla c: [!J

Enter the name of the desired file at the Filename prompt and select the OK
button. (Refer to the File I Open section on page 197 for further instructions
on interacting with the File I Import window.) After the File I Import win
dow closes, another window, similar to the following, immediately opens:

objectname:

I'

-
Object Selection

j!ireclories:

,--

.!It::

.cancel

Help

-

346

11

I:
IIIi '--- -'

1:.-- _n.

This window requests the actual bitmap image to be imported from the des
ignated file. Interaction with its fields is described below.

Objectname. To import a bitmap image, either enter the name at the Object
name prompt, or select it from the list below, and the name of the image will
automatically appear at the prompt.

Zinc Designer



Export

Other bitmap images that belong to the current directory are listed, in alpha
betical order, in the scrollable field below the Objectname field. As men
tioned above, selecting one of these images causes the name to appear in the
Objectname field. Double-clicking on a name listed in the bitmap image list
will cause that image to be imported immediately.

Directories. This field indicates that you are currently in the bitmap direc
tory. The field is for informational purposes only and cannot be edited.

OK. Selecting this button causes the bitmap image specified at the Object
name prompt to be imported. If the import procedure is successful, the win
dow will close. If the image entered at the Objectname prompt does not
exist, or if no information has been entered, you will receive an error mes
sage.

Cancel. Selecting this button causes the window to close without executing
any changes.

Help. Additional information about importing images appears when this but
ton is selected.

Once the image has been imported, it can be accessed through .l!itmap I
Load... (See page 345 of this chapter for more information on loading bit
map images.)

Selecting the ,Export option allows you to export an image to another file.
This process, much like the importing process, involves two simple steps,
the first of which is selecting the file containing the desired image. Conse
quently, upon selecting ,Export, a window similar to the Window Editor's
File IOpen window appears:

=-1
Filename:

--
File Selection

}Lireclories:

c: \ziI400\design

---,. - _.

OK
(C. c: ..!.I

(C. zil400 .....

~~i~~_·:=::=:=...--~
tJ direcl

tJ file

tJ help

Lisl Files of lYpe: Driyes:

L..-I··d_al ----JI [!I 1_Ia_c_: I!J

Zinc Designer

Cancel

Help

347



Image Editor

Enter the name of the desired file at the Filename prompt and select the OK
button. (Refer to the File IOpen section on page 197 for further instructions
on interacting with the File IExport window.) After the File IExport win
dow closes, another window, similar to the following, immediately opens:

IFI
I. Objectname:

o BITMAPl

Object Selection
Q.irectories:

eJ
e-.' ['iIMAI

348

This window requests the actual image to be exported to the designated file.
Interaction with its fields is described below.

Objectname. To export a bitmap image, either enter the name at the Object
name prompt, or select it from the list below, and the name of the image will
automatically appear at the prompt.

Other bitmap images that belong to the current directory are listed, in alpha
betical order, in the scrollable field below the Objectname field. As men
tioned above, selecting one of these images causes the name to appear in the
Objectname field. Double-clicking on a name listed in the bitmap image list
will cause that image to be exported immediately.

Directories. This field indicates that you are currently in the bitmap direc
tory. The field is for informational purposes only and cannot be edited.

OK. Selecting this button causes the bitmap image specified at the Object
name prompt to be exported. If the export procedure is successful, the win
dow will close. If the image entered at the Objectname prompt does not
exist, or if no information has been entered, you will receive an error mes
sage.

Cancel. Selecting this button causes the window to close without executing
any changes.

Zinc Designer



Create

Load

Help. Additional information about exporting images appears when this but
ton is selected.

!:reate allows you to create a bitmap image. Selecting it automatically
places the following window on the screen:

'~I
"" = .~

<untitled>

I
D

Widlh: 116 I
Height: 116 I

I Store -I I Store As... 1 I CIose-l I Help I 11- ~Si!e 1
_. .....

For details on interaction with this window, see the section Bitmap Cre
ation Window below.

;Load... is used to recall a bitmap image from the current file. Selecting it
causes a window similar to the following to appear:

Resource. Load••.

Objeclname:

lEI P_IMAGE

lE:I P_STORE

Q,ileclolies:

Help '1

Objectname. To load a bitmap image, either enter the name at the Object
name prompt, or select it from the list below, and the name of the image will
automatically appear at the prompt.

Zinc Designer 349



Image Editor

Store

350

Other bitmaps that belong to the current directory (including those imported
from other files) are listed, in alphabetical order, in the scrollable field below
the Objectname field. As mentioned above, selecting one of these images
causes the name to appear in the Objectname field. Double-clicking on a
name listed in the files list will cause that image to be loaded immediately.

Directories. The current bitmap directory is shown below the I!irectories
prompt. Other directories of the current file are listed in the field below the
current directory prompt. These two fields are for informational purposes
only and cannot be edited.

OK. Selecting this button causes the bitmap image specified at the Object
name prompt to be loaded. If the load procedure is successful, the Resource
ILoad window will close and the bitmap image appears on the screen in the
exact location and condition it was last stored.

If the image entered at the Objectname prompt does not exist, or if no infor
mation has been entered, you will receive an error message.

Cancel. Selecting this button causes the window to close without executing
any changes.

Help. Additional information about loading images appears when this button
is selected.

Once the bitmap image has been loaded and appears on the screen, it can be
modified in any way. When the I!itmap I Store option is subsequently
selected, the image will be saved in its present condition, replacing the origi
nal version. (See the Store and Store As sections of this chapter for more
information on storing images.)

Selecting the Store option causes the current bitmap image to be saved in its
present condition to the current file. If you have not previously named the
image through a Store As operation, you will be asked for a name before
you can store the image.

NOTE: Each time a store operation is performed, the previous contents of
the image are completely replaced by the current information.

Zinc Designer



Store As Store As... is generally used to store the current bitmap image under another
name. Selecting it causes a window to appear that is similar to the following:

objeclname:

o P_IMAGE

o P_STORE

Resource, Store As...

Qireclories:

Cancel

Help

--~

"

'.

Objectname. Enter a name for the image at the Objectname prompt, or, if
you want to replace a previously created image with the current information,
select one from the field below, and the name for that image will auto
matically appear at the prompt.

Other images that belong to the current bitmap directory are listed, in alpha
betical order, in the scrolJable field below the Objectname field. As men
tioned above, selecting one of these images causes the name to appear in the
Objectname field. Double-clicking on a name listed in the files list will
cause that image to be stored immediately.

Directories. The current bitmap directory is shown below the I!irectories
prompt. Other directories of the current file are listed in the field below the
current directory prompt. These two fields are for informational purposes
only and cannot be edited.

OK. Selecting this button causes the image to be stored under the name
entered at the Objectname prompt. If the store operation is successful, the
Resource, Store As ... window closes.

If no information has been entered within the Resource, Store As ... window
and you select the OK button, the window will close and no other action will
take place.

Cancel. Selecting this button causes the window to close without executing
any changes.

Zinc Designer 351



Image Editor

352

Help. Additional information about storing images appears when this button
is selected.

Clear

Selecting Clear causes the current bitmap creation window to be cleared
from the screen. It does not, however, delete the image from the file. If you
have not stored the current image immediately before, selecting !:,lear
causes a modal window to appear that asks if you want to store it before
clearing it from the screen. Selecting Yes causes it to be stored and then
cleared, selecting No causes it to be cleared without storing it first, and
selecting Cancel simply closes the modal window and the image is neither
stored nor cleared.

NOTE: In order to avoid unintentional clearing, Clear does not have a hot
key assignment. It can only be activated by selecting it from the menu with a
mouse or by scrolling to it and hitting <Enter>.

Clear All

Selecting Clear All causes all bitmap creation windows currently displayed
to be cleared from the screen. It does not, however, delete any of those
images from the file.

NOTE: In order to avoid unintentional clearing, Clear All does not have a
hot key assignment. It can only be activated by selecting it from the menu
with a mouse or by scrolling to it and hitting <Enter>.

Zinc Designer



Delete

The .I1elete... option allows you to delete a bitmap image from the current file.
Selecting it causes a window similar to the following to appear:

....1

objeclname:

EJ P_"04AGE

o P_STORE

=-=-== =
Resource. Delete...

Q.ireclories: I

1'- .!lK II
~ancel I

!
Help II

Objectname. Enter the name for the image to be deleted at the Objectname
prompt, or select one from the field below, and the name for that image will
automatically appear at the prompt.

Other images that belong to the current bitmap directory are listed, in alpha
betical order, in the scrollable field below the Objectname field. As men
tioned above, selecting one of these images causes the name to appear in the
Objectname field. Double-clicking on a name listed in the files list will
cause that image to be deleted immediately.

Directories. The current bitmap directory is shown below the .I1irectories
prompt. Other directories of the current file are listed in the field below the
current directory prompt. These two fields are for informational purposes
only and cannot be edited.

OK. Selecting this button causes a modal window to appear which is similar
to the following:

.... I-Resource. Delete... 'I..,] ..J

If Delele resource "BITMAP1"?

Yes I I No

Zinc Designer 353



Image Editor

354

The purpose of this window is to make sure that you want to delete the
image. If you select the OK button, the image indicated at the Objectname
prompt is deleted from the current file, and both the confirmation window
and the Bitmapl Delete window close. If you choose the Cancel button, the
image is not deleted and just the confirmation window closes.

If the image entered does not exist, you will receive an error message when
the OK button is selected.

If no information has been entered within the window, selecting OK causes
an error message to appear.

If the delete operation is successful, the Bitmapl Delete window closes, and
the image is deleted from the current file.

Cancel. Selecting this button causes the window to close without executing
any changes.

Help. Additional information about deleting images appears when this but
ton is selected.

Icon menu options

The Icon category options are used to create icon images. Selecting Icon
causes the following menu to appear:

Clear
Clear All
Q.elete...

Zinc Designer



Import Selecting the Import option allows you to import an image from another
file. Icon images can be imported from .leo (MS Windows and OS/2),
.XPM (OSFIMotif), and .DAT (Zinc) files. This process involves two simple
steps, the first of which is selecting the file containing the desired image.
Consequently, upon selecting Import, a window similar to the Window Edi
tor's File I Open window appears:

=1 - File Selection -
Filename: QireclOlies:

c: \ziI400\design OK
Dc: ~

D zil400 !""" Cancel

~::~~~!~~~.=
HelpIi udirecl

II ufile

uhelp
f-c
+

Lisl Files of lYpe: Driyes:

I-·dal I [!I I[a c: ~

Enter the name of the desired file at the Filename prompt and select the OK
button. (Refer to the File I Open section on page 197 for further instructions
on interacting with the File I Import window.) After the File I Import win
dow closes, another window, similar to the following, immediately opens:

=1
Objeclname:

~ APPLICATION

~ ASTERISK

~ EXCLAMATION

mHAND

mQUESTION

Resource, Import...

QireclOlies:

-UUCON OK

Cancel

Help

This window requests the actual icon image to be imported from the desig
nated file. Interaction with its fields is described below.

Objectname. To import an icon image, either enter the name at the Object
name prompt, or select it from the list below, and the name of the image will
automatically appear at the prompt.

Zinc Designer 355



Image Editor

356

Other icon images that belong to the current directory are listed, in alphabet
ical order, in the scrollable field below the Objectname field. As mentioned
above, selecting one of these images causes the name to appear in the
Objectname field. Double-clicking on a name listed in the icon image list
will cause that image to be imported immediately.

Directories. The current icon directory is shown below the ,Uirectories
prompt. Since this item is not selectable, if you want to make a different
directory the current one, it must be done by selecting a new directory from
the list below the current directory prompt. This list displays other available
directories of the current drive. The characters .. represent the parent direc
tory, and, if selected, will display the other sub-directories of the current
path, all of which are also selectable.

OK. Selecting this button causes the icon image specified at the Object
name prompt to be imported. If the import procedure is successful, the win
dow will close. If the image entered at the Objectname prompt does not
exist, or if no information has been entered, you will receive an error mes
sage.

Cancel. Selecting this button causes the window to close without executing
any changes.

Help. Additional information about importing images appears when this but
ton is selected.

Once the image has been imported, it can be accessed through Icon I Load...
(See page 354 of this chapter for more information on loading icon images.)

Zinc Designer



Export Selecting the Export option allows you to export an image to another file.
This process, much like the importing process, involves two simple steps,
the first of which is selecting the file containing the desired image. Conse
quently, upon selecting Export, a window similar to the Window Editor's
File IOpen window appears:

=1 File Selection

Filename: ~ireclories:

I I c:\ziI400\design
I OK I

127 c: ~ I127 zil400 I""'" I t-ancet

e> design
~

I Help ILJ direcl

LJ file

LJ help +'
Lis! Files of lYpe: Driyes:

I'_da' 1m lIS c: ~

Enter the name of the desired file at the Filename prompt and select the OK
button. (Refer to the File IOpen section on page 197 for further instructions
on interacting with the File IExport window.) After the File I Export win
dow closes, another window, similar to the following, immediately opens:

"';1
Objeclname:

mICONl

Object Selection
I!-ileclolies:

-UUCON

t-ancel

I: Help

I' "-- -----' '---- ------'
I'

This window requests the actual image to be exported to the designated file.
Interaction with its fields is described below.

Objectname. To export an icon image, either enter the name at the Objc~ct

name prompt, or select it from the list below, and the name of the image will
automatically appear at the prompt.

Zinc Designer 357



Image Editor

Create

Other icon images that belong to the current directory are listed, in alphabet
ical order, in the scrollable field below the Objectname field. As mentioned
above, selecting one of these images causes the name to appear in the
Objectname field. Double-clicking on a name listed in the icon image list
will cause that image to be exported immediately.

Directories. This field indicates that you are currently in the icon directory.
The field is for informational purposes only and cannot be edited.

OK. Selecting this button causes the icon image specified at the Object
name prompt to be exported. If the export procedure is successful, the win
dow will close. If the image entered at the Objectname prompt does not
exist, or if no information has been entered, you will receive an error mes
sage.

Cancel. Selecting this button causes the window to close without executing
any changes.

Help. Additional information about exporting images appears when this but
ton is selected.

!:reate allows you to create an icon image. Selecting it automatically places
the following window on the screen:

=1 -- - -
<untitled>

-_.~ -

D

'Width: 132
~====:

Height: <-132__--'

358

~tore I Store As... I I Close I I Help I I Size

For details on interaction with this window, see the section Icon Creation
Window below.

Zinc Designer



Load Load... is used to recall a previously created icon image from the curTent
file. Selecting it causes a window similar to the following to appear:

Objeclname:

mASTERISK

mEXCLAMATION

)!.irectOfies:

-UUCON

ro
~UUCON

Objectname. To load an icon image, either enter the name at the Object
name prompt, or select it from the list below, and the name of the image will
automatically appear at the prompt.

Other icons that belong to the current directory (including those imported
from other files) are listed, in alphabetical order, in the scrollable field below
the Objectname field. As mentioned above, selecting one of these images
causes the name to appear in the Objectname field. Double-clicking on a
name listed in the files list will cause that image to be loaded immediately.

Directories. The current icon directory is shown below the )!irectories
prompt. Other directories of the current file are listed in the field below the
current directory prompt. These two fields are for informational purposes
only and cannot be edited.

OK. Selecting this button causes the icon image specified at the Object
name prompt to be loaded. If the load procedure is successful, the Resource
I Load window will close and the icon image appears on the screen in the
exact location and condition it was last stored.

If the image entered at the Objectname prompt does not exist, or if no infor
mation has been entered, you will receive an error message.

Cancel. Selecting this button causes the window to close without executing
any changes.

Zinc Designer 359



Image Editor

Store

Store As

Help. Additional information about loading images appears when this button
is selected.

Once the icon image has been loaded and appears on the screen, it can be
modified in any way. When the Icon IS-tore option is subsequently selected,
the image will be saved in its present condition, replacing the original ver
sion. (See the Store and Store As sections of this chapter for more informa
tion on storing images.)

Selecting the S-tore option causes the current icon image to be saved in its
present condition to the current file. If you have not previously named the
image through a Store As operation, you will be asked for a name before
you can store the image.

NOTE: Each time a store operation is performed, the previous contents of
the image are completely replaced by the current information.

Store As... is generally used to store the current icon image under another
name. Selecting it causes a window to appear that is similar to the following:

"""I
ii Objec1name:

mASTERISK

mEXCLAMATION

Resource. Store As...

.Q.ireclories:

-UUCON

o
f50 'II 11 UN

--- -

01(

C,ancel

H~I

360

Objectname. Enter a name for the image at the Objectname prompt, or, if
you want to replace a previously created image with the current information,
select one from the field below, and the name for that image will auto
matically appear at the prompt.

Other images that belong to the current icon directory are listed, in alphabet
ical order, in the scrollable field below the Objectname field. As mentioned
above, selecting one of these images causes the name to appear in the
Objectname field. Double-clicking on a name listed in the files list will
cause that image to be stored immediately.

Zinc Designer



Directories. The current icon directory is shown below the Qirectories
prompt. Other directories of the current file are listed in the field below the
current directory prompt. These two fields are for informational purposes
only and cannot be edited.

OK. Selecting this button causes the image to be stored under the name
entered at the Objectname prompt. If the store operation is successful, the
Resource, Store As... window closes.

If no information has been entered within the Resource, Store As... window
and you select the OK button, the window will close and no other action will
take place.

Cancel. Selecting this button causes the window to close without executing
any changes.

Help. Additional information about storing images appears when this button
is selected.

Clear

Selecting Clear causes the current image creation window to be removed
from the screen. It does not, however, delete the image from the file. If you
have not stored the current image immediately before, selecting ,Clear
causes a modal window to appear that asks if you want to store it before
clearing it from the screen. Selecting Yes causes it to be stored and then
cleared, selecting No causes it to be cleared without storing it first, and
selecting Cancel simply closes the modal window and the image is neither
stored nor cleared.

NOTE: In order to avoid unintentional clearing, Clear does not have a hot
key assignment. It can only be activated by selecting it from the menu with a
mouse or by scrolling to it and hitting <Enter>.

Zinc Designer 361



Image Editor

Clear All

Selecting Clear All causes all icon image creation windows currently dis
played to be cleared from the screen. It does not, however, delete any of
those images from the file.

NOTE: In order to avoid unintentional clearing, Clear All does not have a
hot key assignment. It can only be activated by selecting it from the menu
with a mouse or by scrolling to it and hitting <Enter>.

Delete

The !!elete... option allows you to delete an icon image from the current file.
Selecting it causes a window similar to the following to appear:

=1
Objeclname:

=ASTERISK

mEXCLAMATION

-
Resource, Delete...

Q.ireclories:

-UUCON OK

Cancel

Help

362

Objectname. Enter the name for the image to be deleted at the Objectname
prompt, or select one from the field below, and the name for that image will
automatically appear at the prompt.

Other images that belong to the current icon directory are listed, in alphabet
ical order, in the scrollable field below the Objectname field. As mentioned
above, selecting one of these images causes the name to appear in the
Objectname field. Double-clicking on a name listed in the files list will
cause that image to be deleted immediately.

Zinc Designer



Directories. The current icon directory is shown below the !!irectories
prompt. Other directories of the current file are listed in the field below the
current directory prompt. These two fields are for informational purposes
only and cannot be edited.

OK. Selecting this button causes a modal window to appear which is similar
to the following:

=1 Resource, Delete I·'~

Delete resource "'CON1"?

Yes I I No

The purpose of this window is to make sure that you want to delete the
image. If you select the OK button, the image indicated at the Objectname
prompt is deleted from the current file, and both the confirmation window
and the Iconl Delete window close. If you choose the Cancel button, the
image is not deleted and just the confirmation window closes.

If the image entered does not exist, you will receive an error message when
the OK button is selected.

If no information has been entered within the window, selecting OK causes
an error message to appear.

If the delete operation is successful, the Icon I Delete window closes, and the
image is deleted from the current file.

Cancel. Selecting this button causes the window to close without executing
any changes.

Help. Additional information about deleting images appears when this but
ton is selected.

Zinc Designer 363



Filename:

Image Editor

Import

364

Mouse menu options

The Mouse category options are used to create mouse cursor images. Select
ing Mouse causes the following menu to appear:

Clear
Clear All
Q.elete...

Selecting the Import option allows you to import an image from another
file. Mouse cursor images can be imported from .leo (MS Windows and
OS/2), .XPM (OSFlMotif), and .DAT (Zinc) files. files. This process
involves two simple steps, the first of which is selecting the file containing
the desired image. Consequently, upon selecting Import, a window similar
to the Window Editor's File I Open window appears:

File Selection

.!!.ireclories:

c:\ziI400\design 1- -!lK-1
oc: ~

o zil400 Il-' If karicel

f--=~~~ __ ._.. ~-=:==: Ii lielp

LJ file

LJ help ~
Lisl Files of lvpe: Driyes:

L-lz._da_1 --ll m1_IEl_c_: ---'~
,-

Zinc Designer



Enter the name of the desired file at the Filename prompt and select the OK
button. (Refer to the File I Open section on page 197 for further instructions
on interacting with the File I Import window.) After the File I Import win
dow closes, another window, similar to the following, immediately opens:

Res~~~. Impo"'rt•••
-~

j 0 bject_name:
11 r------------,

!2irectOlies:

-UUIOUSE r' 01(

If kancel

I, Help

I'
--- --.

This window requests the actual mouse cursor image to be imported from
the designated file. Interaction with its fields is described below.

Objectname. To import a mouse cursor image, either enter the name at the
Objectname prompt, or select it from the list below, and the name of the
image will automatically appear at the prompt.

Other mouse cursor images that belong to the current directory are listed, in
alphabetical order, in the scrollable field below the Objectname field. As
mentioned above, selecting one of these images causes the name to appear in
the Objectname field. Double-clicking on a name listed in the mouse cursor
image list will cause that image to be imported immediately.

Directories. This field indicates that you are currently in the mouse image
directory. The field is for informational purposes only and cannot be edited.

OK. Selecting this button causes the mouse cursor image specified at the
Objectname prompt to be imported. If the import procedure is successful,
the window will close. If the image entered at the Objectname prompt does
not exist, or if no information has been entered, you will receive an eITor
message.

Cancel. Selecting this button causes the window to close without executing
any changes.

Zinc Designer 365



Image Editor

Export

Help. Additional information about importing images appears when this but
ton is selected.

Once the image has been imported, it can be accessed through Mouse I
,Load... (See page 364 of this chapter for more information on loading
mouse cursor images.)

Selecting the Export option allows you to export an image to another file.
This process, much like the importing process, involves two simple steps,
the first of which is selecting the file containing the desired image. Conse
quently, upon selecting Export, a window similar to the Window Editor's
File IOpen window appears:

=1
- .~ ~-

File Selection
==~= ~~ ~ ,-

'-~'i

Filename: Q.irectories:

I 1 c: \ziI400\design
I OK I

12:7 c: ~
12:7 zil400 .... I Cancel I
f:5 design

LJ direct I Help I
LJ file

LJ helD .-
List Files of ]jpe: Driyes:

I-·dat 1m lIS c: rn
Enter the name of the desired file at the Filename prompt and select the OK
button. (Refer to the File IOpen section on page 197 for further instructions
on interacting with the File I Export window.) After the File I Export win
dow closes, another window, similar to the following, immediately opens:

366

=1
objectname:

ts MOUSE1

Zinc Designer

Object Selection

Q.irectories:

-UUIOUSE OK I
~ancel I

-Help I
!
!



This window requests the actual image to be exported to the designated file.
Interaction with its fields is described below.

Objectname. To export a mouse cursor image, either enter the name at the
Objectname prompt, or select it from the list below, and the name of the
image will automatically appear at the prompt.

Other mouse cursor images that belong to the current directory are listed, in
alphabetical order, in the scrollable field below the Objectname field. As
mentioned above, selecting one of these images causes the name to appear in
the Objectname field. Double-clicking on a name listed in the mouse cursor
image list will cause that image to be exported immediately.

Directories. This field indicates that you are currently in the mouse image
directory. The field is for informational purposes only and cannot be edited.

OK. Selecting this button causes the mouse cursor image specified at the
Objectrrame prompt to be exported. If the export procedure is successful, the
window will close. If the image entered at the Objectname prompt does not
exist, or if no information has been entered, you will receive an error mes
sage.

Cancel. Selecting this button causes the window to close without executing
any changes.

Help. Additional information about exporting images appears when this but
ton is selected.

Zinc Designer 367



Image Editor

Create

Load

,Create allows you to create a mouse cursor image. Selecting it automatically
places the following window on the screen:

';"'1 "iF= -'-== ~
_0 ~

<untitled> ~

0

'Widlh: 116 1

Height 116 1

x-point 10 1

y-point 10 1

I St;;re-I I. Store AS-.· I I gMe J I Help I I~ Sile I
--- - - I

For details on interaction with this window, see the section Mouse cursor
Creation Window below.

,Load... is used to recall a previously created mouse cursor image from the
current file. Selecting it causes a window similar to the following to appear:

-=1
Objeclname:

,=-
Resource. load...

QireclOlies:

I, 1l.K

Ir kancel

I~ HelP

368

Objectname. To load a mouse cursor image, either enter the name at the
Objectname prompt, or select it from the list below, and the name of the
image will automatically appear at the prompt.

Other mouse cursors that belong to the current directory (including those
imported from other files) are listed, in alphabetical order, in the scrollable
field below the Objectname field. As mentioned above, selecting one of

Zinc Designer



Store

these images causes the name to appear in the Objectname field. Double
clicking on a name listed in the files list will cause that image to be loaded
immediately.

Directories. The current mouse cursor directory is shown below the );!irecto
ries prompt. Other directories of the current file are listed in the field below
the current directory prompt. These two fields are for informational purposes
only and cannot be edited.

OK. Selecting this button causes the mouse cursor image specified at the
Objectname prompt to be loaded. If the load procedure is successful, the
Resource ILoad window will close and the mouse cursor image appears on
the screen in the exact location and condition it was last stored.

If the image entered at the Objectname prompt does not exist, or if no infor
mation has been entered, you will receive an error message.

Cancel. Selecting this button causes the window to close without executing
any changes.

Help. Additional information about loading images appears when this button
is selected.

Once the mouse cursor image has been loaded and appears on the screen, it
can be modified in any way. When the Mouse IS,tore option is subsequently
selected, the image will be saved in its present condition, replacing the origi
nal version. (See the Store and Store As sections of this chapter for more
information on storing images.)

Selecting the S,tore option causes the current mouse cursor image to be
saved in its present condition to the current file. If you have not previously
named the image through a Store As operation, you will be asked for a name
before you can store the image.

NOTE: Each time a store operation is performed, the previous contents of
the image are completely replaced by the current information.

Zinc Designer 369



Image Editor

Store As

370

Store As... is generally used to store the current mouse cursor image under
another name. Selecting it causes a window to appear that is similar to the
following:

:;~r=--- Resource. Store As•••

Objeclname: Qileclories:

I I -U1- MOUSE I - -ilK I
fO
~dl I I;.ancef

,
I HeiP I

Objectname. Enter a name for the image at the Objectname prompt, or, if
you want to replace a previously created image with the current information,
select one from the field below, and the name for that image will auto
matically appear at the prompt.

Other images that belong to the current mouse cursor directory are listed, in
alphabetical order, in the scrollable field below the Objectname field. As
mentioned above, selecting one of these images causes the name to appear in
the Objectname field. Double-clicking on a name listed in the files list will
cause that image to be stored immediately.

Directories. The current mouse cursor directory is shown below the I!irecto
ries prompt. Other directories of the current file are listed in the field below
the current directory prompt. These two fields are for informational purposes
only and cannot be edited.

OK. Selecting this button causes the image to be stored under the name
entered at the Objectname prompt. If the store operation is successful, the
Resource, Store As... window closes.

If no information has been entered within the Resource, Store As... window
and you select the OK button, the window will close and no other action will
take place.

Cancel. Selecting this button causes the window to close without executing
any changes.

Zinc Designer



Help. Additional information about storing images appears when this button
is selected.

Clear

Selecting Clear causes the current image creation window to be removed
from the screen. It does not, however, delete the image from the file. If you
have not stored the current image immediately before, selecting .clear
causes a modal window to appear that asks if you want to store it before
clearing it from the screen. Selecting Yes causes it to be stored and then
cleared, selecting No causes it to be cleared without storing it first, and
selecting Cancel simply closes the modal window and the image is neither
stored nor cleared.

NOTE: In order to avoid unintentional clearing, Clear does not have a hot
key assignment. It can only be activated by selecting it from the menu with a
mouse or by scrolling to it and hitting <Enter>.

Clear All

Selecting Clear All causes all mouse cursor image creation windows cur
rently displayed to be cleared from the screen. It does not, however, delete
any of those images from the file.

NOTE: In order to avoid unintentional clearing, Clear All does not have a
hot key assignment. It can only be activated by selecting it from the menu
with a mouse or by scrolling to it and hitting <Enter>.

Zinc Designer 371



Image Editor

Delete

The !!elete... option allows you to delete a mouse cursor image from the cur
rent file. Selecting it causes a window similar to the following to appear:

objeclname:

Il

-R~rce. Delete...

!lireclories:

-UU40USE OK "'I
Cancel- 1

II - Help 1

372

Objectname. Enter the name for the image to be deleted at the Objectname
prompt, or select one from the field below, and the name for that image will
automatically appear at the prompt.

Other images that belong to the current mouse cursor directory are listed, in
alphabetical order, in the scrollable field below the Objectname field. As
mentioned above, selecting one of these images causes the name to appear in
the Objectname field. Double-clicking on a name listed in the files list will
cause that image to be deleted immediately.

Directories. The current mouse cursor directory is shown below the !!irecto
ries prompt. Other directories of the current file are listed in the field below
the current directory prompt. These two fields are for informational purposes
only and cannot be edited.

OK. Selecting this button causes a modal window to appear which is similar
to the following:

-=1 Resource. Delete... 1... 1...1

Delele resource "t.t0 USE 1"?

Yes I I tio

Zinc Designer



The purpose of this window is to make sure that you want to delete the
image. If you select the OK button, the image indicated at the Objectname
prompt is deleted from the current file, and both the confirmation window
and the Resource I Delete window close. If you choose the Cancel button,
the image is not deleted and just the confirmation window closes.

If the image entered does not exist, you will receive an error message when
the OK button is selected.

If no information has been entered within the window, selecting OK causes
an error message to appear.

If the delete operation is successful, the Resource I Delete window closes,
and the image is deleted from the current file.

Cancel. Selecting this button causes the window to close without executing
any changes.

Help. Additional information about deleting images appears when this but
ton is selected.

Help menu options

The Help category is available so that you can receive help at any time while
working in the Image Editor. The various options represent the different
areas within the Image Editor where help information is available.

Selecting Help causes the following menu to appear:

Index...

file
.Edit
fiitmap
Icon
Mouse

About Image Editor

Zinc Designer 373



Image Editor

INDEX

FILE

EDIT

BITMAP

ICON

MOUSE

About Image
Editor

374

The Index... option allows you to view all help topics created within Zinc
Designer. Selecting it causes an index list to appear from which these help
topics are selectable. When you select a specific help topic from the list, the
help window associated with it appears.

Selecting .Eile causes help to be displayed regarding the use of File options
in creating an image resource with the Image Editor.

Selecting Edit causes help to be displayed regarding the use of Edit options
in creating an image resource with the Image Editor.

Selecting !!itmap causes help to be displayed regarding the use of Bitmap
options in creating an image resource with the Image Editor.

Selecting Icon causes help to be displayed regarding the use of Icon options
in creating an image resource with the Image Editor.

Selecting Mouse causes help to be displayed regarding the use of Mouse
options in creating an image resource with the Image Editor.

Selecting About Image Editor causes information to be displayed regarding
the general contents and specifics of Zinc Designer's Image Editor (e.g., the
current version number and copyright information).

Zinc Designer



Bitmap creation window

The bitmap creation window is where you actually draw and set the size
specifications of bitmap images. It is accessed by selecting ]!itmap I !:reate.

';"'1 <untitled>

0

Width: 116 I
Height:

1
16 I

Store I Store As... I I Close I I Help I 1 Si~e

The bitmap image is drawn in the creation window's drawing field, which is
the large square region in the upper left corner. This field is made up of indi
vidual pixels of the number determined by the Width and Height fields
(described below). You can paint one pixel at a time by positioning on it and
pressing a mouse button, or you can paint in continuous motion by holding
down a mouse button and dragging the cursor.

Different tools for drawing can be selected from the button bar of the Image
Editor control window. Simply select the desired tool. The various options
are described in the Edit IPattern section on page 343.

Colors are selected from the color bars of the control window. Notice that
there are three separate palettes-one for the left mouse button, one for the
right mouse button, and one for screen transparency. The screen transpar
ency palette is used when you want to have part of your image show through
to the screen behind it. The color selected is used to represent a transparent
color in the image. Typically, a color that does not appear elsewhere in the
image should be chosen to avoid confusion over which is transparent and
which is part of the image. Whichever mouse button is used to select a color
from this palette then has the power to draw a transparent region. Thereafter,
whenever a different color is selected from the screen palette, all of the trans
parent region within the image will change to that color instantly.

Zinc Designer 375



Image Editor

As you create your image, it will be displayed in its actual size in the small
square region, called the image field, in the upper right comer of the win
dow.

The bitmap creation window also includes the following fields and buttons:

Width. This field determines the pixel width of the bitmap image. The
default width for a bitmap is 16 pixels.

Height. This field determines the pixel height of the bitmap image. The
default height for a bitmap is 16 pixels.

Store. Selecting this button causes the current bitmap image to be saved in its
present condition to the current file. If you have not previously named the
image through a Store As operation, you will be asked for a name before
you can store the image.)

Each time a store operation is performed, the previous contents of the image
are completely replaced by the current information.

Store As... This button is generally used to store the current bitmap image
under another name. Selecting it causes a window to appear that is similar to
the following:

.....1

Objeclname:

o P_IMAGE

CJ P_STORE

Resource. Store As...

.!!ireclories:

,

If OK

Ir-tancel

Help

376

Refer to "Store As" on page 351 for details on interacting with the Store
As... window.

Close. Selecting this button causes the creation window to close without
executing any changes.

Zinc Designer



Help. Additional information about creating images appears when this but
ton is selected.

Size. Selecting this button causes the sizing information entered III the
Width and Height fields to take effect in the drawing field.

Icon creation window

The icon creation window is where you actually draw and set the size speci
fications of icon images. It is accessed by selecting Icon I £:reate.

D

Width: 132;:====:
Height 132 I

Close 1I Help I I Size

-- I

The icon image is drawn in the creation window's drawing field, which is the
large square region in the upper left corner. This field is made up of individ
ual pixels of the number determined by the Width and Height fields
(described below). You can paint one pixel at a time by positioning on it and
pressing a mouse button, or you can paint in continuous motion by holding
down a mouse button and dragging the cursor.

Different tools for drawing can be selected from the button bar of the Image
Editor control window. Simply select the desired tool. The various options
are described in the Edit I Pattern section on page 343.

Zinc Designer 377



Image Editor

378

Colors are selected from the color bars of the control window. Notice that
there are three separate palettes-one for the left mouse button, one for the
right mouse button, and one for screen transparency. The screen transpar
ency palette is used when you want to have part of your image show through
to the screen behind it. The color selected is used to represent a transparent
color in the image. Typically, a color that does not appear elsewhere in the
image should be chosen to avoid confusion over which is transparent and
which is part of the image. Whichever mouse button is used to select a color
from this palette then has the power to draw a transparent region. Thereafter,
whenever a different color is selected from the screen palette, all of the trans
parent region within the image will change to that color instantly.

As you create your image, it will be displayed in its actual size in the small
square region, called the image field, in the upper right corner of the win
dow.

The icon creation window also includes the following fields and buttons:

Width. This field determines the pixel width of the icon image. The only
width allowed for an icon is 32 pixels.

Height. This field determines the pixel height of the icon image. The only
height allowed for an icon is 32 pixels.

Store. Selecting this button causes the current icon image to be saved in its
present condition to the current file. If you have not previously named the
image through a Store As operation, you will be asked for a name before
you can store the image.

Each time a store operation is performed, the previous contents of the image
are completely replaced by the current information.

Zinc Designer



Store As... This button is generally used to store the current icon image under
another name. Selecting it causes a window to appear that is similar to the
following:

-=1 --
Resource. Store As...-

Objec1name:

mASTERISK

mEXCLAMATION

I

I;
Ii

~ireclories:

-UUCON OK

Cancel

Help

Refer to "Store As" on page 351 for details on interacting with the Store
As... window.

Close. Selecting this button causes the creation window to close without
executing any changes.

Help. Additional information about creating images appears when this but
ton is selected.

Size. Selecting this button causes the SIZIng information entered in the
Width and Height fields to take effect in the drawing field.

Zinc Designer 379



Image Editor

380

Mouse cursor creation window

The mouse cursor creation window is where you actually draw and set the
size specifications of mouse cursor images. It is accessed by selecting
Mouse I!:,reate.

<=1
'" ...... ~ --=- :""~ntitled>

~~

D

Width: 116 1
Height: 116 1
x-point: 10 1
y-point: 10 1

I Store I I Store As___ I I, Close I I Help I I Si!e I
~ . ._-~ -

The mouse cursor image is drawn in the creation window's drawing field,
which is the large square region in the upper left corner. This field is made
up of individual pixels of the number determined by the Width and Height
fields (described below). You can paint one pixel at a time by positioning on
it and pressing a mouse button, or you can paint in continuous motion by
holding down a mouse button and dragging the cursor.

Different tools for drawing can be selected from the button bar of the Image
Editor control window. Simply select the desired tool. The various options
are described in the Edit IPattern section on page 343.

Colors are selected from the color bars of the control window. Notice that
there are three separate palettes-one for the left mouse button, one for the
right mouse button, and one for screen transparency. The screen transpar
ency palette is used when you want to have part of your image show through
to the screen behind it. The color selected is used to represent a transparent
color in the image. Typically, a color that does not appear elsewhere in the
image should be chosen to avoid confusion over which is transparent and
which is part of the image. Whichever mouse button is used to select a color
from this palette then has the power to draw a transparent region. Thereafter,
whenever a different color is selected from the screen palette, all of the trans
parent region within the image will change to that color instantly.

Zinc Designer



As you create your image, it will be displayed in its actual size in the small
square region, called the image field, in the upper right corner of the win
dow.

The mouse cursor creation window also includes the following fields and
buttons:

Width. This field determines the pixel width of the mouse cursor image. The
default width for a mouse cursor is 16 pixels.

Height. This field determines the pixel height of the mouse cursor image.
The default height for a mouse cursor is 16 pixels.

x-point. The value entered into this field determines the horizontal pixel
coordinate for the cursor's hot spot.

y-point. The value entered into this field determines the vertical pixel coordi
nate for the cursor's hot spot.

Store. Selecting this button causes the current mouse cursor image to be
saved in its present condition to the current file. If you have not previously
named the image through a Store As operation, you will be asked for a name
before you can store the image.

Each time a store operation is performed, the previous contents of the image
are completely replaced by the current information.

Store As... This button is generally used to store the current mouse cursor
image under another name. Selecting it causes a window to appear that is
similar to the following:

=-1
Objeclname:

Zinc Designer

Resource. Store As...

!2ireclories:

-UUIOUSE OK

Cancel

Help

381



Image Editor

382

Refer to "Store As" on page 351 for details on interacting with the Store
As... window.

Close. Selecting this button causes the creation window to close without
executing any changes.

Help. Additional information about creating images appears when this but
ton is selected.

Size. Selecting this button causes the sizing information entered in the
Width and Height fields to take effect in the drawing field.

Zinc Designer



Chapter 20 Help Editor

In this chapter, we will discuss the Help Editor. The Help Editor is used to
create and modify context-specific help information for an application. The
help information is stored in the .DAT file and is automatically loaded at run
time by Zinc.

Zinc Designer 383



Help Editor

Import

Context

The Context category options allow you to create, modify and retrieve help
contexts in the current file. Selecting .context causes the following menu to
appear:

=-1 "
Help Editor 1,";1'"

file t.ontext~ tlelp
1mp.0rt•••
.Export...

.c.reate ...
'=== Load ...

~tore

Store As...

Clear
Clear All
Qelete...

Import allows you to import a help context from another file. This process
involves two simple steps, the first of which is selecting the file containing
the desired help context. Consequently, upon selecting Import, a window
similar to the File I Open window appears:

Filename:

.-
]2irectories:

c: \ziI400\design

f27 c:

f27 zil400

::=~·~D.n...._..
LJ direct

LJ file

LJ help

,Cancel

384

List Files of lYpe: Driyes:

Ic-z.d_at ----'I ml_lieI_C_: ~

Zinc Designer



Enter the name of the desired file at the Filename prompt and select the OK
button. (Refer to "File" on page 393 for further instructions on interacting
with the File I Import window.) After the File I Import window closes,
another window, similar to the following, immediately opens:

Resource. Imporl..
!2ireclories:

-UI_HELP I ilK

~ 0
.... f5lll III I P I Cancel

II H.e1p

~ HELP_GENERAL

~ HELP_OPT_EDIT

~ HELP_OPTJILE

~ HELP_OPT_OBJECT

~ HELP_OPT_WINDOW

~ HELP_UIW_BIGNUM

~ HELP_UIW_BORDER

~ HELP_UIW_BUTTON ~

iFI
Objec1name:

This window requests the actual help context to be imported from the desig
nated file. Interaction with its fields is described below.

Objectname. To import a help context, either enter the name at the Object
name prompt, or select it from the list below, and the name of the help con
text will automatically appear at the prompt.

Other help contexts that belong to the current directory are listed, in alpha
betic order, in the scrollable field below the Objectname field. As men
tioned above, selecting one of these help contexts causes the name to appear
in the Objectname field. Double clicking on a name listed in the help con
text list will cause that help context to be imported immediately.

Directories. The current help directory is shown below the Directories
prompt. Other directories of the current file are listed in the field below the
current directory prompt. These two fields are for informational purposes
only and cannot be edited.

OK. Selecting this button causes the help context specified at the Object
name prompt to be imported. If the import procedure is successful, the win
dow will close. If the help context entered at the Objectname prompt does
not exist, or if no information has been entered, you will receive an error
message at this time.

Zinc Designer 385



Help Editor

Export

Cancel. Selecting this button causes the window to close without executing
any changes.

Help. Additional information about importing help contexts appears when
this button is selected.

Once the help context has been imported, it can be accessed through ,Con
text IL.oad... (Refer to "Context" on page 393 for more information on load
ing help contexts.)

Export allows you to export a help context to another file. This process,
much like the importing process, involves two simple steps, the first of
which is selecting the file to which you would like to export the help context.
Consequently, upon selecting Export, a window similar to the File IOpen
window appears:

=-1 File Selection

f..

Filename: Q.ireclories:

c: \ziI400\design

Dc: ~

0. zil400 I-'
······fS··d·~-;ig~..· ."' _
..... "-6d'i;~~I' '-'

LJ file

LJ help

01(

Cancel

Help

386

Lisl Files of IYpe: Driyes:

Llz._da_l .....J1 [!J I_ra_c: -----J~

Zinc Designer



Enter the name of the desired file at the "Filename" prompt and select the
"OK" button. (Refer to the File I Open section on page 197 for further
instructions on interacting with the "File IExport" window.) After the "File
IExport" window closes, another window, similar to the following, immedi
ately opens:

~I --~ ----
objeclname:

----- - ~- ----- .-
Resource, Export...

Q.ireclories:

OK

._._--

Cancel

!:!.elp

This window requests the actual help context to be exported to the desig
nated file. Interaction with its fields is described below.

Objectname. To export a help context, either enter the name at the "Object
name" prompt, or select it from the list below, and the name of the help con
text will automatically appear at the prompt.

Other help contexts that belong to the current directory are listed, in alpha
betic order, in the scrollable field below the "Objectname" field. As men
tioned above, selecting one of these help contexts causes the name to appear
in the "Objectname" field. Double clicking on a name listed in the help con
text list will cause that help context to be exported immediately.

Directories. The current help directory is shown below the Directories
prompt. Other directories of the current file are listed in the field below the
current directory prompt. These two fields are for informational purposes
only and cannot be edited.

OK. Selecting this button causes the help context specified at the "Object
name" prompt to be exported. If the export procedure is successful, the win
dow will close. If the help context entered at the "Objectname" prompt does
not exist, or if no information has been entered, you will receive an error
message at this time.

Zinc Designer 387



Help Editor

Create

Cancel. Selecting this button causes the window to close without executing
any changes.

Help. Additional information about exporting help contexts appears when
this button is selected.

Selecting Create places the following window on the screen.

<untitled>

Tille: I

~============::::;;;:::i
Message:

If i tore I. Store As... I k t.lose

388

This window allows you to create a new help context. Interaction with its
fields is described below.

Title. Enter the text that you would like to appear in the help window's title
bar.

Message. Enter the information that you would like to appear in the help
window.

Store. Selecting the Store option causes the current help context to be saved
to the current file. If you have not entered a name for the help context
through a Store As.. operation, you will be asked for a name before you can
store the help context.

Note that each time a store operation is performed, the previous contents of
the help context are completely replaced by the current information.

Store As. Store As.. is generally used to store the current help context under
another name. (Refer to "Store" on page 390, or "Store As" on page 390, for
further instructions on performing a Store As.. operation.)

Zinc Designer



Load

Close. Selecting this button causes the window to close without executing
any changes.

Help. Additional information about creating help contexts appears when this
button is selected.

L.oad... is used to recall a previously created help context from the current
file. Selecting it causes a window similar to the following to appear:

Resource. Load... II

II Objeclname:

II I
II ~@::==H[=L=P_=G=[N=[=RA=L======;

I,

!Lireclories:

o
f5 Ill'l'

OK

Irtancel ~I

I !ielp I

Objectname. To load a help context, either enter the name at the Object
name prompt, or select it from the list below, and the name of the help con
text will automatically appear at the prompt.

Other help contexts that belong to the current directory (including those
imported from other files) are listed, in alphabetical order, in the scrollable
field below the Objectname field. As mentioned above, selecting one of
these help contexts causes the name to appear in the Objectname field. Dou
ble clicking on a name listed in the Objectname list will cause that help con
text to be loaded immediately.

Directories. The current help directory is shown below the Directories
prompt. Other directories of the current file are listed in the field below the
current directory prompt. These two fields are for informational purposes
only and cannot be edited.

OK. Selecting this button causes the help context specified at the Object
name prompt to be loaded. If the load procedure is successful, the Context,
Load window will close and the help context appears on the screen.

Zinc Designer 389



Help Editor

Store

Store As

If the help context entered at the Objectname prompt does not exist, or if no
information has been entered, you will receive an error message at this time.

Cancel. Selecting this button causes the window to close without executing
any changes.

Help. Additional information about loading help contexts appears when this
button is selected.

Once the help context has been loaded and appears on the screen, it can be
modified. When the Context I Store option is subsequently selected, the
help context will be saved in its present condition, replacing the original ver
sion. (See the Store and Store As sections of this chapter for more informa
tion on storing help contexts.)

Selecting the Store option causes the current help context to be saved to the
current file. If you have not entered a name for the help context through a
Store As.. operation, you will be asked for a name before you can store the
help context.

NOTE: Each time a store operation is performed, the previous contents of
the help context are completely replaced by the current information.

Store As.. is generally used to store the current help context under another
name. Selecting it causes a window to appear that is similar to the following:

=1
Objeclname: Qireclories:

. OK

Cancel

H.e1P

390

Objectname. Enter a name for the help context at the Objectname prompt,
or, if you want to replace a previously created help context with the current
information, select one from the field below, and the name for that help con
text will automatically appear at the prompt.

Zinc Designer



Clear

Other help contexts that belong to the current directory are listed, in alpha
betical order, in the scrollable field below the Objectname field. As men
tioned above, selecting one of these help contexts causes the name to appear
in the Objectname field. Double clicking on a name listed in the Object
name list will cause that help context to be stored immediately.

Directories. The current help directory is shown below the Directories
prompt. Other directories of the current file are listed in the field below the
current directory prompt. These two fields are for informational purposes
only and cannot be edited.

OK. Selecting this button causes the help context to be stored under the
name entered at the Objectname prompt. If the store operation is successful,
the Context IStore As... window closes.

If no information has been entered within the Store As.. window and you
select the OK button, the window will close and no other action will take
place.

If you have entered a help context name that already exists, a modal window
will appear, indicating such. If you select the Yes button of this window, the
current information replaces the previous information for that help context,
and both the modal window and the Store As.. window close. Selecting the
No button simply closes the modal window and allows you to enter informa
tion again in the Store As.. window.

Cancel. Selecting this button causes the window to close without executing
any changes.

Help. Additional information about storing help contexts appears when this
button is selected.

Selecting Clear causes the current help context window to be removed from
the screen. It does not, however, delete the help context from the file. If you
have not stored the current help context immediately before, selecting Clear
causes a modal window to appear that asks if you want to store it before
clearing it from the screen. Selecting Yes causes it to be stored and then
cleared, selecting No causes it to be cleared without storing it first, and
selecting Cancel simply closes the modal window and the help context is
neither stored nor cleared.

Zinc Designer 391



Help Editor

Clear All

Delete

Note that in order to avoid unintentional clearing, Clear does not have a hot
key assignment. It can only be activated by selecting it from the menu with a
mouse or by scrolling to it and hitting <Enter>.

Selecting Clear All causes all help context windows currently displayed to
be removed from the screen. It does not, however, delete any of those help
contexts from the file. If there are any help contexts that you have not stored
immediately before selecting Clear All, a modal window will appear that
asks if you want to store them before clearing them from the screen. Select
ing Yes causes the help contexts to be stored and then cleared, selecting No
causes them to be cleared without storing them first, and selecting Cancel
simply closes the modal window and the help contexts are neither stored nor
cleared.

Note that in order to avoid unintentional clearing, Clear All does not have a
hotkey assignment. It can only be activated by selecting it from the menu
with a mouse or by scrolling to it and hitting <Enter>.

The !!elete... option allows you to delete a help context from the current file.
Selecting it causes a window similar to the following to appear:

=>1
Objeclname:

-= =Object S';;lection

Q.ileclories:

11

I~ lielp I!

392

Objectname. Enter the name for the help context to be deleted at the Object
name prompt, or select one from the field below, and the name for that help
context will automatically appear at the prompt.

Other help contexts that belong to the current directory are listed, in alpha
betical order, in the scrollable field below the Objectname field. As men
tioned above, selecting one of these help contexts causes the name to appear
in the Objectname field.

Zinc Designer



Index...

File

Context

About Help
Editor

Directories. The current help directory is shown below the Directories
prompt. Other directories of the current file are listed in the field below the
current directory prompt. These two fields are for informational purposes
only and cannot be edited.

OK. Selecting this button causes a modal window to appear. The purpose of
this window is to make sure that you want to delete the help context. If you
select the OK button, the help context indicated at the Object!!ame prompt
is deleted from the current file, and both the confirmation window and the
Context, Delete window close. If you choose the Cancel button, the help
context is not deleted and just the confirmation window closes.

If the help context entered does not exist, you will receive an error message
when the OK button is selected.

If no information has been entered within the window, selecting OK causes
an error message to appear.

If the delete operation is successful, the Context I Delete window closes,
and the help context is deleted from the current file.

Cancel. Selecting this button causes the window to close without executing
any changes.

Help. Additional information about deleting help contexts appears when this
button is selected.

Help

The Help category options allow you to get help about various topics in the
Help Editor.

Displays a list of all help available in the Help Editor. Selecting a topic from
this list will display the help for that topic.

Displays help for the File options.

Displays help for the Context options.

Provides an overview of the Help Editor.

Zinc Designer 393



Help Editor

394 Zinc Designer



Chapter 21 Message Editor

In this chapter, we will discuss the Message Editor. The Message Editor is
used to create and modify tables of messages which can be loaded by your
application at run time and used wherever text strings are required. Using the
Message Editor has several advantages over placing strings in your source
code. The first advantage is that the strings can be changed without requiring
the application to be rebuilt, since the strings are loaded from the .DAT file at
run time. The second advantage is that different message tables can be created
for different languages. Your application can load the necessary table at run
time.

A message table is created as a ZIL_LANGUAGE object. After creating a
message table in your application using the name that you used to store the
message table in the Designer, you can call the ZIL_LANGUAGE::Get
Message( ) function to access a particular string. The GetMessage( ) function
identifies the string using the numberID you assigned to the message in the
Message Editor.

Zinc Designer 395



Message Editor

Import

Message

The Message category options allow you to create, modify and retrieve mes
sages in the current file. Selecting Message causes the following menu to
appear:

-=1 Message Editor 1·1'"
Message Help

Import...
Export...

-C.reate

==== load ...
litore
Store As ...

Clear
Clear All
Qelete...

Import allows you to import a message table from another file. This process
involves two simple steps, the first of which is selecting the file containing
the desired message. Consequently, upon selecting Import, a window simi
lar to the File 1Open window appears:

=1
Filename:

File Selection
j2irectories:

c: \ziI400\design Q.K

Cancel

Help

396

Lisl Files of Jype: Driyes:

L...1··d_al ---l1 [!] I_ca_c_: [!J

Zinc Designer



Enter the name of the desired file at the Filename prompt and select the OK
button. (Refer to the File I Open section on page 197 for further instructions
on interacting with the File I Import window.) After the File I Import win
dow closes, another window, similar to the following, immediately opens:

Objectname:

§] toISG_TABLE

Object Selection

QilectOlies:

-UUoIESSAGE

Cancel

II

.

This window requests the actual message table to be imported from the des
ignated file. Interaction with its fields is described below.

Objectname. To import a message table, either enter the name at the Object
name prompt, or select it from the list below, and the name of the message
table will automatically appear at the prompt.

Other message tables that belong to the current directory are listed, in alpha
betic order, in the scrollable field below the Objectname field. As men
tioned above, selecting one of these message tables causes the name to
appear in the Objectname field. Double clicking on a name listed in the
message table list will cause that message table to be imported immediately.

Directories. The current message directory is shown below the Directories
prompt. Other directories of the current file are listed in the field below the
current directory prompt. These two fields are for informational purposes
only and cannot be edited.

OK. Selecting this button causes the message table specified at the Object
name prompt to be imported. If the import procedure is successful, the win
dow will close. If the message table name entered at the Objectname
prompt does not exist, or if no information has been entered, you will receive
an error message at this time.

Zinc Designer 3~97



Message Editor

Cancel. Selecting this button causes the window to close without executing
any changes.

Help. Additional information about importing message tables appears when
this button is selected.

Once the message table has been imported, it can be accessed through Mes
sage I Load... (Refer to "Message" on page 406 for more information on
loading messages.)

Export Export allows you to export a message table to another file. This process,
much like the importing process, involves two simple steps, the first of
which is selecting the file to which you would like to export the message
table. Consequently, upon selecting Export, a window similar to the File I
Open window appears:

=-1 File Selection

Filename: !2irectories:

OK

~
.- Cancel

Help

----;

+

~

Driyes:

c: \ziI400\design

(0 c:

(0 zil400

·~::.~ ..~~~i~~.:: ..__
LJ direcl

LJ file

LJ help

list Files of lYpe:

l-Iz._da_l ---'I [!] I[S c:
-------

398 Zinc Designer



Enter the name of the desired file at the Filename prompt and select the OK
button. (Refer to the File IOpen section on page 197 for further instructions
on interacting with the File I Export window.) After the File I Export win
dow closes, another window, similar to the following, immediately opens:

=>1
Objectname:

Object Selection

.Q.irectories:

-UU4ESSAGE 01(

Cancel

Help

This window requests the actual message table to be exported to the desig
nated file. Interaction with its fields is described below.

Objectname. To export a message table, either enter the name at the Object
name prompt, or select it from the list below, and the name of the message
table will automatically appear at the prompt.

Other message tables that belong to the current directory are listed, in alpha
betic order, in the scrollable field below the Objectname field. As men
tioned above, selecting one of these message tables causes the name to
appear in the Objectname field. Double clicking on a name listed in the mes
sage table list will cause that message table to be exported immediately.

Directories. The current message directory is shown below the Directories
prompt. Other directories of the current file are listed in the field below the
current directory prompt. These two fields are for informational purposes
only and cannot be edited.

OK. Selecting this button causes the message table specified at the Object
name prompt to be exported. If the export procedure is successful, the win
dow will close. If the message table entered at the Objectname prompt does
not exist, or if no information has been entered, you will receive an error
message at this time.

Cancel. Selecting this button causes the window to close without executing
any changes.

Zinc Designer 399



Message Editor

Create

Help. Additional information about exporting message tables appears when
this button is selected.

Selecting Create places the following window on the screen.

~I

I Store ISlOfeAs... I

"" =
<untitled>

klose I II Help

I-Eoll-
I -Aitd~

I Delete I
1~J,l0Y8Upl

IMOY'eDown I

400

This window allows you to create a new message table. Interaction with its
fields is described below.

Message list. This list, initially empty, contains all the messages in the mes
sage table. Double-clicking on an entry in the list brings up the message edit
window. Interaction with this window is described in the Edit section for the
message table window, below.

Edit. Selecting the Edit option brings up the edit window for the current
message in the table. (See "The message edit window" on page 407. for
details on interaction wi th the fields of this window.)

Add. Selecting the Add option adds a new default message entry to the end
of the message table.

Delete. Selecting the Delete option removes the current message from the
message table.

Move Up. Selecting the Move Up option moves the current message up in
the message table one position.

Move Down. Selecting the Move Down option moves the current message
down in the message table one position.

Zinc Designer



Load

Store. Selecting the Store option causes the current message table to be
saved to the current file. If you have not entered a name for the message
table through a Store As.. operation, you will be asked for a name before
you can store the message table.

Note that each time a store operation is performed, the previous contents of
the message table are completely replaced by the current information.

Store As. Store As.. is generally used to store the current message table
under another name. (Refer to "Store" on page 402, or "Store As" on
page 403, for further instructions on performing a Store As.. operation.)

Close. Selecting this button causes the window to close without executing
any changes.

Help. Additional information about creating message tables appears when
this button is selected.

Load... is used to recall a previously created message table from the current
file. Selecting it causes a window similar to the following to appear:

Objectname:

-= Object Sclection

Qirectories:

-UUIESSAGE

-..

OK

Cancel

Help

Objectname. To load a message table, either enter the name at the Object
name prompt, or select it from the list below, and the name of the message
table will automatically appear at the prompt.

Other message tables that belong to the current directory (including those
imported from other files) are listed, in alphabetical order, in the scrollable
field below the Objectname field. As mentioned above, selecting one of

Zinc Designer 401



Message Editor

Store

402

these message tables causes the name to appear in the Objectname field.
Double clicking on a name listed in the Objectname list will cause that mes
sage table to be loaded immediately.

Directories. The current message table directory is shown below the Direc
tories prompt. Other directories of the current file are listed in the field
below the current directory prompt. These two fields are for informational
purposes only and cannot be edited.

OK. Selecting this button causes the message table specified at the Object
name prompt to be loaded. If the load procedure is successful, the Message,
Load window will close and the message table appears on the screen.

If the message table name entered at the Objectname prompt does not exist,
or if no information has been entered, you will receive an error message at
this time.

Cancel. Selecting this button causes the window to close without executing
any changes.

Help. Additional information about loading message tables appears when
this button is selected.

Once the message table has been loaded and appears on the screen, it can be
modified. When the Message I S,tore option is subsequently selected, the
message table will be saved in its present condition, replacing the original
version. (See the Store and Store As sections of this chapter for more infor
mation on storing message tables.)

Selecting the Store option saves the current message table to the current file.
If you have not entered a name for the message table through a Store ,as..
operation, you will be asked for a name before you can store the message
table.

NOTE: Each time a store operation is performed, the previous contents of
the message table are completely replaced by the current information.

Zinc Designer



Store As Store As.. is generally used to store the current message table under another
name. Selecting it causes a window to appear that is similar to the following:

=1
Objeclname:

Object Selection
Q.iJeclories:

-UU,fESSAGE OK

hancel

.!:!..elp

Objectname. Enter a name for the message table at the Objectname prompt,
or, if you want to replace a previously created message table with the current
information, select one from the field below, and the name for that message
table will automatically appear at the prompt.

Other message tables that belong to the current directory are listed, in alpha
betical order, in the scrollable field below the Objectname field. As men
tioned above, selecting one of these message tables causes the name to
appear in the Objectname field. Double clicking on a name listed in the
Objectname list will cause that message table to be stored immediately.

Directories. The current message table directory is shown below the Direc
tories prompt. Other directories of the current file are listed in the field
below the current directory prompt. These two fields are for informational
purposes only and cannot be edited.

OK. Selecting this button causes the message table to be stored under the
name entered at the Objectname prompt. If the store operation is successful,
the Message IStore As... window closes.

If no information has been entered within the Store As... window and you
select the OK button, the window will close and no other action will take
place.

If you have entered a message table name that already exists, a modal win
dow will appear, indicating such. If you select the Yes button of this window,
the current information replaces the previous information for that message

Zinc Designer 403



Message Editor

Clear

Clear All

404

table, and both the modal window and the Store As... window close. Select
ing the No button simply closes the modal window and allows you to enter
information again in the Store As... window.

Cancel. Selecting this button causes the window to close without executing
any changes.

Help. Additional information about storing message tables appears when
this button is selected.

Selecting Clear causes the current message table window to be removed
from the screen. It does not, however, delete the message table from the file.
If you have not stored the current message table immediately before, select
ing Clear causes a modal window to appear that asks if you want to store it
before clearing it from the screen. Selecting Yes causes it to be stored and
then cleared, selecting No causes it to be cleared without storing it first, and
selecting Cancel simply closes the modal window and the message table is
neither stored nor cleared.

Note that in order to avoid unintentional clearing, Clear does not have a hot
key assignment. It can only be activated by selecting it from the menu with a
mouse or by scrolling to it and hitting <Enter>.

Selecting Clear All causes all message table windows currently displayed to
be removed from the screen. It does not, however, delete any of those mes
sage tables from the file. If there are any message tables that were not stored
immediately before selecting Clear, a modal window will appear that asks if
you want to store them before clearing them from the screen. Selecting Yes
causes the message tables to be stored and then cleared, selecting No causes
them to be cleared without storing them first, and selecting Cancel simply
closes the modal window and the message tables are neither stored nor
cleared.

Note that in order to avoid unintentional clearing, Clear All does not have a
hotkey assignment. It can only be activated by selecting it from the menu
with a mouse or by scrolling to it and hitting <Enter>.

Zinc Designer



Delete The );!elete... option allows you to delete a message table from the CUlTent
file. Selecting it causes a window similar to the following to appear:

Objec1name: ~ireclories:

-UUIESSAGE

~ MSG_TABLE

-' "-'

I OK

I; Cancel

I Help

Objectname. Enter the name for the message table to be deleted at the
Objectyame prompt, or select one from the field below, and the name for
that message table will automatically appear at the prompt.

Other message tables that belong to the CUlTent directory are listed, in alpha
betical order, in the scrollable field below the Objectyame field. As men
tioned above, selecting one of these message tables causes the name to
appear in the Objectyame field.

Directories. The current message table directory is shown below the Direc
tories prompt. Other directories of the current file are listed in the field
below the current directory prompt. These two fields are for informational
purposes only and cannot be edited.

OK. Selecting this button causes a modal window to appear. The purpose of
this window is to make sure that you want to delete the message table. If you
select the OK button, the message table indicated at the Objectyame prompt
is deleted from the current file, and both the confirmation window and the
Message, Delete window close. If you choose the Cancel button, the mes
sage table is not deleted and just the confirmation window closes.

If the message table entered does not exist, you will receive an error message
when the OK button is selected.

If no information has been entered within the window, selecting OK causes
an error message to appear.

Zinc Designer 405



Message Editor

Index...

File

Message

System events

Logical events

About Message
Editor

406

If the delete operation is successful, the Message I Delete window closes,
and the message table is deleted from the current file.

Cancel. Selecting this button causes the window to close without executing
any changes.

Help. Additional information about deleting message tables appears when
this button is selected.

Help

The Help category options allow you to get help about various topics in the
Message Editor.

Displays a list of all help available in the Message Editor. Selecting a topic
from this list will display the help for that topic.

Displays help for the File options.

Displays help for the Message options.

Displays a list of Zinc system events and their values.

Displays a list of Zinc logical events and their values.

Provides an overview of the Message Editor.

Zinc Designer



Message

NumberlD

StringlD

OK

Cancel

Help

The message edit window

The message edit window appears when a message in the message list is
double-clicked or the Edit button on the window is selected. The edit win
dow is shown below.

=1 Message Information

Message: I<undefined>
~==~------'

NumberlD: 10
~=======-------,

SlringlD: LIZ_MS_G-=--O -----'

OJ( I I Cancel I I Help

This window allows you to edit the values of the message. Interaction with
its fields is described below.

Enter the text for the message string.

Enter the numberID that will be used to identify the message string within
the table. This is the numberID that is used by the GetMessage( ) function to
access a specific string from your application.

Enter the stringID that will be used to identify the message within the table.
The stringID text will be used to create a constant by the same name in the
.DAT file's associated header file. The constant's value will be the numberID
created in the NumberID field. This constant value can be used to specify the
desired string when calling ZIL_LANGUAGE::GetMessage( ) from your
application.

Selecting this button causes the message values to be stored in the table. The
Edit window will close.

Selecting this button causes the window to close without executing any
changes.

Additional information about editing messages appears when this button is
selected.

Zinc Designer 407



Message Editor

408 Zinc Designer



Chapter 22 Defaults Editor

In this chapter, we will discuss the Defaults Editor, used to create and modify
tables of strings and locale information used by Zinc.

Zinc Designer 409



Defaults Editor

Import

Language

Language options allow you to create, modify and retrieve language tables
in the current file. Selecting Language causes the following menu to appear:

c=l Defaults Editor I_,,"J·
Language Locale tlelp

Import...
Export...

~reate

= Load...
~tore

Store As ...

~Iear

Clear All
Qelete ...

Import allows you to import a language table from another file. This process
involves two simple steps, the first of which is selecting the file containing
the desired language. Consequently, upon selecting Import, a window simi
lar to the File IOpen window appears:

c=l
Filename:

lisl Files 01 IYpe:

I'_dal

File, Import...

.!2ireclories:

c: \ziI400\design OK
e. c: ~e. zil400 I-' hancel

IC:7 design
HelpLJ direcl

LJ file

LJ help
f-
+

Driyes:

1m ~

410 Zinc Designer



Enter the name of the desired file at the Filename prompt and select the OK
button. (Refer to the File I Open section on page 197 for further instructions
on interacting with the File I Import window.) After the File I Import win
dow closes, another window, similar to the following, immediately opens:

=1
Objectname:

'" ca

'" da

'" de

'" el

'" en

'" es

'" Ii

"'"

Object Selection

Qirectories:

-ZIUNTERNATIONAL OK

Cancel

Help

I
+

This window requests the actual language table to be imported from the des
ignated file. Interaction with its fields is described below.

Objectname. To import a language table, either enter the name at the Object
name prompt, or select it from the list below, and the name of the language
table will automatically appear at the prompt.

Other language tables that belong to the current directory are listed, in alpha
betic order, in the scrollable field below the Objectname field. As men
tioned above, selecting one of these language tables causes the name to
appear in the Objectname field. Double clicking on a name listed in the lan
guage table list will cause that language table to be imported immediately.

Directories. The current language directory is shown below the Directories
prompt. Other directories of the current file are listed in the field below the
current directory prompt. These two fields are for informational purposes
only and cannot be edited.

Zinc Designer 411



Defaults Editor

OK. Selecting this button causes the language table specified at the Object
name prompt to be imported. If the import procedure is successful, the win
dow will close. If the language table name entered at the Objectname
prompt does not exist, or if no information has been entered, you will receive
an error message at this time.

=-1

o
II

Error

The specified operation cannot be completed because the
resource "FR" cannot be found.

II

Export

Cancel. Selecting this button causes the window to close without executing
any changes.

Help. Additional information about importing language tables appears when
this button is selected.

Once the language table has been imported, it can be accessed through Lan
guage I Load... (Refer to page 414 for more information on loading lan
guage tables.)

Export allows you to export a language table to another file. This process,
much like the importing process, involves two simple steps, the first of
which is selecting the file to which you would like to export the language
table. Consequently, upon selecting Export, a window similar to the File I
Open window appears:

Filename:

412

Lis! Files of Jype: Driyes:

IL-°.d_al --'I [t!J 1_IiiiiI_c_: II

Zinc Designer



Enter the name of the desired file at the Filename prompt and select the OK
button. (Refer to the File IOpen section on page 197 for further instructions
on interacting with the File I Export window.) After the File I Export win
dow closes, another window, similar to the following, immediately opens:

=-1
Objeclname:

'" ca

'" da

'" de

'" el

'" en

'" es

'" Ii
"'fr

,~.. , '", Object Selection - - ---- - ,-

Q.ireclories:

-ZIUNTERNATlONAL 01(

.Gancel

Help

This window requests the actual language table to be exported to the desig
nated file. Interaction with its fields is described below.

Objectname. To export a language table, either enter the name at the Object
name prompt, or select it from the list below, and the name of the language
table will automatically appear at the prompt.

Other language tables that belong to the current directory are listed, in alpha
betic order, in the scrollable field below the Objectname field. As men
tioned above, selecting one of these language tables causes the name to
appear in the Objectname field. Double clicking on a name listed in the lan
guage table list will cause that language table to be exported immediately.

Directories. The current locale directory is shown below the Directories
prompt. Other directories of the current file are listed in the field below the
current directory prompt. These two fields are for informational purposes
only and cannot be edited.

OK. Selecting this button causes the language table specified at the Object
name prompt to be exported. If the export procedure is successful, the win
dow will close. If the language table entered at the Objectname prompt does
not exist, or if no information has been entered, you will receive an error
message at this time.

Cancel. Selecting this button causes the window to close without executing
any changes.

Zinc Designer 413



Defaults Editor

Create

Help. Additional information about exporting language tables appears when
this button is selected.

Selecting Create places the following window on the screen.

Sun
Mon
Tue
'Wed
Thu
Fri
Sat

Sun.
Mon.
Tues.
'Wed.
Thurs.
Fri.
Sal.

Sunday
Monday
Tuesday
'Wednesday
Thursday
Friday
Saturday

Load

Store I I Store As I I Close I I Default I I Help

This window allows you to create a new language table. For details on inter
action with its fields, see "The language window" on page 429.

Load... is used to recall a previously created language table from the current
file. Selecting it causes a window similar to the following to appear:

=>1
Objectname:

~ca

~da

~de

~el

~en

~es

~fi

~fr

Resource. Load...

Q.irectories:

"'ZIUNTERNATIONAL .ilK

Cancel

Help

414

Objectname. To load a language table, either enter the name at the Object
name prompt, or select it from the list below, and the name of the language
table will automatically appear at the prompt.

Other language tables that belong to the current directory (including those
imported from other files) are listed, in alphabetical order, in the scrollable
field below the Objectname field. As mentioned above, selecting one of

Zinc Designer



Store

these language tables causes the name to appear in the Objectname field.
Double clicking on a name listed in the Objectname list will cause that lan
guage table to be loaded immediately.

Directories. The current language table directory is shown below the Direc
tories prompt. Other directories of the current file are listed in the field
below the current directory prompt. These two fields are for informational
purposes only and cannot be edited.

OK. Selecting this button causes the language table specified at the Object
name prompt to be loaded. If the load procedure is successful, the Lan
guage I Load window will close and the language table appears on the
screen.

If the language table name entered at the Objectname prompt does not exist,
or if no information has been entered, you will receive an error message.

Cancel. Selecting this button causes the window to close without executing
any changes.

Help. Additional information about loading language tables appears when
this button is selected.

Once the language table has been loaded and appears on the screen, it can be
modified. When the ,Language I~tore option is subsequently selected, the
language table will be saved in its present condition, replacing the original
version. (See the Store and Store As descriptions in this section for more
information on storing language tables.)

Selecting the Store option causes the current language table to be saved to
the current file. If you have not entered a name for the language table
through a Store As... operation, you will be asked for a name before you can
store the language table.

NOTE: Each time a store operation is performed, the previous contents of
the language table are completely replaced by the current information.

Zinc Designer 415



Defaults Editor

Store As Store As... is generally used to store the current language table under
another name. Selecting it causes a window to appear that is similar to the
following:

Objeclname:

.'.
Resource. Store As...

Q.ireclories:

,=.--'--

"'ca

"'da

"'de

"'el

"'en

"'es
",fi

",fr

-ZIUNTERNATlONAL OK

.l;.ancel

Help

---.

416

Objectname. Enter a name for the language table at the Objectname prompt,
or, if you want to replace a previously created language table with the cur
rent information, select one from the field below, and the name for that lan
guage table will automatically appear at the prompt.

Other language tables that belong to the current directory are listed, in alpha
betical order, in the scrollable field below the Objectname field. As men
tioned above, selecting one of these language tables causes the name to
appear in the Objectname field. Double clicking on a name listed in the
Objectname list will cause that language table to be stored immediately.

Directories. The current language table directory is shown below the Direc
tories prompt. Other directories of the current file are listed in the field
below the current directory prompt. These two fields are for informational
purposes only and cannot be edited.

OK. Selecting this button causes the language table to be stored under the
name entered at the Objectname prompt. If the store operation is successful,
the Language, Store As... window closes.

If no information has been entered within the Store As... window and you
select the OK button, the window will close and no other action will take
place.

If you have entered a language table name that already exists, a modal win
dow will appear, indicating such. If you select the Yes button of this window,
the current information replaces the previous information for that language

Zinc Designer



Clear

Clear All

table, and both the modal window and the Store As... window close. Select
ing the No button simply closes the modal window and allows you to enter
information again in the Store As... window.

Cancel. Selecting this button causes the window to close without executing
any changes.

Help. Additional information about storing language tables appears when
this button is selected.

Selecting Clear causes the current language table window to be removed
from the screen. It does not, however, delete the language table from the file.
If you have not stored the current language table immediately before, select
ing Clear causes a modal window to appear that asks if you want to store it
before clearing it from the screen. Selecting Yes causes it to be stored and
then cleared, selecting No causes it to be cleared without storing it first, and
selecting Cancel simply closes the modal window and the language table is
neither stored nor cleared.

Note that in order to avoid unintentional clearing, Clear does not have a hot
key assignment. It can only be activated by selecting it from the menu with a
mouse or by scrolling to it and pressing <Enter>.

Selecting Clear All causes all language table windows currently displayed
to be removed from the screen. It does not, however, delete any of those lan
guage tables from the file. If there are any language tables that were not
stored immediately before selecting Clear, a modal window will appear that
asks if you want to store them before clearing them from the screen. Select
ing Yes causes the language tables to be stored and then cleared, selecting
No causes them to be cleared without storing them first, and selecting Can
cel simply closes the modal window and the language tables are neither
stored nor cleared.

Note that in order to avoid unintentional clearing, Clear All does not have a
hotkey assignment. It can only be activated by selecting it from the menu
with a mouse or by scrolling to it and pressing <Enter>.

Zinc Designer 417



Defaults Editor

Delete The llelete... option allows you to delete a language table from the current
file. Selecting it causes a window similar to the following to appear:

=-1 Resource. Delete... ",' - --- -

objeclname:

~ca

~da

~de

~el

~en

~es

~Ii

~Ir

Q.ireclories:

-ZIUNTERNATlONAL OK

tancel

Help

418

Objectname. Enter the name for the language table to be deleted at the
Objectname prompt, or select one from the field below, and the name for
that language table will automatically appear at the prompt.

Other language tables that belong to the current directory are listed, in alpha
betical order, in the scrollable field below the Objectname field. As men
tioned above, selecting one of these language tables causes the name to
appear in the Objectname field.

Directories. The current language table directory is shown below the Direc
tories prompt. Other directories of the current file are listed in the field
below the current directory prompt. These two fields are for informational
purposes only and cannot be edited.

OK. Selecting this button causes a modal window to appear which is similar
to the following:

Delele resource "Ir"?

The purpose of this window is to make sure that you want to delete the lan
guage table. If you select the OK button, the language table indicated at the
Objectname prompt is deleted from the current file, and both the confirma-

Zinc Designer



tion window and the Language, Delete window close. If you choose the
Cancel button, the language table is not deleted and just the confirmation
window closes.

If the language table entered does not exist, you will receive an error mes
sage when the OK button is selected.

If no information has been entered within the window, selecting OK causes
an error message to appear.

If the delete operation is successful, the Language, Delete window closes,
and the language table is deleted from the current file.

Cancel. Selecting this button causes the window to close without executing
any changes.

Help. Additional information about deleting language tables appears when
this button is selected.

Locale

The Locale category options allow you to create, modify, and retrieve locale
tables in the current file. The locale tables contain formatting information for
those Zinc objects that need it. Selecting Locale causes the following menu
to appear:

'=1 Defaults Editor 1 ... 1·
language locale Help

Import...
£xport...

-C.reate
load...
.store
.store As ...

-C.lear
Clear All
Q.elete...

Zinc Designer 419



Defaults Editor

Import

420

Import allows you to import a locale table from another file. This process
involves two simple steps, the first of which is selecting the file containing
the desired locale. Consequently, upon selecting Import, a window similar
to the File, Open window appears:

=-1 File. Import... ..r Il

Filename: Q.ireclories:

I I c: \ziI400\design I~ OK I
e:. c: ~ I CancelIe:. zil400 ~ ...
;~ign ~ I. IL:J direcl

Help

L:J lile

L:J help .-
Lisl Files 01 lvpe: Driyes:

I··dal I[!J I m
Enter the name of the desired file at the Filename prompt and select the OK
button. (Refer to "File" on page 429 for further instructions on interacting
with the File I Import window.) After the File I Import window closes,
another window, similar to the following, immediately opens:

=-1 Object Selection II

Objeclname: Q.ireclories:

I -ZIUNTERNAT10NAL !!K
6IJAT ~ e:.
6IJCA ,.... f::5 NT ['N. ,m' ~ancel

6IJ eN

6IJ DE
Help

Ii 6IJ OK
1£;;

6IJ ES

6IJ FI

6IJ FR f,-,-"
+

This window requests the actual locale table to be imported from the desig
nated file. Interaction with its fields is described below.

Objectname. To import a locale table, either enter the name at the Object
name prompt, or select it from the list below, and the name of the locale
table will automatically appear at the prompt.

Zinc Designer



Other locale tables that belong to the current directory are listed, in alpha
betic order, in the scrollable field below the Objectname field. As men
tioned above, selecting one of these locale tables causes the name to appear
in the Objectname field. Double clicking on a name listed in the locale table
list will cause that locale table to be imported immediately.

Directories. The current locale directory is shown below the Directories
prompt. Other directories of the current file are listed in the field below the
current directory prompt. These two fields are for informational purposes
only and cannot be edited.

OK. Selecting this button causes the locale table specified at the Object
name prompt to be imported. If the import procedure is successful, the win
dow will close. If the locale table name entered at the Objectname prompt
does not exist, or if no information has been entered, you will receive an
error message at this time.

o The specified operation cannot be completed because the
resource "FR" cannot be found.

Cancel. Selecting this button causes the window to close without executing
any changes.

Help. Additional information about importing locale tables appears when
this button is selected.

Once the locale table has been imported, it can be accessed through L.ocale I
L.oad... (Refer to page 424 for more information on loading locale tables.)

Zinc Designer 421



Defaults Editor

Export Export allows you to export a locale table to another file. This process,
much like the importing process, involves two simple steps, the first of
which is selecting the file to which you would like to export the locale table.
Consequently, upon selecting Export, a window similar to the File I Open
window appears:

.

I OK

~
II-' .c.ancel

I Help

f---,

•

0
..

File Selection

lC7 c:

lC7 zil400

fS-d~~ign
····tJ·di;e~; -_.._--, ._--

LJ file

LJ help

Driyes:

c: \ziI400\design

Qireclories:

.-

Filename:

Lisl Files of lYpe:

lL-z._da_I --'1 [!I I_[i§il_c: -----'

=-1

Enter the name of the desired file at the Filename prompt and select the OK
button. (Refer to the File I Open section on page 197 for further instructions
on interacting with the File I Export window.) After the File I Export win
dow closes, another window, similar to the following, immediately opens:

=-1 ".
Object Selection

Objec1name: Qireclories:

.... AT

.... CA

.... eN

.... DE

.... DK

.... ES

.... FI

.... FR

-ZIUNTERNAT10NAL

~ lC7
I-i f5

OK

Cancel

Help

This window requests the actual locale table to be exported to the designated
file. Interaction with its fields is described below.

Objectname. To export a locale table, either enter the name at the Object
name prompt, or select it from the list below, and the name of the locale
table will automatically appear at the prompt.

422 Zinc Designer



Create

Other locale tables that belong to the current directory are listed, in alpha
betic order, in the scrollable field below the Objectname field. As men
tioned above, selecting one of these locale tables causes the name to appear
in the Objectname field. Double clicking on a name listed in the locale table
list will cause that locale table to be exported immediately.

Directories. The current locale directory is shown below the Directories
prompt. Other directories of the current file are listed in the field below the
current directory prompt. These two fields are for informational purposes
only and cannot be edited.

OK. Selecting this button causes the locale table specified at the Object
name prompt to be exported. If the export procedure is successful, the win
dow will close. If the locale table entered at the Objectname prompt does
not exist, or if no information has been entered, you will receive an error
message.

Cancel. Selecting this button causes the window to close without executing
any changes.

Help. Additional information about exporting locale tables appears when
this button is selected.

Selecting Create places the following window on the screen.

Dale Number I Time I Currency

o Dash separalors ~
separator: 1- o Slash separalors

----- Counlry Formal -----

o European formal
date: I%m/%d/%y o Asian formal
dalellime: I%m/%d/%y %I:%M:%S %p o Mililary formal f-

@ U.S. format l-•
I'

Store I I Store As I I Close I I Default '·'1 Help

This window allows you to create a new locale table. For details on interac
tion with its fields, see "The locale window" on page 438.

Zinc Designer 423



Defaults Editor

Load ,Load... is used to recall a previously created locale table from the current
file. Selecting it causes a window similar to the following to appear:

I~I

Objectname:

~AT

~CA

~CN

~DE

~DK

~ES

~FI

~FR

Resource. Load...

Q.irectories:

-ZIUNTERNATIONAl

~ 127
f-I f5 IN 1[RNA IONt l

OK.

Help

11

424

Objectname. To load a locale table, either enter the name at the Objectname
prompt, or select it from the list below, and the name of the locale table will
automatically appear at the prompt.

Other locale tables that belong to the current directory (including those
imported from other files) are listed, in alphabetical order, in the scrollable
field below the Objectname field. As mentioned above, selecting one of
these locale tables causes the name to appear in the Objectname field. Dou
ble clicking on a name listed in the Objectname list will cause that locale
table to be loaded immediately.

Directories. The current locale table directory is shown below the Directo
ries prompt. Other directories of the current file are listed in the field below
the current directory prompt. These two fields are for informational purposes
only and cannot be edited.

OK. Selecting this button causes the locale table specified at the Object
name prompt to be loaded. If the load procedure is successful, the Locale,
Load window will close and the locale table appears on the screen.

If the locale table name entered at the Objectname prompt does not exist, or
if no information has been entered, you will receive an error message at this
time.

Cancel. Selecting this button causes the window to close without executing
any changes.

Zinc Designer



Help. Additional information about loading locale tables appears when this
button is selected.

Once the locale table has been loaded and appears on the screen, it can be
modified. When the Locale I Store option is subsequently selected, the
locale table will be saved in its present condition, replacing the original ver
sion. (See the Store and Store As descriptions in this section for more infor
mation on storing locale tables.)

Store Selecting the Store option causes the current locale table to be saved to the
current file. If you have not entered a name for the locale table through a
Store As... operation, you will be asked for a name before you can store the
locale table.

NOTE: Each time a store operation is performed, the previous contents of
the locale table are completely replaced by the current information.

Store As Store As... is generally used to store the current locale table under another
name. Selecting it causes a window to appear that is similar to the following:

Resourc~re As•••

Help

Qirectories:

-ZIUNTERNATIONAL If OK

~ ~
~ f:7 711 INnnNATllHli\i. I--hancel

Objectname:

II I;========::::::=::;;::::::
fiiiI1AT

fiiiI1CA

fiiiI1 eN

I' fiiiI1 DE

fiiiI1 DK

fiiiI1 ES

fiiiI1 FI

fiiiI1 FR

--

Objectname. Enter a name for the locale table at the Object!!,ame prompt,
or, if you want to replace a previously created locale table with the current
information, select one from the field below, and the name for that locale
table will automatically appear at the prompt.

Other locale tables that belong to the current directory are listed, in alphabet
ical order, in the scrollable field below the Object!!,ame field. As mentioned
above, selecting one of these locale tables causes the name to appear in the
Objectname field. Double clicking on a name listed in the Objectname list
will cause that locale table to be stored immediately.

Zinc Designer 425



Defaults Editor

Clear

Clear All

426

Directories. The current locale table directory is shown below the Directo
ries prompt. Other directories of the current file are listed in the field below
the current directory prompt. These two fields are for informational purposes
only and cannot be edited.

OK. Selecting this button causes the locale table to be stored under the name
entered at the Objectname prompt. If the store operation is successful, the
Locale, Store As... window closes.

If no information has been entered within the Store As... window and you
select the OK button, the window will close and no other action will take
place.

If you have entered a locale table name that already exists, a modal window
will appear, indicating such. If you select the Yes button of this window, the
current information replaces the previous information for that locale table,
and b9th the modal window and the Store As... window close. Selecting the
No button simply closes the modal window and allows you to enter informa
tion again in the Store As... window.

Cancel. Selecting this button causes the window to close without executing
any changes.

Help. Additional information about storing locale tables appears when this
button is selected.

Selecting Clear causes the current locale table window to be removed from
the screen. It does not, however, delete the locale table from the file. If you
have not stored the current locale table immediately before, selecting Clear
causes a modal window to appear that asks if you want to store it before
clearing it from the screen. Selecting Yes causes it to be stored and then
cleared, selecting No causes it to be cleared without storing it first, and
selecting Cancel simply closes the modal window and the locale table is nei
ther stored nor cleared.

Note that in order to avoid unintentional clearing, Clear does not have a hot
key assignment. It can only be activated by selecting it from the menu with a
mouse or by scrolling to it and hitting <Enter>.

Selecting Clear All causes all locale table windows currently displayed to be
removed from the screen. It does not, however, delete any of those locale
tables from the file. If there are any locale tables that were not stored imme-

Zinc Designer



Delete

diately before selecting Clear, a modal window will appear that asks if you
want to store them before clearing them from the screen. Selecting Yes
causes the locale tables to be stored and then cleared, selecting No causes
them to be cleared without storing them first, and selecting Cancel simply
closes the modal window and the locale tables are neither stored nor cleared.

Note that in order to avoid unintentional clearing, Clear All does not have a
hotkey assignment. It can only be activated by selecting it from the menu
with a mouse or by scrolling to it and hitting <Enter>.

The I!elete... option allows you to delete a locale table from the current file.
Selecting it causes a window similar to the following to appear:

=-1
Objectname:

~AT

~CA

~CN

~DE

~DK

~ES

~FI

~FR

Resource, Delete...

Q.irectories:

-ZIUNTERNATIONAL

.!J 0

.... ~

OK

Cancel

Help

Objectname. Enter the name for the locale table to be deleted at the Object
name prompt, or select one from the field below, and the name for that
locale table will automatically appear at the prompt.

Other locale tables that belong to the current directory are listed, in alphabet
ical order, in the scrollable field below the Objectname field. As mentioned
above, selecting one of these locale tables causes the name to appear in the
Objectname field.

Directories. The current locale table directory is shown below the Directo
ries prompt. Other directories of the current file are listed in the field below
the current directory prompt. These two fields are for informational purposes
only and cannot be edited.

Zinc Designer 427



Defaults Editor

Index...

428

OK. Selecting this button causes a modal window to appear which is similar
to the following:

~I .. Resource. Delete...

oelele resource "FW'?

The purpose of this window is to make sure that you want to delete the locale
table. If you select the OK button, the locale table indicated at the Object
name prompt is deleted from the current file, and both the confirmation win
dow and the Locale IDelete window close. If you choose the Cancel button,
the locale table is not deleted and just the confirmation window closes.

If the locale table entered does not exist, you will receive an error message
when the OK button is selected.

If no information has been entered within the window, selecting OK causes
an error message to appear.

If the delete operation is successful, the Locale I Delete window closes, and
the locale table is deleted from the current file.

Cancel. Selecting this button causes the window to close without executing
any changes.

Help. Additional information about deleting locale tables appears when this
button is selected.

Help

The Help category options allow you to get help about various topics in the
Defaults Editor.

Displays a list of all help available in the Defaults Editor. Selecting a topic
from this list will display the help for that topic.

Zinc Designer



File

Language

Locale

System events

Logical events

About Language
Editor

Common
buttons

Displays help for the File options.

Displays help for the Language options.

Displays help for the Locale options.

Displays a list of Zinc system events and their values.

Displays a list of Zinc logical events and their values.

Provides an overview of the Language Editor.

The langUflge window

The language window allows you to modify strings that are used by Zinc for
such purposes as window titles, system menu options, and error messages.
Each object that may require a string translation has its own notebook page
on the window. Each of these pages is described in detail within this section.
All of the pages have several common buttons, described just below.

Store. Selecting the Store option causes the current locale table to be saved
to the current file. If you have not entered a name for the locale table through
a Store As... operation, you will be asked for a name before you can store
the locale table.

Note that each time a store operation is performed, the previous contents of
the locale table are completely replaced by the current information.

Store As. Store As... is generally used to store the current locale table under
another name. (Refer to "Store" on page 415, or "Store As" on page 416, for
further instructions on performing a Store As... operation.)

Close. Selecting this button causes the window to close without executing
any changes.

Default. Selecting this button returns the entries to their default values.

Zinc Designer 429



Defaults Editor

Day

Help. Additional information about creating locale tables appears when this
button is selected.

This page, shown below, contains the strings used for alphanumeric days.

sholt days:

Sun
M~~
Tue
Wed
Thu
Fli
Sal

abbleviated days:

Sun.
Mon.
Tues.
Wed.
ThUls.
Fli.
Sat

long days:

Sunday
Monday
Tuesday
Wednesday
Thulsday
Fliday
SalUlday

Month

430

StOle I I Stole As I I Close I I Default I I Help

Short days. Contains the strings used when displaying a short day name,
such as would appear in a date field that has the Military format option set.

Abbreviated days. Contains the strings used when displaying an abbreviated
day name, such as would appear in a date field that has the Short alphanu
meric day option set.

Long days. Contains the strings used when displaying a full day name, such
as would appear in a date field that has the Alphanumeric day-of-week option
set.

Contains the strings used for alphanumeric months. The page is shown
below.

sholt months: abbleviated months: long months:

Jan ........... ... ~ Jan.
~

JanualY
~Feb' Feb. FeblUalY

Mar I- Mar. I-' March .....
Apr Apr. April
May May May
Jun June June
Jul July July
Aug Aug. August
Sep

h
Sept

f-
September

f--Oct + Oct + October +

Stole I I Stole As I I Close I I Default I I Help

Zinc Designer



Am

short months. Contains the strings used when displaying a short month
name, such as would appear in a date field that has the Military format
option set.

abbreviated months. Contains the strings used when displaying an abbrevi
ated month name, such as would appear in a date field that has the Short
alphanumeric month option set.

long months. Contains the strings used when displaying a full month name,
such as would appear in a date field that has the Alphanumeric month option
set.

Contains the strings used to indicate if a time is antemeridian or postmerid
ian. The page is shown below.

Day IMonth I Am I Date lint. I Num. I Real I Sys. l~ Win. I Error I Help 1

a.m. string: la.m.
p.m. string: Ip·m.
time zone: Ixxxx

I!

II
Stole I I Stole As I I Close I I Default I I Help

a.m. string. Indicates a time is antemeridian.

p.m. string. Indicates a time is postmeridian.

time zone. This string identifies the time zone.

Zinc Designer 431



Defaults Editor

Date Contains the strings in error messages for a date field. The page is shown
below.

invalid:

out-of-range:

missing value:

invalid name:

ambiguous:

less-than:

greater-than:

Store I Store A.s I I Close I Q.efault I I Help

432

invalid. Indicates the date is in an invalid format.

out-oj-range. Indicates the date is out of range for the date field.

missing value. Indicates the date is missing a required value and cannot be
interpreted.

invalid name. Indicates the date has an invalid month name that cannot be
interpreted.

ambiguous. Indicates the date has an ambiguous month name that cannot be
uniquely interpreted.

less-than. Indicates the date is chronologically less than the low end of a
positive, open-ended range of acceptable date values.

greater-than. Indicates the date is chronologically greater than the high end
of a negative, open-ended range of acceptable date values.

Zinc Designer



Integer

Number

Contains the strings used to display error messages for an integer field. The
page is shown below.

Day TMonth T Am TDate Tint. 1 Num. I Real~r Win. I Error I Help I

II

invalid: IThe number %s is invalid.

out-of-range: !The number %s is not in the range %s.

less-than: IThe number %s is less than %s.

greater-than: IThe number %s is greater than %s.

Store " Store As I' Close " Default I I Help

invalid. Indicates the number is in an invalid format.

out-of-range. Indicates the number is out of range for the integer field.

less-than. Indicates the number is less than the low end of a positive, open
ended range of acceptable values.

greater-than. Indicates the number is greater than the high end of a negative,
open-ended range of acceptable values.

Contains the strings used to display error messages for a number field. The
page is shown below.

Day I Month I Am I Date r In!. TNum. I Real I Sys. I Time I Win. I Error~~

invalid: IThe number %s is invalid.

out-of-range: 'The number %s is not in the range %s.

less-than: IThe number %s is less than %s.

greater-than: 'The number %s is greater than %s.

~tore I I-Store As I I Close " Default I I J:!elp

invalid. Indicates the number is in an invalid format.

Zinc Designer 433



Defaults Editor

Real

434

out-oj-range. Indicates the number is out of range for the field.

less-than. Indicates the number is less than the low end of a positive, open
ended range of acceptable values.

greater-than. Indicates the number is greater than the high end of a negative,
open-ended range of acceptable values.

Contains the strings used to display error messages for a real field. The page
is shown below.

Day 1Month 1 Am 1 Date lint. 1Num. TReall Sys. 1 Time I Win. 1 Error 1 Help 1

invalid: IThe numbel 4S is invalid.

out-ol-Iange: IThe numbel 4S is not in the range 4l,-

less-than: 1The number 4S is less than 4S.

gleatel-than: IThe number 4S is greater than 4S.

Stole I I Stole As I I Close I I Delault I I Help

invalid. Indicates the number is in an invalid format.

out-oj-range. Indicates the number is out of range for the real field.

less-than. Indicates the number is less than the low end of a positive, open
ended range of acceptable values.

greater-than. Indicates the number is greater than the high end of a negative,
open-ended range of acceptable values.

Zinc Designer



System button Contains the strings used to display the options in a generic system button
menu. The page is shown below.

reslore: I&Reslore

move: I&Move

size: I&Size

minimize: IMi&nimize

maximize: IMa&ximize

close: !&Close

Slore I I Slore As I I Close I I Oelaull I I Help

restore. Text used to create the menu option that restores a window from its
minimized or maximized state.

move. Text used to create the menu option that allows the window to be
moved using the keyboard.

size. Text used to create the menu option that allows the window to be sized
using the keyboard.

minimize. Text used to create the menu option that minimizes the window.

maximize. Text used to create the menu option that maximizes the window.

close. Text used to create the menu option that closes the window.

Zinc Designer 435



Defaults Editor

Time

Window

436

Contains the strings used to display error messages for a time field. The page
is shown below.

invalid: IThe lime %10 is invalid.

out-of-range: IThe lime %10 is nol in Ihe range %10.

mining value: IA lime value must be enlered.

less-than: IThe lime %10 is before %10.

greater-than: IThe lime %10 is aller %10.

Siore I I Siore As I I Close I I Default I I Help

invalid. Indicates the time is in an invalid format.

out-oj-range. Indicates the time is out of range for the time field.

missing value. Indicates the time is missing a required value and cannot be
interpreted.

less-than. Indicates the time is chronologically less than the low end of a
positive, open-ended range of acceptable time values.

greater-than. Indicates the time is chronologically greater than the high end
of a negative, open-ended range of acceptable time values.

Contains the strings used to display error messages for a window. The page
is shown below.

IERROR

IUnknown window object.

IObiect %s was nol found.

IFile %s was not found.

Zinc Designer



Error

error. International word for error if no other language information is avail
able.

unknown object. String used when loading a persistent window to indicate
that an unknown type of object has been located in the .DAT file.

object not found. String used when loading a persistent window to indicate
that an object could not be located in the .DAT file.

file not found. String used when loading a persistent window to indicate that
the persistent file could not be found.

Contains the strings used to display objects on an error window. The page is
shown below.

title: IError
~=========~

ok selection: IfrO K
~=========:cancel selection: IfrCancel
~=========~icon name: I,~ r,

~=========:move option: Ir.t.tove
~=========~

close option: 1-1fr_CI_os....celA:-I_I+_F4 ---'

.close I I Default I I Help

title. Default text that appears in the error window title bar if the application
does not supply a new title when calling the error system.

ok selection. Text used to create the OK button on the error window.

cancel selection. Text used to create the Cancel button on the error window.

icon name. This is the name of the icon that is displayed on the error window
as it appears in the .DAT file.

move option. Text used to create the system menu option that allows the
error window to be moved.

close option. Text used to create the system menu option that allows the
error window to be closed.

Zinc Designer 437



Defaults Editor

Help

438

Contains the strings used to display a help window. The page is shown
below.

title: INo Help
:==::::::.::::=======~

default menage: INo help available allhis poin!.

icon title: IHeip Information:==:::::::::::========:=:;
icon name:

Store I I Store A$ 1 I Close ., I Default I I Help

title. Default text that appears in the help window title bar if the application
does not supply a help context for the object about which the end-user
requested help.

default message. Default text that appears in the help window if the applica
tion does not supply a help context for the object about which the end-user
requested help.

icon title. Text that appears on the help window's minimize icon.

icon name. Name of the icon that is used as the help window minimize icon
as it appears in the .DAT file.

The locale window

The locale window allows you to modify formatting information that is used
by Zinc for such purposes as formatting numbers, dates, or times. Each
object that may require formatting data has its own notebook page on the
window. Each of these pages is described in detail within this section. The
pages have several common buttons, described just below.

Zinc Designer



Common
buttons

Date

Store. Selecting the Store option saves the current locale table to the current
file. If you have not entered a name for the locale table through a Store As...
operation, the Designer will ask for a name before storing the locale table.

Note that each time a store operation is performed, the previous contents of
the locale table are completely replaced by the current information.

Store As. Store As... is generally used to store the current locale table under
another name. (Refer to "Store" on page 415, or "Store As" on page 416, for
further instructions on performing a Store As... operation.)

Close. Selecting this button causes the window to close without executing
any changes.

Default. Selecting this button returns the entries to their default values.

Help. Additional information about creating locale tables appears when this
button is selected.

Contains the formatting data used to format a date. The page is shown below.

Date Number Time Currency

o Dash sepalalOls ..!.
sepa.ato.: 1- o Slash sepalatOls

----- [ounby FOImal -----

o EUfopean IOlmal
date: I%m/%d/%y o Asian 100mal
date/time: I%m/%d/%y %I:%M:%S %p o Military 100mal --;

@ U.S. fo.mat
I-!
+

,S.to.e I I Sto.eAs I I Close I I Default I I Help

separator. Symbol used to separate the various values of the date.

date. Formatting string that specifies the order in which the date values
should be arranged.

date/time. Formatting string that specifies the order in which the values
should be arranged in a combined date and time value.

Zinc Designer 439



Defaults Editor

440

The options that control the presentation of the date object are listed in the
field on the right half of the window. The first section presents options for
formatting input. The options are:

o Short alphanumeric day. Adds a shortened day-of-week text to the date.

o Alphanumeric day-of-week. Adds an ASCII string day-of-week string to
the date.

o Short alphanumeric month. Uses a shortened alphanumeric month in the
date.

o Alphanumeric month. Formats the month to be displayed as an ASCII
string value.

o Short year. Forces the year to be displayed as a two-digit value.

o Format uppercase. Converts the alphanumeric date to uppercase.

o Pad date with zeros. Forces the year, month and day values to be zero
filled when their values are less than 10.

o Fill blanks with system value. Fills a blank date with the system date. For
example, if a blank date were entered by the end user and this option
were set, the date would be set to the system date.

The second section presents options for separating date values. The options
are:

o System defaults. Separates each date value according to the default set
tings for the current system.

o Dash separators. Separates each date value with a dash, regardless of the
default country date separator.

o Slash separators. Separates each date value with a slash, regardless of
the default country date separator.

Zinc Designer



Number

The third section presents options for formatting according to country and
military standards. The options are:

· European format. Forces the date to be displayed and interpreted in the
European format (i.e., day/month/year), regardless of the default country
information.

· Asian format. Forces the date to be displayed and interpreted in the Asian
format (i.e., year/month/day), regardless of the default country informa
tion.

· Military format. Forces the date to be displayed and interpreted in the
U.S. Military format (i.e., day month year where month is a 3 letter
abbreviated word), regardless of the default country information.

U.S. format. Forces the date to be displayed and interpreted in the U.S.
format (i.e., month/day/year), regardless of the default country informa
tion.

Contains the formatting data used to format a number. The page is shown
below.

Date I NumbM -, Time r Currency- -~ D defDigils: I0123456789 Idigit: left paren:

int'l digit: ~ right paren: 0 altDigits: I0123456789 I
Positive numbers- Negative numbers-

decimal: 0 separator (0..2): D separator (0..2): D
II thousands: 0 cunene, (0..1): D cunency (0..1): D

grouping: [C] position (0..4): D position (0.."): D
sign (+): 0 sign (-): 0

L I I 1.- I,S.tore II StoreAs tlose I I Default I I Help

digit. Number of digits to display after the decimal point on currency values.

int'l digit. Number of digits to display after the decimal point on interna
tional currency values.

decimal. Symbol used as the decimal separator.

thousands. Symbol used as the thousands separator.

Zinc Designer 441



Defaults Editor

442

grouping. Number of digits that are grouped in a number.

left paren. The left symbol used when displaying a negative value using
credit symbols.

right paren. The right symbol used when displaying a negative value using
credit symbols.

def digits. These are the default digits used to display a number.

alt digits. These are the alternative digits used to display a number.

The Positive numbers group contains specifications that affect the display of
positive numbers. The Negative numbers group contains specifications that
affect the display of negative numbers. Both their fields are the same.

separator. An integer used to indicate the spacing of a negative monetary
value. The following values can be used:

· O. Causes no spaces to be placed between the currency symbol and the
value.

1. Causes a space to be placed between the currency symbol and the
value.

· 2. Causes a space to separate the currency symbol and the sign string, if
they are adjacent.

currency. An integer used to position the currency symbol for negative mon
etary values. The following values can be used:

· O. Causes the currency symbol to follow the value.

1. Causes the currency symbol to precede the value.

position. An integer used to position the positive or negative sign for a mon
etary value. The following values can be used:

· O. Causes parentheses to enclose the quantity and the currency symbol.

1. Causes the sign string to precede the quantity and the currency symbol.

· 2. Causes the sign string to follow the quantity and the currency symbol.

· 3. Causes the sign string to precede the currency symbol.

· 4. Causes the sign string to follow the currency symbol.

Zinc Designer



Time

sign. Symbol used to indicate that the number is positive or negative, as
appropriate.

Contains the formatting data used to format a time. The page is shown
below.

Date I Number Time I Currency

----- Defaull Formals ----- ~,
nparalor: I: D Include hundredths I-

D Include seconds

D No minutes
time: I%I:%M:%S %p D No hours

~ 12 hour: I%I:%M:%S %p D Format lower-case

D Format Upper-case ~

I StoreA. I I IStore I golle I Default HelP

separator. Symbol used to separate the various values of the time.

time. Formatting string that specifies the order in which the time values
should be arranged.

12 hour. Formatting string that specifies the order in which the time values
should be arranged for a 12 hour format.

The options that control the presentation of the time object are listed in the
field on the right half of the window. The first section presents options for
default format. The options are:

· Include hundredths. Includes the hundredths value in the time. (By
default the hundredths value is not included.)

· Include seconds. Includes the seconds value in the time. (By default the
seconds value is not included.)

· No minutes. Does not display nor interpret a minute value for the time
object.

· No hours. Does not display nor interpret an hour value for the time
object.

· Format lowercase. Converts the time to lowercase.

· Format uppercase. Converts the time to uppercase.

Zinc Designer 443



Defaults Editor

Currency

444

· Pad date with zeros. Forces the hour, minute and second values to be zero
filled when their values are less than 10.

· Fill blanks with system values. Fills a blank time with the system time.
For example, if a blank ASCII time value were entered by the end user
and the this option were set, the time would be set to the current system
time.

The second section presents options for separating time values. The options
are:

· System defaults. Separates each time value according to the default set
tings for the current system.

· No separators. Does not use any separator characters to delimit the time
values.

· Colon separators. Separates each time value with a colon.

The third section presents options for formatting according to country stan
dards. The options are:

· 12 hour. Forces the time to be displayed and interpreted using a 12-hour
clock, regardless of the default country information.

· 24 hour. Forces the time to be displayed and interpreted using a 24-hour
clock, regardless of the default country information.

Contains the formatting data used to format currency values. The page is
shown below.

Date I Numbel I Time I, Currene,
I'

IJIIIlboI: Is
II int1I}1111bo1: IU5D

decimal: I·
thousands: I.
grouping: 13

I I I I I Ir I Ir£tore Store AI Ciole Q.efaUlt .!:1eJp

symbol. Symbol used to display the currency type.

int'l symbol. This is the international currency symbol.

Zinc Designer



decimal. Symbol used as the decimal separator.

thousands. Symbol used as the thousands separator.

grouping. Number of digits that are grouped in a number.

Zinc Designer 445



Defaults Editor

446 Zinc Designer



Chapter 23 String Editor

The String Editor allows you to use characters within your application
which are not available from a standard keyboard. For example, if you need
to translate your application into Chinese, the Chinese characters needed can
be accessed from within the String Editor. Since this is accomplished using
the complete Unicode character set, the String Editor is available only in
Unicode mode.

To invoke the String Editor, either restore it from its minimized icon on the
bottom of the screen, or in DOS or Windows press <F12> while positioned
on any window field within Zinc Designer. The latter approach is most com
monly used when you are positioned in a field that you would like to trans
late. Any editing done with the String Editor will be reflected in that field
only.

If you are not positioned in a window field containing text when you invoke
the String Editor, any editing done can be transferred to a window field by
either dragging and dropping the string into a field that accepts dropping, or
by copying and pasting the string.

Zinc Designer 447



String Editor

Upon invoking the String Editor, a window similar to the following appears:

String Editor
Original:

CUllen!: 1circle
:===:r,:;-----------------'

Page: 10 ftI
~::h73~IArr 'f

11

I

Original

Current

Page

Character table

OK

448

This field displays the text that is to be edited. If you invoked the String Edi
tor while positioned in a field with text, the field's text will appear at the
Original prompt. Otherwise, no text is displayed.

The characters selected from the table appear in this field, in the order that
they are selected.

This spin control field designates the currently displayed Unicode page. It
actually displays the upper byte of the Unicode value, or the first two digits
of the page number. To change pages, either enter the desired page number,
or click on the spinner arrows to increment or decrement a page at a time.
The change in pages is reflected immediately in the character table.

This field displays the current page of the character table. To select a charac
ter, click on it with the mouse and it will appear at the Current prompt.
Since not all characters can be rendered in all operating systems, some cells
may be blank or display a filler character, depending on the system.

Selecting this button causes the string displayed at the Current prompt to be
saved. If you invoked the editor while positioned on a field, the text of that
field will be replaced with the new string.

Zinc Designer



Cancel

Help

Selecting this button causes the window to close without executing any
changes.

Additional information about using the String Editor appears when this but
ton is selected.

Zinc Designer 449



String Editor

450 Zinc Designer



section tour
Zinc Designer
appendices

Zinc Designer 451



452 Zinc Designer



Appendix A Building the Designer

The Designer is made up of many components, at different levels of
abstraction. Some components depend on the existence of other components
if they are to function properly, or even at all. Therefore, it is important to
build the compiler properly. This appendix discusses the components and
their interdependencies on a general level. It does not discuss the details of
compiling an application. For details on using for your compiler and envi
ronment, see "Appendix A-Compiler Considerations" in the Getting
Started With Zinc Programming manual.

The Designer components

The Designer is a flexible and extensible programming tool. More compo
nents may become available after the printing of this manual. The
UPGRADE.TXT file will list new components as they become available.

Zinc Designer 453



Building the Designer

454

The Designer has several components at various levels of abstraction. The
Level I component, SERVICE.LIB, is the most abstract. This component
keeps track of the services available in the application and provides those
services to components that need and request them. The services are imple
mented by the other components and include such capabilities as file selec
tion, image editing, etc.

Level 2 components include STORAGE.LIB, DIRECT.LIB, and
STREDIT.LIB. These components, which depend on Levell components,
must be built after Levell components have been built. STORAGE.LIB
provides persistent object functionality. DIRECT.LIB provides file selec
tion, or directory services, capability. STREDIT.LIB provides string editing
functionality for either 8-bit character mode or 16-bit Unicode mode,
depending on the mode of the Designer.

Level 3 components provide the services that are the most visible to the user.
In fact, these components can exist as either libraries or as executables.
Level 3 components must be built after Level 2 components have been built.
The Level 3 components include:

· Image Editor. This component allows you to import, export, create, and
modify bitmap, icon, and mouse cursor images.

· Window Editor. This component allows you to import, export, create,
and modify windows.

· Help Editor. This component allows you to import, export, create, and
modify help contexts.

· Message Editor. This component allows you to import, export, create,
and modify message tables. Message tables allow you to remove strings
from your code and load them at run-time.

· Internationalization Defaults Editor. This component allows you to
import, export, create, and modify language and locale data used for
internationalizing applications.

· File Editor. This component allows you to import, export, create, and
modify files in different character set formats. For example, you can use
this editor to translate a file from Shift-JIS to Unicode.

Zinc Designer



DOS, Windows,
OS/2, Motif,
Curses,
NEXTSTEP

Macintosh

Compiling the components

Each Designer component resides in a subdirectory of IZINCIDESIGN. If
you wish to build a Level 3 executable, you must go into the desired sub
directory and build that component explicitly as an executable. Building that
component, as we mentioned earlier, requires that all Level I and Level 2
components already exist.

Makefiles for each environment are provided for each component. These
makefiles do not attempt to build other components upon which the compo
nent being built depends; they assume that the components exist. If the
required components do not exist or cannot be located, you will typically get
a compile or link error. If this happens, check that any required components
have been built and are in a location accessible by the compiler or linker.
(The makefiles usually copy the headers for each component to the IZINCI
INCLUDE directory and the <component>.LIB to the IZINCILIB/<com
piler version> directory.)

Most commonly, the Designer will simply be built all at once and its services
used only within the context of the Designer. To accommodate this need,
there are makefiles for all environments except Macintosh in the IZINCI
DESIGN directory. (See the section below for details on the Macintosh
Designer.) The makefiles build the various components in the proper order
producing a single Designer executable.

Since the Macintosh allows only one menu bar per application, Zinc
Designer on the Macintosh is made up of several applications: Help Editor,
Message Editor, Image Editor, Il8N Defaults Editor, File Editor, and Win
dow Editor. All these applications are found in the Bin folder. Normally, you
won't need to build Zinc's Designer, since the installation includes all the
Designer applications. But if you should be required to build the Designer,
follow these steps:

1. Each piece of the Designer is located in its own folder within the Design
folder and has a project file with which to build the piece. Before build
ing a Designer application, you must build the component libraries which
that application depends on. All of the Designer applications depend on
these libraries, each within its respective folder: Service, Direct, Stor
age, and StrEdit. Make aliases of their respective header files and put
these aliases into the SCCPP700 Include folder: SERVICE.HPP,
DIRECT.HPP, STORAGE.HPP, and STREDIT.HPP. Then build these
four libraries and copy them into the SCCPP700 Libraries folder.

Zinc Designer 455



Building the Designer

456

2. Each of the Designer applications also depends on its own component
libraries, so build them and copy them into the SCCPP700 Libraries
folder: Help, Message, Imagel, Image2, USN, File, Windowl,
Window2, and Window3.

3. Each of the Designer applications has a project file that will build the
application within its corresponding folder. You may now build any of
the Designer applications with these project files. Copy the newly built
applications into the BIN folder to use them.

Zinc Designer



Symbols
#ifdef USE MSG TABLE 175
.CPP file 206 -
.DAT file 199
.HPP file 206
_errorMsg-Table 176
_errorMsgTable 175

A
absolute constraint 162
Advanced page 218

Add button 221
Add object combo box 222
Callback field 218
data settings options 220
Delete button 221
Derived Name field 219
Edit button 221
Interaction options 219
miscellaneous options 220
Move Down button 221
Move Up button 221
NumberID field 218
options list 219
UserFlags field 218
UserObject field 218
UserStatus field 219

advanced window object
creating 22

am
default strings 431

application
architectural concepts 65
creating 57
internationalizing 169

architecture 65
Zinc 139

B
backup file 199
backups 205
bell 154
bignum 269

options 270
range setting 269

bitmap 339, 454
associating with a button 88
creating 35, 345, 375
delete 353
importing 86
loading 41
save as 351
storing 37
using on a button 43

border 214
box, dialog 331
button 276

bitmap 43, 88
check box 283
default 153
information 16
options 277
radio 279
sending a message 117
setting value 153

button bar
display defaults 204
Image Editor 342

C
callback function 218
cell coordinates 213
character set 454
check box 283

options 285
child window 329
clear

bitmap image 352
help context 391
icon image 361
language table 417
locale table 426
message 404
mouse image 371

clearing a window resource 236
clearing resources

in Zinc Designer 391,392,404
closing a file 201
colors

Image Editor 342
combo box 292

options 293
compare function 211
compiler

Unicode 189
compiling Zinc Designer 453
const 175
constraint

absolute 162
geometry management 159
relative 162

context sensitive help 212
conventions 6
coordinates

cell 213
minicell 213
pixel 213

Getting Started with Zinc Programming 457



copy
image 344
object 222

comer scroll box 289
create

language table 414
locale table 423

creating a window resource 232
creating an object 241
currency

default formatting 444
Curses

building Zinc Designer 455
cut

image 344
object 222

o
data

loading 141
storing 143

database 131
date 262

default formatting 439
default strings 432
options 263, 267
range setting 263,266
setting a range 157

day
default strings 430

default button 153
default file extension 206
default settings

Designer 204
Defaults Editor 454

help 428
introduction 50
language 50
locale 50

defaultStorage
DCWINDOW_OBJECT member 100

delete
bitmap image 353
help context 392
icon image 362
image 344
language table 418
locale table 427
message table 405
mouse image 372
object 221,223

deleting a file 202
deleting a window resource 237
deleting resources

in Zinc Designer 392, 405
delta storage 169, 182,204

closing 185
loading a window 187
message table 187
saving 184
source code 187

derived object
naming 219

dialog box 331
dialog object

window option 92, 116, 152
dialog window

designing 79
directories

traversing 221
Don't Size

window option 152
DOS

building Zinc Designer 455
dragging object 220
drawing tools 343
dropping object 220

E
edit

child object 220
grouped images 344
grouped objects 223
Window Editor 209

edit category 209
edit group

copying 29
cutting 29
editing 27
moving 27
pasting 29

editing an object 242
editing objects 210
editing subobjects 220
editing text strings

Message Editor 395
ellipse

drawing 36
filled 343
unfilled 343

erase
image 344

error checking 147
error handling 157
error system 147

invoking 158
error window

default strings 437

458 Getting Started with Zinc Programming



event flow 100, 110
event handling 101, 122
event queue 106
exit function 147, 153, 154
exit process 154
exit window 151
exiting the Designer 206
export

help context 386
icon image 357
image 347
language table 412
locale table 422
message 398
mouse image 366

exporting windows 230

F
file

.CPP 206

.HPP 206
backup 199,205
character set 454
close 201
default extension 206
delete 202
new 75,196
open 197
opening 8
preferences 204
save 199
saving 8, 31, 75

File Editor 454
files

created by Designer 199
fill

ellipse 343
images 344
rectangle 343

fill ellipse 343
fill rectangle 343
flags

button 308
flood fill 344
formatted string 258

options 260
formatting

currency 444
date 439
number 441
time 443

formatting objects
locale 438

G
General page 211

Compare field 211
Help field 212
Name field 212
options list 212
Text field 211

geometry management 147, 159,214,330
absolute attachment 215
anchor field 217
constraints 216
editing 215
hz-center anchor 217
opposite anchor 217
priorities 216
relative attachment 215
stretch 163
stretching 217
vt-center anchor 217

Geometry page 214
attachments 215
Constraint features 216
constraint options 217
offset field 216
Size Restrictions field 217

GetMessage() 176
grid

image creation 342
group

adding an object 19
edit 223
information 22

group box 317
group object 317

options 318
grouped object

creating 17
grouping

objects 26, 223
radio buttons 280
window objects 317

H
header

table 325
help

associating with an object 167
context sensitive 212
context-specific 165
Defaults Editor 428
displaying 118
Help Editor 393
Image Editor 373
importing 165

Getting Started with Zinc Programming 459



logical events 429
Message Editor 406
requesting for an object 48
system events 429
Window Editor 335

help context 454
associating with an object 47
creating 45
message 46
storing 46
title 46

help context creation 383, 388
Help Editor 383,454

using 45
help index

Help Editor 393
Image Editor 374
Message Editor 406
Window Editor 336

help system 113, 123
help window

default strings 438
horizontal list 304

options 305
size 304

horizontal scroll bar 289
in a list 305
in a table 327
in a window 330

horizontal slider 287
options 289

hot spot
mouse cursor 381

hotkey 332

icon 319,454
associating with a window 44
attaching to a window 152
creating 39
default 152
import 149
loading 41
options 320
storing 40
types of 152

icon field 152
icon image 339

clear 361
delete 362
export 357
import 355
load 359
store 360

460

store as 360
icon image creation 354,377
image

displaying on icon 320
export 347
import 345
on a button 277
store 350

Image Editor 86,339,454
button bar 34
color bars 35
creating a bitmap 35
creating an icon 39
default image size 39
drawing a filled ellipse 40
drawing a filled rectangle 39
drawing an ellipse 36
drawing an unfilled rectangle 40
fill 37,344
main components 34
menu options 34
title 34
using 34
viewing an image 41

image
bitmap 339
icon 339
mouse cursor 339

import
help context 384
icon image 355
image 345
language table 410
locale table 420
message 396
mouse image 364
windows 228

index
Defaults Editor help 428

information notebook
Advanced page 218
General page 211
Geometry page 214
Position page 213
prompt 12
Subobjects page 220

information request
user defined 156

inheritance 99
initial settings 220

invalid 220
unanswered 220

integer 271
default strings 433
options 272

Getting Started with Zinc Programming



range setting 272
setting a range 158

Internationalization Defaults Editor 454
item

pop-up 299
pull-down 296

J
justification 214

K
Key concepts

Basics of using Zinc Designer 3
Creating and editing objects 3
Using the Window Editor 3

L
language 50, 169

changing at run time 180
importing 180
multiple 178
switching 178
Zinc strings 179

language table 410
clearing 417
creating 414
deleting 418
exporting 412
importing 410
loading 414
store as 416
storing 415

language translation
Message Editor 395

language window 429
line 343
list

adding an object 18
creating 17
horizontal 304
information 19
vertical 307

load
help context 389
icon image 359
image 349
language table 414
locale table 424
message 401
mouse image 368

Load( )
Zinc function 142

loading a window resource 233
locale 50, 169

changing at run time 180
importing 180
table 419

clearing 426
creating 423
deleting 427
exporting 422
importing 420
loading 424
storing 425

using 179
locale window 438
locking window 332
logical event

help 429

M
Macintosh

building Zinc Designer 455
main control loop 75
makefile

sample 77
Zinc Designer 455

MDI window 331
menu

creating 69, 72
pull-down 312
separator 73

menu bar
Image Editor 340

menu item
pop-up 299
pull-down 296

message
associating with a button 107
associating with a pull-down menu 103
generating 97
processing 107
putting on event queue 106
user defined 117
value 101

Message Editor 169, 171,395,454
introduction 51

message flow 110
message processing 118, 133
message table 395

adding an entry 172
creating 51, 171, 172
loading 176
locating a message 176
storing 175
translating 187
ZIL LANGUAGE 176

message table creation 400

Getting Started with Zinc Programming 461



minicell
default ratio 205

mini-cell coordinates 213
minicell coordinates 161
MinIcon list 150
minimize icon

creating 149
modal window 116, 152,332
month

default strings 430
Motif

building Zinc Designer 455
mouse

changing the cursor 123
mouse cursor 454
mouse cursor creation 364
mouse cursor image 339
mouse image

clear 371
delete 372
export 366
import 364
load 368
store 369
store as 370

mouse image cursor 380
move

object 223
MOVIE application

components 58
creating a record 63
data storage 59
deleting a record 64
loading a record 62
Movie Control Window 67
Movie Information Window 62
Movie Selection Window 62
overview 61
persistent object storage 59
running 60
saving a record 64
source files 60
steps 59

MOVIE.CPP 67
MOVIKDAT 59
MOVIKHPP 65
MOVIE_CONTROL

Exit() 154
MOVIEl application

components 68
source files 69

MOVIEl.CPP 75
MOVIE2 application

components 80
source files 81

462

MOVIE3 application
components 98
event handling 101
Movie Control Window 107
source files 99

MOVIE4 application
components 114
Movie Information Window 120
Movie Selection Window 115
source files 115

MOVIES application
components 128
creating a record 134
deleting a record 134
loading a record 132, 135
Movie Control Window 131,137
Movie Information 140
Movie Information Window 132
Movie Selection 137
Movie Selection Window 131
source files 130
storing a record 132, 136

MOVIES.HPP 130
MOVIE6 application

components 148
source files 149

MOVIE7 application
components 170
source files 171

MovieDelete() 176
MovieLoad() 176
MSG_TABLE 175
multiline text 260

N
name

changing 74
naming objects 212
new file creation 196
NEXTSTEP

building Zinc Designer 455
noncurrent

object option 153
nonfield region 214
notebook object 322
number

default formatting 441
default strings 433
formatting 269
integer 271
real 273

o
object

Getting Started with Zinc Programming



add to window 221
adding in information notebook 25
advanced properties 218
alignment 224
assigning help 212
changing tab order 25
changing the name 31
changing the text 31
communication 128
copy 222
create 241
cut 222
delete 221, 223
deleting in information notebook 25
dragging 220
dropping 220
editing 8, 11,210
general operations 211
geometry management 159
information 11
justification 224
move 223
naming 212
order on screen 221
paste 222
placing in edit group 26
placing in group 19
placing in list 18
position 213
requesting help 48
retrieving data from 139
setting data 140
setting help context 47
size 213,223
size restrictions 217
specifying help 167
support 220
validation 158

object table 76
objects

tab order 224
ungroup 225

opening a file 197
options list

general 212
OS/2

building Zinc Designer 455

p

P_MOVIE.DE 59
P_MOVIEl.CPP 76
page

adding to notebook 323

parent
sizing 214

paste
image 344
object 222

pattern
images 343

pencil 343
persistence architecture 123
pixel coordinates 213
pop-up item 299

adding to pull-down item 299
creating 72
options 300

Position page
Alignment field 214
Border field 214
cell option 213
mini-cell option 213
pixel option 213
Position/Size field 213
Region field 214

positioning objects 213
preferences

delta storage 204
file 204

prompt 316
information 12

pull-down item 296
adding a pop-up item 298
creating 69
options 298

pull-down menu 312
creating 22
options 313

R
radio button 279

grouping 280
options 281

real
default strings 434
options 274

real number 273
range setting 273

record
loading 128
storing 128

rectangle
filled 343
unfilled 343

relative constraint 162
renaming a window 235
resource window 227

Getting Started with Zinc Programming 463



creating 9
resources

clearing 391, 392, 404
deleting 392, 405
storing 390, 402

roller 343
roller size 343

s
save

bitmap image 350
help context 390
icon image 360
message 402
mouse image 369

save as
bitmap image 351
help context 390
mouse image 370

saving a file 199
scientific notation 273,274
scroll bar

horizontal 289
vertical 289

scrolling
in a horizontal list 305
in a table 327
in a vertical list 308
in a window 330

Send user message
button option 107, 117, 122
pop-up item option 104

Shift-JIS 454
size

bitmap image 377
horizontal list 304
icon image 379
object 223

sizing objects 213
slider

horizontal 287
sorting

using compare function 211
spin control 295

information 16
spreadsheet 324
status bar 321

adding subobjects 155
creating 22, 155

status bar height 321
storage 130

delta 204
store

help context 390

464

icon image 360
image 350
language table 415
locale table 425
message 402
mouse image 369

store as
help context 390
icon image 360
image 351
language table 416
locale table 425
message 403
mouse image 370

storing a window resource 234, 235
storing resources

in Zinc Designer 390, 402
stretch

geometry management 163
string 256

am 431
converting 171
date 432
day 430
embedded 171
error window 437
formatting 258
help window 438
information 15
information notebook 152
integer 433
modifying 429
month 430
number 433
options 257
real 434
system button 435
time 436
Unicode 189
window 436

String Editor
introduction 52

string identification 212
subobject

information 24
viewing 25

Subobjects page 220
Directories field 221
Objects field 220

subwindow 329
support object 220
system button

default strings 435
system event

help 429

Getting Started with Zinc Programming



T
tab order

changing 20, 25
table

options 327
table header 325
table object 324
table record 325
temporary window 332
test mode 44
testing a window resource 239
text

justification 214
text object 260

options 262
time 266

default formatting 443
default strings 436

title
editing 74

tool bar 309
adding a subobject 85
creating 22, 85
information 24
options 311

translation
string 429

U
ungroup

images 345
objects 225

Unicode 169, 189,454
character set 52

USE_MSG_TABLE 175, 176
user function 218
user interaction 219

noncurrent 219
nonselectable 219
view only 219

user table 76

V
value selection 287
vertical list 307
vertical scroll bar 289

in a table 327
in a window 330

vertical scroll-bar
in a list 308

vertical slider 290
vertical list

options 308

View Only
object option 153

virtual record 325

W
wait cursor

mouse 123
window

adding an icon 152
clear 236
clear all 236
clearing 32
close message 105
closing 118, 139
create 232
creating 69
default strings 436
delete 237
editing 329
export 230
import 228
load 233
loading 42
loading delta storage 187
MDI 331
modal 116,332
options 330
preventing sizing 152
setting a minimize icon 44
sizing 72
store 234
store as 235
storing 93
test 239
testing 44, 89

Window Editor 454
edit option 26
file option 30
status bar 72

Window Manager
assigning an exit function 154

window resource
creating 8
saving 8

window,
dialog 331
locked 332
temporary 332

Windows
building Zinc Designer 455

Z
ZIL_STORAGE

using as database 131

Getting Started with Zinc Programming 465



ZIL_IANGUAGE
(;et~essage() 51
Zinc class 176

Zinc Designer
attaching an object 8
basic usage 8
basics of using 3
building 453
button bar 7
clearing resources 391, 392, 404
creating a basic application 8
creating a new resource 8
deleting resources 392, 405
delta storage 182
editing an object 8
exiting 53
interactive design tool 3
main components 4
opening a new file 8
preferences 182
purpose of 3
requesting help 8
running 4
saving a file 8
saving a window resource 8
status bar 7
storing resources 390, 402
support editors 33
supported environments 4
test mode 9, 44, 89

ZINC_LANG
environment variable 181

ZMSG_DELETE_ERROR 176
ZMSG_STORE_ERROR 175

466 Getting Started with Zinc Programming



               GNU Free Documentation License
                 Version 1.3, 3 November 2008

 Copyright (C) 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
     <http://fsf.org/>
 Everyone is permitted to copy and distribute verbatim copies
 of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other
functional and useful document "free" in the sense of freedom: to
assure everyone the effective freedom to copy and redistribute it,
with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible
for modifications made by others.

This License is a kind of "copyleft", which means that derivative
works of the document must themselves be free in the same sense.  It
complements the GNU General Public License, which is a copyleft
license designed for free software.

We have designed this License in order to use it for manuals for free
software, because free software needs free documentation: a free
program should come with manuals providing the same freedoms that the
software does.  But this License is not limited to software manuals;
it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book.  We recommend this License
principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that
contains a notice placed by the copyright holder saying it can be
distributed under the terms of this License.  Such a notice grants a
world-wide, royalty-free license, unlimited in duration, to use that
work under the conditions stated herein.  The "Document", below,
refers to any such manual or work.  Any member of the public is a
licensee, and is addressed as "you".  You accept the license if you
copy, modify or distribute the work in a way requiring permission
under copyright law.

A "Modified Version" of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with
modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of
the Document that deals exclusively with the relationship of the
publishers or authors of the Document to the Document's overall
subject (or to related matters) and contains nothing that could fall
directly within that overall subject.  (Thus, if the Document is in
part a textbook of mathematics, a Secondary Section may not explain
any mathematics.)  The relationship could be a matter of historical
connection with the subject or with related matters, or of legal,
commercial, philosophical, ethical or political position regarding
them.

The "Invariant Sections" are certain Secondary Sections whose titles
are designated, as being those of Invariant Sections, in the notice
that says that the Document is released under this License.  If a
section does not fit the above definition of Secondary then it is not
allowed to be designated as Invariant.  The Document may contain zero
Invariant Sections.  If the Document does not identify any Invariant
Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed,
as Front-Cover Texts or Back-Cover Texts, in the notice that says that
the Document is released under this License.  A Front-Cover Text may
be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy,
represented in a format whose specification is available to the
general public, that is suitable for revising the document
straightforwardly with generic text editors or (for images composed of
pixels) generic paint programs or (for drawings) some widely available
drawing editor, and that is suitable for input to text formatters or
for automatic translation to a variety of formats suitable for input



to text formatters.  A copy made in an otherwise Transparent file
format whose markup, or absence of markup, has been arranged to thwart
or discourage subsequent modification by readers is not Transparent.
An image format is not Transparent if used for any substantial amount
of text.  A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain
ASCII without markup, Texinfo input format, LaTeX input format, SGML
or XML using a publicly available DTD, and standard-conforming simple
HTML, PostScript or PDF designed for human modification.  Examples of
transparent image formats include PNG, XCF and JPG.  Opaque formats
include proprietary formats that can be read and edited only by
proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the
machine-generated HTML, PostScript or PDF produced by some word
processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself,
plus such following pages as are needed to hold, legibly, the material
this License requires to appear in the title page.  For works in
formats which do not have any title page as such, "Title Page" means
the text near the most prominent appearance of the work's title,
preceding the beginning of the body of the text.

The "publisher" means any person or entity that distributes copies of
the Document to the public.

A section "Entitled XYZ" means a named subunit of the Document whose
title either is precisely XYZ or contains XYZ in parentheses following
text that translates XYZ in another language.  (Here XYZ stands for a
specific section name mentioned below, such as "Acknowledgements",
"Dedications", "Endorsements", or "History".)  To "Preserve the Title"
of such a section when you modify the Document means that it remains a
section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which
states that this License applies to the Document.  These Warranty
Disclaimers are considered to be included by reference in this
License, but only as regards disclaiming warranties: any other
implication that these Warranty Disclaimers may have is void and has
no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either
commercially or noncommercially, provided that this License, the
copyright notices, and the license notice saying this License applies
to the Document are reproduced in all copies, and that you add no
other conditions whatsoever to those of this License.  You may not use
technical measures to obstruct or control the reading or further
copying of the copies you make or distribute.  However, you may accept
compensation in exchange for copies.  If you distribute a large enough
number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and
you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have
printed covers) of the Document, numbering more than 100, and the
Document's license notice requires Cover Texts, you must enclose the
copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover.  Both covers must also clearly and legibly identify
you as the publisher of these copies.  The front cover must present
the full title with all words of the title equally prominent and
visible.  You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve
the title of the Document and satisfy these conditions, can be treated
as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit
legibly, you should put the first ones listed (as many as fit
reasonably) on the actual cover, and continue the rest onto adjacent
pages.

If you publish or distribute Opaque copies of the Document numbering
more than 100, you must either include a machine-readable Transparent
copy along with each Opaque copy, or state in or with each Opaque copy



a computer-network location from which the general network-using
public has access to download using public-standard network protocols
a complete Transparent copy of the Document, free of added material.
If you use the latter option, you must take reasonably prudent steps,
when you begin distribution of Opaque copies in quantity, to ensure
that this Transparent copy will remain thus accessible at the stated
location until at least one year after the last time you distribute an
Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the
Document well before redistributing any large number of copies, to
give them a chance to provide you with an updated version of the
Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under
the conditions of sections 2 and 3 above, provided that you release
the Modified Version under precisely this License, with the Modified
Version filling the role of the Document, thus licensing distribution
and modification of the Modified Version to whoever possesses a copy
of it.  In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct
   from that of the Document, and from those of previous versions
   (which should, if there were any, be listed in the History section
   of the Document).  You may use the same title as a previous version
   if the original publisher of that version gives permission.
B. List on the Title Page, as authors, one or more persons or entities
   responsible for authorship of the modifications in the Modified
   Version, together with at least five of the principal authors of the
   Document (all of its principal authors, if it has fewer than five),
   unless they release you from this requirement.
C. State on the Title page the name of the publisher of the
   Modified Version, as the publisher.
D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications
   adjacent to the other copyright notices.
F. Include, immediately after the copyright notices, a license notice
   giving the public permission to use the Modified Version under the
   terms of this License, in the form shown in the Addendum below.
G. Preserve in that license notice the full lists of Invariant Sections
   and required Cover Texts given in the Document's license notice.
H. Include an unaltered copy of this License.
I. Preserve the section Entitled "History", Preserve its Title, and add
   to it an item stating at least the title, year, new authors, and
   publisher of the Modified Version as given on the Title Page.  If
   there is no section Entitled "History" in the Document, create one
   stating the title, year, authors, and publisher of the Document as
   given on its Title Page, then add an item describing the Modified
   Version as stated in the previous sentence.
J. Preserve the network location, if any, given in the Document for
   public access to a Transparent copy of the Document, and likewise
   the network locations given in the Document for previous versions
   it was based on.  These may be placed in the "History" section.
   You may omit a network location for a work that was published at
   least four years before the Document itself, or if the original
   publisher of the version it refers to gives permission.
K. For any section Entitled "Acknowledgements" or "Dedications",
   Preserve the Title of the section, and preserve in the section all
   the substance and tone of each of the contributor acknowledgements
   and/or dedications given therein.
L. Preserve all the Invariant Sections of the Document,
   unaltered in their text and in their titles.  Section numbers
   or the equivalent are not considered part of the section titles.
M. Delete any section Entitled "Endorsements".  Such a section
   may not be included in the Modified Version.
N. Do not retitle any existing section to be Entitled "Endorsements"
   or to conflict in title with any Invariant Section.
O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or
appendices that qualify as Secondary Sections and contain no material
copied from the Document, you may at your option designate some or all
of these sections as invariant.  To do this, add their titles to the
list of Invariant Sections in the Modified Version's license notice.
These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains



nothing but endorsements of your Modified Version by various
parties--for example, statements of peer review or that the text has
been approved by an organization as the authoritative definition of a
standard.

You may add a passage of up to five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of the list
of Cover Texts in the Modified Version.  Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or
through arrangements made by) any one entity.  If the Document already
includes a cover text for the same cover, previously added by you or
by arrangement made by the same entity you are acting on behalf of,
you may not add another; but you may replace the old one, on explicit
permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License
give permission to use their names for publicity for or to assert or
imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this
License, under the terms defined in section 4 above for modified
versions, provided that you include in the combination all of the
Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its
license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and
multiple identical Invariant Sections may be replaced with a single
copy.  If there are multiple Invariant Sections with the same name but
different contents, make the title of each such section unique by
adding at the end of it, in parentheses, the name of the original
author or publisher of that section if known, or else a unique number.
Make the same adjustment to the section titles in the list of
Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History"
in the various original documents, forming one section Entitled
"History"; likewise combine any sections Entitled "Acknowledgements",
and any sections Entitled "Dedications".  You must delete all sections
Entitled "Endorsements".

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other
documents released under this License, and replace the individual
copies of this License in the various documents with a single copy
that is included in the collection, provided that you follow the rules
of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and
distribute it individually under this License, provided you insert a
copy of this License into the extracted document, and follow this
License in all other respects regarding verbatim copying of that
document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate
and independent documents or works, in or on a volume of a storage or
distribution medium, is called an "aggregate" if the copyright
resulting from the compilation is not used to limit the legal rights
of the compilation's users beyond what the individual works permit.
When the Document is included in an aggregate, this License does not
apply to the other works in the aggregate which are not themselves
derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these
copies of the Document, then if the Document is less than one half of
the entire aggregate, the Document's Cover Texts may be placed on
covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form.
Otherwise they must appear on printed covers that bracket the whole
aggregate.



8. TRANSLATION

Translation is considered a kind of modification, so you may
distribute translations of the Document under the terms of section 4.
Replacing Invariant Sections with translations requires special
permission from their copyright holders, but you may include
translations of some or all Invariant Sections in addition to the
original versions of these Invariant Sections.  You may include a
translation of this License, and all the license notices in the
Document, and any Warranty Disclaimers, provided that you also include
the original English version of this License and the original versions
of those notices and disclaimers.  In case of a disagreement between
the translation and the original version of this License or a notice
or disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements",
"Dedications", or "History", the requirement (section 4) to Preserve
its Title (section 1) will typically require changing the actual
title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document
except as expressly provided under this License.  Any attempt
otherwise to copy, modify, sublicense, or distribute it is void, and
will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license
from a particular copyright holder is reinstated (a) provisionally,
unless and until the copyright holder explicitly and finally
terminates your license, and (b) permanently, if the copyright holder
fails to notify you of the violation by some reasonable means prior to
60 days after the cessation.

Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.

Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License.  If your rights have been terminated and not permanently
reinstated, receipt of a copy of some or all of the same material does
not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the
GNU Free Documentation License from time to time.  Such new versions
will be similar in spirit to the present version, but may differ in
detail to address new problems or concerns.  See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number.
If the Document specifies that a particular numbered version of this
License "or any later version" applies to it, you have the option of
following the terms and conditions either of that specified version or
of any later version that has been published (not as a draft) by the
Free Software Foundation.  If the Document does not specify a version
number of this License, you may choose any version ever published (not
as a draft) by the Free Software Foundation.  If the Document
specifies that a proxy can decide which future versions of this
License can be used, that proxy's public statement of acceptance of a
version permanently authorizes you to choose that version for the
Document.

11. RELICENSING

"Massive Multiauthor Collaboration Site" (or "MMC Site") means any
World Wide Web server that publishes copyrightable works and also
provides prominent facilities for anybody to edit those works.  A
public wiki that anybody can edit is an example of such a server.  A
"Massive Multiauthor Collaboration" (or "MMC") contained in the site
means any set of copyrightable works thus published on the MMC site.

"CC-BY-SA" means the Creative Commons Attribution-Share Alike 3.0 
license published by Creative Commons Corporation, a not-for-profit 



corporation with a principal place of business in San Francisco, 
California, as well as future copyleft versions of that license 
published by that same organization.

"Incorporate" means to publish or republish a Document, in whole or in 
part, as part of another Document.

An MMC is "eligible for relicensing" if it is licensed under this 
License, and if all works that were first published under this License 
somewhere other than this MMC, and subsequently incorporated in whole or 
in part into the MMC, (1) had no cover texts or invariant sections, and 
(2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site
under CC-BY-SA on the same site at any time before August 1, 2009,
provided the MMC is eligible for relicensing.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of
the License in the document and put the following copyright and
license notices just after the title page:

    Copyright (c)  YEAR  YOUR NAME.
    Permission is granted to copy, distribute and/or modify this document
    under the terms of the GNU Free Documentation License, Version 1.3
    or any later version published by the Free Software Foundation;
    with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
    A copy of the license is included in the section entitled "GNU
    Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts,
replace the "with...Texts." line with this:

    with the Invariant Sections being LIST THEIR TITLES, with the
    Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other
combination of the three, merge those two alternatives to suit the
situation.

If your document contains nontrivial examples of program code, we
recommend releasing these examples in parallel under your choice of
free software license, such as the GNU General Public License,
to permit their use in free software.




