
ADDENDA, ERRATA, AND

TECHNICAL NOTES

A P P Lie AT ION

VERSION 4.1

TM

Addenda,
Errata, and
Technical
Notes
Zinc® Application Framework™
Version 4.1
Zinc Software Incorporated
Pleasant Grove, Utah

Copyright © 1990-1994 Zinc Software Incorporated
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3
or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license is included in the section entitled "GNU
Free Documentation License".

Table of Contents

1 Table ofContents ••va

Class overview 18
Inheritance 18
Public 18

Types and constants 18
Member functions 18
Member variables 20

Protected 20
Member functions 20
Member variables 20

Class description 21
Public 21

Types and constants 21
Member functions 22
Member variables 25

Protected 25
Member functions 25
Member variables 25

Supported image formats 26

Zinc 4.1 Addenda and Errata vii

Table of Contents

viii

Class overview 27
Inheritance 27
Public members 28

Types, constants, and enums 28
Member functions 28

Protected 30
Member variables 30

Class description 31
Public members 31

Types, constants, and enums 31
Member functions 33

Protected 36
Member variables 36

4 Addendl 37

Changes to General notebook page ofCombo box 37

Changes to General notebook page ofPop-up item 37

Changes to the Geometry page ofZinc Designer 38
Combo box 38
Constraints 39
Anchor 39

New ability to access lists associated with objects 40

New help system 40

New inlinefunctionsfor checking flags 41
Using new functions instead ofAagSet() 41
Using multiple functions instead ofAagsSet() 41

New mouse message 47

Zinc 4.1 Addenda and Errata

New open and print document events 48
Implementing opening and printing functionality 48
Restrictions on drag-and-drop under Macintosh 49
Environment-specific mapping 49
Using these events programmatically 49
Using S_OPEN_DOCUMENT 50
Using S_PRINT_DOCUMENT 51

New supportfor 3D controls in Zinc 4.1 51

Functions movedfrom Designer to the library 52

System events 53
All system events available to the user 53
Some logical events generic to all platforms 53

PowerPak 32 and crashing applications 54

5 Errata 55

Programmer's Reference Volume One-Window
Objects 55

Introduction 55
UIW_STRING inheritance 55

Chapter I-UI_APPLICATION 55
argc and argy 55

Chapter 7-UI_DISPlAY 56
UI_DISPLAY::Text() 56
Calling VirtualGet() and VirtualPut() 56

Chapter I2-UI_EVENT_MANAGER 56
DeviceState() 56

Chapter I4-UI_GEOMETRY_MANAGER 56
Pixel and minice1l56

Zinc 4.1 Addenda and Errata ix

Table of Contents

x

Chapter 17-UI_HELP_SYSTEM 57
Incorrect class name 57

Chapter 20-UI~UST 57
Undocumented behavior ofAdd() 57

Chapter 22-UI_MACINTOSH_DISPLAY 57
maxColors 57
MapRGBColor() 57
pattemTable and rgbColorMap 57
PIN_RGB_COLOR 57
FontRec **tRec 58
PIN_INTERLEAVB_FILL 58

Chapter 32-UI_PRINTER: 58
Dot-matrix printer sUpPOrt 58
Using VI_PRINTER 58
New BeginPage() function 60
New TextFonnat() function ro

CHAPTER 38-UI_RELATNE_CONSTRAINT 60
Centering flags 60

CHAPTER 42-UI_WINDOW_MANAGER 60
exitFunction 60

Chapter 43-UI_WINDOW_OBJECT 61
New member function and flag 61

Chapter 53-ZIL_DECORATION_MANAGER 61
New defaultOSName 61

Chapter 57-ZIL_I18N_MANAGER 61
New defaultOSName 61

Chapter 61-ZIL_LANGUAGE_MANAGER 61
New defaultOSName 61

Chapter 64-ZIL_LOCALE_MANAGER 62
New defaultOSName 62

Zinc 4.1 Addenda and Errata

Programmer's Reference Volume Two-Window
Objects 62

Introduction 62

Chapter l-UIW_BIGNUM 62
Infonnation requests 62
NMF_SCIENTIFIC not supported 62

Chapter 3-UIW_BU1TON 62
Toggling behavior 62
Toggling appearance 63
TOP is bottom edge 63

Chapter 5-UIW_DATE 63
Infonnation requests 63

Chapter 14-UIW_POP_UP_ITEM 63
MNIF_ABOUT for Macintosh only 63

Chapter 19-UIW_REAL 63
NMF_DIGITS should be NMF_DECIMAL 63

Chapter 20-UIW_SCROLL_BAR 64
Default width and height 64

Chapter 22-UIW_STATUS_BAR 64
Adding objects to status bar 64

Chapter 24-UIW_SYSTEM_BU1TON 64
Using Apple menu "About" item 64

Chapter 25-UIW_TABLE 64
Building library with persistence 64

Chapter 29-UIW_TIME 64
Infonnation requests 64

Chapter 33-UIW_WINDOW 65
New constructor 65
Setting WOAF_MDI_OBJECT 65
Using default storage with the storage constructor 65

Zinc 4.1 Addenda and Errata xi

Table of Contents

xii

Chapter 35-ZAF_MESSAGE_WINDOW 66
New member variables 66

Getting Started 67

Chapter 4-Writing Multiplatform Programs 67
Different contents than listed 67
New libraries 67

Chapter 7-Zinc and C++ 67
Misspelling 67

Chapter 18-Using Languages 68
Code to switch windows wrong 68
CreateWine) function 68

Chapter 19-Program Design 68
Accelerator keys work differently 68

Appendix A-Compiler Considerations 68
New Mac_ZILll 68

Appendix B-Example Programs 68
Description ofVALIDT program 68

Appendix D-Keyboard and Mouse Mappings 69
Keyboard mappings for gray keys 69
Backspace and Delete 69
<Opt+Tab> 69

Zinc Designer 70 .

Chapter l-Introducing Zinc Designer 70
Reactivating object on Mac 70
Pull-down menu on Mac 70

Chapter ll-Edit Options 70
Grouping objects on Mac 70
Relative constraints in Zinc Designer 70

Zinc 4.1 Addenda and Errata

Chapter 15-Control Objects 71
Can't set Send flag for pull-down item 71

Chapter 17-0ther Objects 71
Columns and RecordSize 71
Initializing table with DataSet() 71
Manipulating table visually 72
Window Object option in Zinc Designer 72

Chapter 19-Image Editor 73
Grouping objects 73

Appendix A-Compiling the Designer 73
Libraries 73
Defaults Editor 73
Integrated Zinc Designer modules 73
Drag and drop 73

Mac and NEXTSTEP File and Edit menus 76

Microsoft and Watcom graphics 71

New virtualized Add.) and Subtrac() functions 77

Recommended stack size 78

Macintosh heap size 78

6 Zinc Technical Notes 79

IDEs 80
Setting up the Microsoft IDE to work with Zinc
Watcom 10.0 IDE for Windows

ZD-TNI00683
ZD-TN5006 85

Fonts 87
Changing object fonts ZD-TNI001 88
Adding a new font to the fontTable under OS/2 ZD-TNI00289
Adding a new font to the fontTable in GFX graphics ZD-TNI00390
Adding a new font to the fontTable in Motif ZD-TN2001 92

Zinc 4.1 Addenda and Errata xiii

Table of Contents

Adding a fixed-width font to the fontTable
under Windows

Event flow, messaging, and flags 95
Event flow
Local control loops
Interpretation of events in Zinc
Trapping the S_CLOSE event
Working with Flags

Drawing, video, and graphics 109
The DrawItem() function
Multithreaded applications on OS/2
Changing video modes at run time
Palette mapping in Zinc
Loading large bitmaps with OS/2-specific functions
Setting the mouse cursor to a wait state

Zinc Designer 124
Integrating Directory Services from Zinc Designer
The Service Manager
Exporting a window to text
Using multiple .DAT files in one application
Security on a .DAT file
Loading a derived object from a .DAT file
Using a table created in Zinc Designer
Checking for errors when reading .DAT files
Deriving an object in Zinc Designer
Designer fails to launch
Designer import and export file types
Displaying information in a table created

in the Designer
Using the ZAF_STRING_EDITOR class

of the Designer

ZD-TN500294

ZD-TNI005 96
ZD-TNI008 98
ZD-TN4572 100
ZD-TNI0I0 103
ZD-TN7oo0 105

ZD-TNI007110
ZD-TNI017111
ZD-TN2oo5 113
ZD-TN4573 117
ZD-TNI0ll 120
ZD-TN4020 122

ZD-TNloo9125
ZD-TNI015128
ZD-TNI016129
ZD-TN2003 131
ZD-TN2014134
ZD-TN3010 136
ZD-TN3011 137
ZD-TN2oo7 140
ZD-TN2oo9 141
ZD-TN2011 143
ZD-TN2012144

ZD-TN3011 145

ZD-TN4025148

xiv

UI objects and programming techniques 151
Removing geometry constraints ZD-TNI014152
Using a button to close a window ZD-TN2000 154
Changing object flag or status at run time ZD-TN2oo2 155
Check boxes or toggle buttons on a window ZD-TN2oo4156

Zinc 4.1 Addenda and Errata

Nonselectable gray and nonselectable black
Scrolling more than 32,767 records in a

UIW_TABLE
Columns in lists
Retrieving the nth item from a list
Adding an object at run time
Moving an object at run time
Removing the title from a window with the

Designer
Selecting a check box or radio button

programmatically
Lifetime of an object
Forcing an invalid field to remain current
Menus on the Macintosh
Adding pop-up menus to the screen
Upgrading applications to run on Zinc 4.1
Deriving a thermometer-type object
Using the dot matrix printer
Differences in platforms-Windows
Differences in platforms-OS/2
Platform differences-Motif, Macintosh,

NEXTSTEP, Curses
MDI application guidelines
DGROUP exceeding 64K
Creating vertical lists with buttons, fonts,

and centered text
Inserting a new object into a vt. or hz. list

at run time
Drag and drop in 4.0
Enabling table navigation using keyboard

and mouse
Working with UIW_TABLE_RECORD
Displaying MDI children after adding

to MDI parent
Graying out a bitmap on a button when

it is nonselectable
Displaying geometric objects on a window
Deriving a window
Interfacing the UIW_TABLE object to a database
Viewing system resources at run time
User functions that are members of a class

Zinc 4.1 Addenda and Errata

ZD-TN2013 157

ZD-TN2016158
ZD-TN3000 160
ZD-TN3001 161
ZD-TN3002 162
ZD-TN3003 163

ZD-TN3004 164

ZD-TN3005 165
ZD-TN3006 166
ZD-TN3007 168
ZD-TN3015 170
ZD-TN3016173
ZD-TN3018175
ZD-TN4005186
ZD-TN4026187
ZD-TN4031 189
ZD-TN4033 190

ZD-TN4034 192
ZD-TN4035 193
ZD-TN4036 194

ZD-TN5000 195

ZD-TN5001 197
ZD-TN5003198

ZD-TN5004 203
ZD-TN2008 205

ZD-TN2010 208

ZD-TN4016209
ZD-TN4017210
ZD-TNI013212
ZD-TN2006 213
ZD-TN4018215
ZD-TN4019216

xv

Table of Contents

xvi

Displaying timed window on application startup
Using UIW_TABLE with a database

Zinc and third-party libraries 222
MetaWINDOW display class
General Protection Faults
Eliminating optional library components
Using PharLap 286 with Zinc

Unicode and i18n 229
Decreasing the shipping size of Unicode.dat

Help and error system 236
Integrating native Windows help with Zinc

7 Index ccxli

Zinc 4.1 Addenda and Errata

ZD-TN4021218
ZD-TN4026219

ZD-TN2015 223
ZD-TN3008 225
ZD-TN3009 227
ZD-TN4004 228

ZD-TN4003 230

ZD-TN3013237

UIW IMAGE
4•

UIW_IMAGE allows you to load a bitmapped image in native format from
an image me, such as .tif or .pcx, or a resource file into your Zinc applica
tion. You can display these images in a window normally, tiled, or
stretched~itherin their own region of the window, or as nonfield regions
occupying all available space within a window.

In environments that use resource files, such as DOS, Windows, OS/2, and
Macintosh, load the image from the application's resource me, a native
image me, or from the application's .DAT me. In environments that do not
use resource files, such as OSF/Motif and NEXTSTE~ load an image from
a native image fIle. Currently, UIW_IMAGE only loads native images; you
cannot use a UIW_IMAGE object to load an image other than the image

types specified in Table 1, "Supported bitmap image formats of UIW_

IMAGE," on page 26, for specific operating environments. (In other words,
don't ask an image object running under Windows to load an OSF/Motif
bitmap.)

A UIW_IMAGE object cannot store its image data; it can only store its own
data, such as flags, dimension, and other attributes. To store images, use
another method, such as a native image manipulation program.

Because UIW_IMAGE derives from UI_WINDOW_OBJECT, an image
object inherits the window object class's persistence mechanisms. This
means that you can use the normal mechanisms for loading and storing
image object descriptions in .DAT fIles.

NOTE:

The 4.1 release of Zinc Application Framework contains a new reference
format. If you have any comments, please send email to documenta
tion@zinc.com, or contact Zinc Software by phone, fax, or ground mail.

Zinc 4.1 Addenda and Errata 17

Class overview

Inheritance

Located in

Implemented in

Portability

Public

UCWIN.HPP

Z_IMAGE.CPP

All except Curses, DOS text

Types and constants
const IMF_FLAGS IMP_NO_FLAGS
const IMF_FLAGS IMF_TILED
const IMF_FLAGS IMF_SCALED
const IMF_FLAGS IMF_BACKGROUND
const IMF_FLAGS IMF_STATIC_HANDLE
const IMF_FLAGS IMP_AUTO_SIZE

Member functions

UIW_IMAGE(intl~ int top, int width, int height,
ZIL_ICHAR *pathName,
IMF_FLAGS imFlags = IMF_NOYLAGS,
WOF_FLAGS woFlags =WOF_NO_FLAGS);

virtual-UIW_IMAGE(void);

virtual EVENT_TYPE Drawltem(const VI_EVENT &event,
EVENT_TYPE ccode);

=OxOOOO;
= OxOOOl;
= OxOOO2;
=OxOOO4;
= OxOOO8;
= OxOOIO;

18

int IsBackground(void) {return «imFlags & IMF_BACKGROUND)

Zinc 4.1 Addenda and Errata

Class overview

? TRUE: FALSE); }

int IsScaled(void) {return «imFIa~ & IMF_SCALED)
? TRUE: FALSE); }

int IsTIled(void) { return «imFtags & IMF_TILED) ? TRUE : FALSE); }

int HasStaticHandle(void) { return «imFlags & IMF_STATIC_HANDLE)
? TRUE: FALSE); }

int IsAutoSize(void) { return «imFlags & IMF_AUTO_SIZE)
? TRUE: FALSE);)

#ifdefined(ZIL_LOAD)

virtual ZIL_NEW_FUNCTION NewFunction(void) {return
(UIW_IMAGE::New); }

static UCWINDOW_OBJECT *New(comt ZIL_ICHAR *name,
ZIL_STORAGE_READ_ONLY *me =

ZIL_NULLP(ZIL_STORAGE_READ_ONLY),
ZIL_STORAGE_OBJECT_READ_ONLY *object =

ZIL_NULLP(ZIL_STORAGE_OBJECT_READ_ONLY),
UCITEM *_object'Thble = ZIL_NULLP(UCITEM),
UCITEM *_user'Thble = ZIL_NULLP(UCITEM»
{

return (new UIW_BUTTON(name, me, object,
_object'Thble, _user'Thble»;

UIW_IMAGE(const ZIL_ICHAR *name,
ZIL_STORAGE_READ_ONLY *me,
ZIL_STORAGE_OBJECT_READ_ONLY *object,
UCITEM *objectThble =ZIL_NULLP(UCITEM),
UCITEM *user'Thble =ZIL_NULLP(UCITEM»;

virtual void Load(const ZILJCHAR *name,
ZIL_STORAGE_READ_ONLY *IDe,
ZIL_STORAGE_OBJECT_READ_ONLY *object,
UIJTEM *object'Thble, UI_ITEM *user'Thble);

#endif

Zinc 4.1 Addenda and Errata 19

20

virtuaI void Store(const ZIL_ICHAR *name, ZIL_STORAGE *me,
ZIL_STORAGE_OBJECT *object,
ill_ITEM *objectThble, ill_ITEM *userThble);

#endif

Member variables
static ZIL_ICHAR _cl~Name[];

IMF_FLAGS imFlags;

Protected

Member functions

int LoadImageFromApp6cation(void);

int LoadImageFromFlle(void);

Member variables

int imageWidth, imageHeight;

Zinc 4.1 Addenda and Errata

Class description

Class description

Public

Types and constants

IMF_NO_FLAGS

Causes a new or existing UIW_IMAGE object to exhibit default behavior, which is
neither tiled nor scaled.

IMF_TILED

Instantiates a UIW_IMAGE object that, starting from the upper left-hand comer of
the region, displays copies of itself to cover all of the region's available space. If the
width and height of the object are such that multiple copies of the images cannot fit
perfectly in the region, the tiled images will appear to display themselves beyond the
right and bottom edges of the region area, leaving only portions of the image visible
at the region's boundary.

IMF_SCALED

Instantiates a UIW_IMAGE object that occupies all available space in its region,
whether or not the width and height of the region are bigger or smaller than the
width and height of the image.

If the region width is smaller than the image width, the image will appear condensed
horizontally; and if the region width is larger than the image width, the image will
appear stretched out of proportion horizontally.

If the region height is smaller than the image height, the image will appear con
densed vertically; and if the region height is larger than the image height, the image
will appear stretched out ofproportion vertically.

IMF_BACKGROUND

The UIW_IMAGE equivalent of a nonfield region. Instantiates a UIW_IMAGE
object that occupies the size of its parent window as either tiled or scaled, depending
on the flags passed in at construction time. Additionally, you can combine the IMF_
BACKGROUND flag with the IMF_TILED or IMF_SCALED flags for a tiled or
scaled background image. Cannot be used with IMF_AUTO_SIZE.

IMF_STATIC_HANDLE

Maintains the file handle to a UIW_IMAGE object, even if the object is destroyed.
Useful for sharing a single image between multiple programs. If you construct an
image object and load in an image file that already exists in memory and is used by

Zinc 4.1 Addenda and Errata 21

22

one or more other applications, the UIW_IMAGE object will set this file automati
cally.

IMF_AUTO_SIZE

Causes the parent window of a UIW_IMAGE object to size itself automatically to
the size of the image object's region. Cannot be used with IMP_BACKGROUND.

Member functions

UIW_IMAGE(int left, int top, int width, int height,
ZIL_ICHAR *pathName,
IMF_FLAGS imFlags =IMF_NO_FLAGS,
WOF_FLAGS woFlags =WOF_NO_FLAGS);

Constructs a UIW_IMAGE object. Finds image data in the file called pathName.
Default construction is to construct it in a window with the same proportions as the
image. Pass in

eIMF_TILED

eIMF_SCALED,

eIMF_BACKGROUND, in conjunction with IMF_TILED or IMF_
SCALED, to create a tiled or scaled image in a window, or

eIMF_AUTO_SIZE.

To use the member functions LoadImageFromApplication() and LoadImage
FromFile(), specify a pathname for the image on disk. Use this constructor except
when creating your own persistent UIW_IMAGE object.

virtual-UIW_IMAGE(void);

Destroys a UIW_IMAGE object and frees any memory used.

virtual EVENT_TYPE DrawItem(const UCEVENT &event,
EVENT_TYPE ccode);

When this function is called, the UIW_IMAGE object virtualizes its screen region,
displays itself, then devirtualizes its region. If the image has a border, it will draw
itself with a border one pixel wide. Default construction is no border.

virtual EVENT_TYPE Event(const VI_EVENT &event);

Event() function of the UIW_IMAGE object. By default, the UIW_IMAGE object
does not respond to any events.

Zinc 4.1 Addenda and Errata

Class description

int IsBackground(void) {return «imFlags & IMF_BACKGROUND)
? TRUE: FALSE); }

Returns TRUE if the UIW_IMAGE was constructed as a background image.
Retwns FALSE otherwise.

int IsScaIed(void) {return«~& IMF_SCALED)
? TRUE: FALSE); }

Returns TRUE if the UIW_IMAGE was constructed as a scaled image. Returns
FALSE otherwise.

intIsliled(void) {return «imFlags & IMF_TILED)? TRUE: FALSE);}

Returns TRUE if the UIW_IMAGE was constructed as a tiled image. Returns
FALSE otherwise.

int HasStaticHandJe(void) {return «imFlags & IMF_STATIC_HANDLE)
? TRUE: FALSE); }

Returns TRUE if the UIW_IMAGE object was constructed with a static handle.
Returns FALSE otherwise.

int AutoSizes(){return «imFIags & IMF_AUTO_SIZE) ? TRUE: FALSE);)

Returns TRUE if the UIW_IMAGE was constructed to autosize. Returns FALSE
otherwise.

#ifdefined(ZIL_LOAD)
virtual ZIL_NEW_FUNCTION NewFunction(void)
{

return (UIW_IMAGE::New); }

Returns a new UIW_IMAGE object (ZIL_LOAD only).

static UCWINDOW_OBJECT *New(const ZIL_ICHAR *name,
ZIL_STORAGE_READ_ONLY *file =

ZIL_NULLP(ZIL_STORAGE_READ_ONLY),
ZIL_STORAGE_OBJECT_READ_ONLY *object =

ZIL_NULLP(ZIL_STORAGE_OBJECT_READ_ONLY),
UClTEM *_object'Thble =ZIL_NULLP(UClTEM),
UClTEM *_user'Thble =ZIL_NULLP(UCITEM»
{

return (new UIW_BUTTON(name, file, object,
_object'Thble, _user'Thble»;

Retwns a new read-only, persistent UIW_IMAGE object using the following
parameters (ZIL_LOAD only).

Zinc 4.1 Addenda and Errata 23

name
file
object
objectThble
userThble

name of the window object stored in the .DAT file
pointer to Zn..._STORAGE_READ_ONLY
pointer to Zn..._STORAGE_OBJECf_READ_ONLY
table of pointers to New() functions of persistent objects
table of pointers to user functions of persistent objects

UIW_IMAGE(const ZIL_ICHAR *name,
ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object,
UCITEM *objectThble =ZIL_NULLP(ill_ITEM),
ill_ITEM *userThble =ZIL_NULLP(ill_ITEM);

Returns a new read-only, persistent UIW_IMAGE object using the following
parameters (zn..._LOAD only).

name name of the window object stored in the .DAT file
file pointer to Zn..._STORAGE_READ_ONLY
object pointer to Zn..._STORAGE_OBJECf_READ_ONLY
objectThble table of pointers to New() functions of persistent objects
userThble table of pointers to user functions of persistent objects

virtual void Load(const ZIL_ICHAR *name,
ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object,
ill_ITEM *objectThble, ill_ITEM *userThble);

Loads a read-only UIW_IMAGE from storage using the following parameters
(Zn..._LOAD only).

name
file
object
objectThble
user'Thble

name of the window object stored in the .DAT file
pointer to Zn..._STORAGE_READ_ONLY
pointer to Zn..._STORAGE_OBJECf_READ_ONLY
table of pointers to New() functions of persistent objects
table of pointers to user functions of persistent objects

24

virtual void Store(const ZIL_ICHAR *name, ZIL_STORAGE *file,
ZIL_STORAGE_OBJECT *object, UCITEM *objectThble,
ill_ITEM *userThble);

Stores a UIW_llv1AGE using the following parameters (zn..._STORE only).

Zinc 4.1 Addenda and Errata

name
tile
object
object'Thble
userTable

Member variables

Class description

name of the window object stored in the .DAT file
pointer to ZIL_STORAGE_READ_ONLY
pointer to ZIL_STORAGE_OBJECf_READ_ONLY
table of pointers to New() functions of persistent objects
table of pointers to user functions of persistent objects

static ZIL_ICHAR _classNameD;

The class name of the current object.

IMF_FLAGS imFlags;

The attributes of the current object.

Protected

Member functions

int DestroylmageHandle(void);

Destroys an image and deallocates any memory it may have used.

int LoadImageFromApplication(void);

Loads the image in native format from a resource fIle in an application.

int LoadImageFromFile(void);

Loads the image in native format from a file stored on disk.

Member variables

ZIL_ICHAR *pathName;

Path name of the read-only image on disk.

ZIL_BITMAP_HANDLE image;

A handle to the image. Set by the operating environment

int imageWidth, imageHeight;

Width and height of the current image in pixels.

Zinc 4.1 Addenda and Errata 25

Supported image formats
Using UIW_IMAGE, you can display the following bitmap formats under
these operating environments:

TABLE 1. Supported bitmap image formats of UIW_IMAGE

Platform Image format

DOS graphics .PCX, .DCX

Windows .BMP or resource file

OS/2 .BMP or resource file

Macintosh PICT

Motif XBMor.XPM

NEXTSTEP .TIFF

26 Zinc 4.1 Addenda and Errata

Class overview

ZIL FILE

In release 4.1, Zinc moved the functionality of the Designer class 10_FILE
to the new library class ZIL_FILE, a general-purpose class for reading and
writing files, including but not limited to .DAT files. ZIL_FILE writes and
reads files to and from disk under all operating environments and
locales that Zinc supports.

A ZIL_FILE object can write data in either text or binary format. Fur
ther, a ZIL_FILE object supports read-only or read-write attributes. It
also reports any errors that occur when it saves or reads a file.

NOTE:

The 4.1 release of Zinc Application Framework contains a new reference
format. If you have any comments, please send email to documenta
tion@zinc.com, or contact Zinc Software by phone, fax, or ground mail.

Class overview

Inheritance

ZIL_INTERNATIONAL

Located in

Implemented in

Portability

UCGEN.HPP

Z_FILE.CPP

All

Zinc 4.1 Addenda and Errata 27

28

Public members

Types, constants, and enums
typedef VIP_FLAGS VIS_FLAGS;
const VIS_FLAGS VIS_READ
Const VIS_FLAGS VIS_READWRITE
const VIS_FLAGS VIS_CREATE
const VIS_FLAGS VIS_OPENCREATE
const VIS_FLAGS VIS_TEMPORARY
const VIS_FLAGS VIS_COPY
const VIS_FLAGS VIS_BINARY
const VIS_FLAGS VIS_TEXT

ERROR_NONE = 0,
ERROR_NAME = 1,
ERROR_NULL_STRING= 2,
ERROR_ACCESS = 3

};

enumSEEK
{

SEEK_FROM_START= 0,
SEEK_FROM_CURRENT= 1,
SEEK_FROM_END =2

};

Member functions

ZIL_FILE(const ZIL_ICHAR *pathName,
VIS_FLAGS access = illS_READ IVIS_BINARY);

virtual-ZIL_FILE(void);

long LeDgth(void) coDst;

long ThJI.(void) const;

Zinc 4.1 Addenda and Errata

= OxOOOl;
=OxOOO2;
=OxOOO4;
= OxOOO8;
=OxOOlO;
=OxOO20;
=OxOlOO;
= Ox0200;

ZIL_FILE::Z_ERROR SetElTOr(ZIL_FILE::Zj:RROR elTOr);

virtuaI ZIL_FILE::Z_ERROR Open(void);

virtuaI ZIL_FILE::Z_ERROR Close(void);

Z_ERROR UnIink(void);

Z_ERROR Rename(comt ZIL_ICHAR *pathName);

Z_ERROR Seek(long offset, SEEK location) const;

virtual iot Read(ZIL_lNT8 *value) const;

virtual int Read(ZIL_UlNT8 *value) const;

virtuaI int Read(ZIL_INT16 *value) const;

virtual iot Read(ZIL_UINT16 *value) const;

virtual int Read(ZIL_INT32 *value) const;

virtual iot Read(ZIL_UINT32 *value) const;

virtual int Read(ZIL_ICHAR *text, int length) const;

virtual int Read(ZIL_ICHAR **text) coost;

virtual iot Read(void *butTer, iot size, int length) coost;

#if detined(ZIL_UNICODE)

virtual int Read(char *text, int length) const;

virtual iot Read(char **text) coost;

#endif

virtual int Write(ZIL_INT8 value) const;

virtual int Write(ZIL_UlNT8 value) coost;

Zinc 4.1 Addenda and Errata

Class overview

29

30

virtual int Write(ZIL_INT16 value) const;

virtual int Write(ZIL_UINT16 value) const;

virtual int Write(ZIL_1Nf32 value) const;

virtual int Write(ZIL_UINT32 value) COnst;

virtual int Write(ZIL_ICHAR *text) const;

virtual int Write(void *buft'er, int size, int length) const;

virtual int Write(char *text) const;

#endif

Protected

Member variables
ZIL_FlLE::Z_ERROR error;
ZIL_ICHAR *pathName;
int access;
inthandle;
unsigned mode;

Zinc 4.1 Addenda and Errata

Class description

Class description

Public members

Types, constants, and enums

UIS_READ

Sets file access read-only.

Sets file access read-write.

VIS_CREATE

When passed into the ZIL_FILE constructor, allocates a new file object.

Ifyou use this flag to create a file object with a path name that doesn't already exist
on disk, ZIL_FILE creates the file you specified. If you create a file object with a
path name already on disk, ZIL_FILE overwrites the file.

If it could not open or create the file you specified, ZIL_FILE sets its handle to -1
and returns ERROR_ACCESS as the error message.

UIS_OPENCREATE

When passed into the ZIL_FILE constructor, allocates a new file object and opens
the file.

If you create a file object with a path name that doesn't already exist on disk, and if
you pass in the VIS_CREATE flags, ZILYILE creates the file object you specified.

IfZIL_FILE could not open or create the file object you specified, it sets its handle
to -1 and returns ERROR_ACCESS as the error message.

UIS_TEl\1PORARY

Allocates a temporary file that is deleted when the file object is destroyed.

Copies a file to another file.

UIS_BINARY

Sets read/write mode to binary.

UIS_TEXT

Sets read/write mode to binary.

Zinc 4.1 Addenda and Errata 31

32

ERROR_NONE

Indicates no error has occurred.

ERROR_NAME

Indicates you tried to read a file whose name wasn't found.

ERROR_NULL_STRING

Indicates you tried to open a file with a null filename.

ERROR_ACCESS

Indicates you tried to write to or read a file without proper permission.

SEEK_FROM_START

Seeks from the beginning of the file.

SEEK_FROM_CURRENT

Seeks from current location of the file pointer.

SEEK_FROM_END

Seeks from the end of the file.

Zinc 4.1 Addenda and Errata

Class description

Member functions

ZIL_FILE(coost ZIL_ICHAR *pathName,
illS_FLAGS access =illS_READ I illS_BINARY);

Creates a new fIle object specified by pathName with read and write attributes spec
ified by access. By default, attempts to open a read-only binary fIle.

virtual-ZILYILE(void);

Destroys the fIle object and deallocates any memory it used. Does not, however,
delete the fIle object unless you created the object as temporary.

long Length(void) coost;

Returns the length of a file.

long TeU(void) const;

Returns the current position of the fIle pointer in a file object.

virtual ZIL_FILE::Z_ERROR Open(void);

Opens the file associated with the ZIL_FILE object.

ZIL_FILE *myFile;

myFile->Open();

virtual ZIL_FILE::Z_ERROR Close(void);

Closes the fIle associated with the ZIL_FILE object..

ZIL_FILE *myFile;

myFile->Close();

Z_ERROR Unlink(void);

Deletes the file associated with the ZIL_FILE object..

ZIL_FILE *myFile;

myFile->Unlink();

Zinc 4.1 Addenda and Errata 33

34

Z_ERROR Reoame(const ZIL_ICHAR *pathName);

Renames a me to a new me specified by pathName.

ZIL_FILE *myFile;

myFile->Rename (ZIL_ICHAR newPathname= "newfile") ;

Z_ERROR Seek(long offset, SEEK location) const;

Sets the position of the file pointer in a me object to a location that is offset bytes
from a starting location in the me. Location can be either

-SEEK_PROM_CURRENT (the current location)

-SEEK_PROM_START (the beginning of the file)

-SEEK_PROM_END (the end of the file)

ZIL_FILE *myFile;

myFile->Seek(128232, SEEK_FROM_CURRENT);

virtual iot Read(ZIL_INTS *value) const;

Reads the data at the current me pointer into a ZIL_INT8 variable.

ZIL_FILE *myFile;

int position;

position = myFile->Seek(128232, SEEK_FROM_CURRENT);

virtual iot Read(ZIL_UINT8 *value) const;

Reads the data at the current me pointer into a ZIL_UINT8 variable.

virtual iot Read(ZIL_INT16 *value) const;

Reads the data at the current file pointer into a ZIL_INTI6 variable.

virtual iot Read(ZIL_UINT16 *value) const;

Reads the data at the current me pointer into a ZIL_UINT16 variable.

virtual iot Read(ZIL_INT32 *value) const;

Reads the data at the current file pointer into a ZIL_INT32 variable.

virtual iot Read(ZIL_UINT32 *value) const;

Reads the data at the current me pointer into a ZIL_UINT32 variable.

Zinc 4.1 Addenda and Errata

Class description

virtual iot Read(ZIL_ICHAR *text, int length) const;

Reads the data at the current file pointer into a string of a maximum length.

virtual iot Read(ZIL_ICHAR **text) const;

Reads the data at the current file pointer into a n array of strings.

virtual iot Read(void *bufJer, iot size, int length) const;

Reads the data at the current file pointer into a buffer of any type, up to a maximum
length. Size is the size in bytes of the type specifier of the buffer. Default Read()
function.

virtual iot Read(char *text, iot length) const;

Reads the data at the current file pointer into a string of a specific length (Unicode
only).

virtual iot Read(char **text) const;

Reads all strings in the file inside a file (Unicode only).

virtual iot Write(ZIL_INT8 value) const;

Writes a ZIL_INT8 value in a file.

ZIL_FILE *rnyFile;

ZIL_INT8 number=127;

rnyFile->write(number);

virtual iot Write(ZIL_UINT8 value) const;

Writes a ZIL_UINT8 value into a file.

virtual iot Write(ZIL_INT16 value) const;

Writes a ZIL_INT16 value into a file.

virtual iot Write(ZIL_UINT16 value) roost;

Writes a ZIL_UINT16 value into a file.

virtual iot Write(ZIL_INT32 value) const;

Writes a ZIL_INT32 value into a file.

Zinc 4.1 Addenda and Errata 35

36

virtual int Write(ZIL_UINT32 value) coost;

Writes a ZIL_UINT32 value into a fIle.

virtual int Write(ZIL_ICHAR *text) const;

Writes a single- or double-byte string into a file.

virtual int Write(void *btrlfer, int size, int length) coost;

Default Write() function. Writes the contents of an untyped buffer of a specific word
size, up to a maximum length, into a ZIL_FILE object.

virtual int Write(cbar *text) coost;

Writes a string of single-bytes into a fIle (Unicode only).

Protected

Member variables

ZIL_FILE::Z_ERROR error;

Error condition reported when reading or storing a fIle.

ZIL_ICHAR *pathName;

Pathname of the fIle.

intaccess;

The access attributes of the fIle-whether it is read-only or read-write.

inthandle;

Handle to the file in a ZIL_FILE object. Assigned by the operating environment.

unsigned mode;

In operating environments with the POSIX API, mode represents the mode of the
file. Default POSIX mode is 0664 (-rw-rw-r--). Non-POSIX operating environments
set the mode to the access attributes of the fIle when it was created.

Zinc 4.1 Addenda and Errata

Addenda

ThiS document contains additions and changes to the documentation
shipped with Zinc 4.0 and 4.1.

Changes to General notebook page of Combo box
Since the documentation was printed, Zinc added some new features to the
General page of the combo box notebook.

Zinc added a new field called List ID. This field provides access, not just to
the presentation space of the list object, but to the pop-up list as well. List
ID provides the ID number of the list. You can specify a new value, or you
can view it to detennine what list ID the Designer assigned to the list.

Changes to General notebook page of Pop-up item
Since the documentation was printed, Zinc added two new fields to the
General page of the pop-up menu notebook.

eMenuname

Contains the name of the list of pop-up menu items associated with a
parent items. Assigned automatically by Zinc Designer when a pop-up
menu item has a list of child items attached. You can specify a new
name for the menu list, or use the one assigned by Zinc Designer. (You
will probably be able to identify it easier in the object directory or in
the .HPP file if you specify a new name for it.)

eMenuID

Represents the numberID of the pop-up item. Assigned automatically
by Zinc Designer. You can specify a new value, or you can view it to
detennine what menu ID the Designer assigned to the menu.

Zinc 4.1 Addenda and Errata 37

Addenda

Changes to the Geometry page of Zinc Designer
In release 4.1, Zinc updated the Geometry page of the information note
book. The new page style provides new ways to work with geometry man
agement for all objects in the Designer.

In Zinc, an object can have three types of constraints:

-none

- absolute, and

-relative.

Further, the constraints work for the following sides:

-top

-bottom

-left, and

-right

In release 4.0, Zinc Designer visually represented constraints for each side
of an object using four combo boxes connected to the top, bottom, left, and
right of the object. In turn, each combo box contained a type of constraint,
which was either no constraint or a relative or absolute constraint. To spec
ifyan object's constraint, you selected a constraint type from each combo
box connected to the object's bitmap.

In release 4.1, Zinc simplified choosing constraints for each side of an
object by replacing the visual representation of an object's constraints. To
specify an object's constraint,

- select the side of the object from the list of sides in the combo box.

- Then select a type of constraint for that side by clicking the appropri-
ate button.

Zinc replaced the visual representation of an object's constraints with a
group called CONSTRAINT, which contains a combo box with the sides of
an object, the three constraint types, and another combo box that lists poten
tial anchors for sides of your object.

Combo box
The topmost combo box contains the four sides of the object in its list:

38 Zinc 4.1 Addenda and Errata

Changes to the Geometry page of Zinc Designer

-LEFf

-TOP

-BOTTOM

-RIGHT

Each one of these sides can have its own type of constraint, and, depending
on the constraint, its own anchor.

Constraints
In addition to a combo box, the CONSTRAINT group also has three but
tons that represent the type of constraints you can assign to a particular side
of the object. These constraints are:

- no constraint

-absolute

When using an absolute constraint, you can anchor the object to its parent
or to one of its siblings with no restrictions.

When specifying an offset for an object that uses an absolute con
straint, specify the offset in units of the current measurement system.
You can determine the measurement system by turning to the Position
page.

-relative

When using a relative constraint, you cannot specify an anchor for that
side. When Zinc Designer detects a relative constraint, Zinc Designer
automatically anchors it to the object's parent.

When determining an offset for an object that uses a relative con
straint, specify the offset as proportion or percentage of distance from
its parent.

Anchor
In addition to a combo box with the object's sides, and as well as three con
straint buttons, the CONSTRAINT group also contains a combo box with a
list of sibling and parent objects to which you can anchor the object. As
mentioned above, when using a relative constraint, you cannot specify an
anchor for that side. When Zinc Designer detects a relative constraint,
Zinc Designer automatically anchors it to the object's parent.

Zinc 4.1 Addenda and Errata 39

Addenda

New ability to access lists associated with objects
Zinc objects with attached lists, such as combo boxes or pop-up menu item
options, have two components:

- the presentation space

The visual representation of the object. Contains all object compo
nents, including the list

-the list.

Contains the items or options of the object. Contained in the presenta
tion space, but can be accessed separately from the presentation space
using the list or menu ID or name specified in the General page.

New help system
In addition to improved help screens, Zinc 4.1's new help display system
enables access to all help contents. To use it, press the Index button on a
help context screen. It will bring up a new window that contains a vertical
list with all help screens available in the application.

Zinc provides this new feature automatically. You don't have to do anything
special to your Zinc 4.1 applications to enable this feature.

40 Zinc 4.1 Addenda and Errata

New inline functions for checking flags

New inline functions for checking flags
Release 4.1 includes some new inline functions that will improve your abil
ity to check the state or attributes of an object. These functions are written in
plain English style to improve readability of your code.

With 4.0 and earlier releases, to check if an object's flag member was set
with a certain flag, you used the FlagSet() or FlagsSet() macro. With
release 4.1, you can use the same methods-or you can use the new inline
functions instead. However, using the new functions will help improve code
readability.

Using a new function to check the state or attributes of an object returns
TRUE if the object has that state or attribute, and returns FALSE otherwise.
Here are some examples of how you can use the new functions instead of
the older FlagSet() and FlagsSet() macros.

Using new functions instead of FlagSet()
Using FlagSet(), you might have written code that looked like this:

UIW_TIME *myTime;

if (FlagSet(myTime->tmFlag, TMF_SYSTEM))
II do something

In release 4.1, you can use the new functions to carry out the same check.

UIW_TIME *myTime;

if (myTime->DefaultsToSystem())
II do something

Using multiple functions instead of FlagsSet()
Using FlagsSet(), you might have written code that looked like this:

UIW_TIME *myTime;

if (FlagsSet(myTime->tmFlag, TMF_SYSTEM I TMF_ZERO_FILL))
I I do something

In release 4.1, you can use multiple functions to carry out the same check.

UIW_TIME *myTime;

if (myTime->DefaultsToSystem() && myTime->HasZeroFill())
II do something

Notice in the examples that

Zinc 4.1 Addenda and Errata 41

Addenda

-the code that uses the new flag-checking functions is more readable;
and

-it's easier to remember how to accomplish a check.

The following is a list of new functions and the flags they're designed to
affect.

TABLE 2. Flag-checking functions

Function name

Attachments

IsLeftAttachment()

IsTopAttachment()

IsRightAttachment()

IsBottomAttachment()

AppliesToOppositeSide()

StretchesObject()

Buttons

AllowsToggling()

SelectsOnDownClick()

SelectsOnDoubleClick()

AutoRepeatsSelection()

AutoSizes()

Is3D()

IsCheckBox()

IsRadioButton()

SendsMessageWhenSelected()

HasStaticArray()

IsDefaultButton()

Button status

IsDepressed()

IsCurrentDefault()

Dimension constraints

IsHeightConstraint()

IsWidthConstraint()

42

Affected flag
ATCF_FLAGS

ATCF_LEFf

ATCF_TOP

ATCF_RIGHT

ATCF_BOTTOM

ATCF_OPPOSITE

ATCF_STRETCH

BTF_FLAGS

BTF_NO_TOGGLE

BTF_DOWN_CLICK

BTF_DOUBLE_CLICK

BTF_REPEAT

BTF_AUTO_SIZE

BTF_NO_3D

BTF_CHECK_BOX

BTF_RADIO_BUTTON

BTF_SEND_MESSAGE

BTF_STATIC_BITMAPARRAY

BTF_DEFAULT_BUTTON

BTS_FLAGS

BTS_DEPRESSED

BTS_DEFAULT

DNCF_FLAGS

DNCF_HEIGHT

DNCF_WIDTH

Zinc 4.1 Addenda and Errata

New inline functions for checking flags

TABLE 2. Flag-checking functions

Function name

Dates

IsUS()

IsEuropean()

IsAsian()

IsMilitary()

HasDashSeparator()

HasSlashSeparator()

HasAlphaMonth()

UsesDayOfWeekFormat()

IsUppeICase()

UsesShortYear()

UsesShortMonth()

UsesShortDay()

HasZeroFill()

DefaultsToSystem()

/cons

SelectsOnDoubleClick()

IsMinimizeIcon()

HasStaticArray()

Images

HasStaticHandle()

IsAutoSize()

IsScaled()

IsTiled()

IsBackground()

Affected flag

DTF_FLAGS

DTF_US_FORMAT

DTF_EUROPEAN_FORMAT

DTF_ASIAN_FORMAT

DTF_MILITARY_FORMAT

DTF_DASH

DTF_SLASH

DTF_ALPHA_MONTH

DTF_DAY_OF_WEEK

DTF_UPPER_CASE

DTF_SHORT_YEAR

DTF_SHORT_MONTH

DTF_SHORT_DAY

DTF_ZERO_FILL

DTF_SYSTEM

ICF_FLAGS

ICF_DOUBLE_CLICK

ICF_MINIMIZE_OBJECT

ICF_STATIC_ICONARRAY

IMF_FLAGS

IMF_STATIC_HANDLE

IMF_AUTOSIZE

IMF_SCALED

IMF_TILED

IMF_BACKGROUND

Zinc 4.1 Addenda and Errata 43

Addenda

TABLE 2. Flag-checking functions

Function name
Menu items

IsSeparator()

IsMaximizeOption()

IsMinimizeOption()

IsMoveOption()

IsSizeOption()

IsSwitchOption()

IsRestoreOption()

IsCloseOption()

AllowsCheckMark()

SendsMessageWhenSelected()

IsSelectable()

IsAboutOption()

Numbers

HasCurrencySymbol()

HasCreditSymbol()

IsCommaDelimited()

HasPercentageSymbol()

UsesScientificFormat ()

HasDecimalPoint()

Relative constraints

IsLeftConstraint()

IsTopConstraint()

IsRightConstraint()

IsBottomConstraint()

AppliesToOppositeSide()

StretehesObject()

CentersObjectHorizontally()

CentersObjectVertically()

44

Affected flag
MNIF_FLAGS

MNIF_SEPARATOR

MNIF_MAXIMIZE

MNIF_MINIMIZE

MNIF_MOVE

MNIF_SIZE

MNIF_SWITCH

MNIF_RESTORE

MNIF_CLOSE

MNIF_CHECK_MARK

MNIF_SEND_MESSAGE

MNIF_NON_SELECTABLE

MNIF_ABOUT

NMF_FLAGS

NMF_CURRENCY

NMF_CREDIT

NMF_COMMAS

NMF_PERCENT

NMF_SCIENTIFIC

NMF_DECIMAL

RLCF_FLAGS

RLCF_LEFr

RLCF_TOP

RLCF_RIGHT

RLCF_BOTTOM

RLCF_OPPOSITE

RLCF_STRETCH

RLCF_HORIZONTAL_CENTER

RLCF_VERTICAL_CENTER

Zinc 4.1 Addenda and Errata

New inline functions for checking flags

TABLE 2. Flag-checking functions

Function name

Strings

HasVariableName()

IsLowerCase()

IsUpperCase()

IsPasswordStyle()

IsSubstringOIText()

System buttons

IsGeneric()

Time

HasSeconds()

HasHundredths()

HasHours()

HasMinutes()

Is 12Hour()

Is24Hour()

HasZeroFill()

HasColonSeparator()

HasNullSeparator()

IsUpperCase()

IsLowerCase()

DefaultsToSystem()

Storage

IsReadOnly()

IsCreateMode()

IsReadWrite()

IsCopyMode()

IsOpenCreateMode()

IsTemporary()

IsText ()

IsBinary()

Affected flag
STF_FLAGS

STF_VARIABLE_NAME

STF_LOWER_CASE

STF_UPPER_CASE

STF_PASSWORD

STF_SUBSTRING

SYF_FLAGS

SYF_GENERIC

TMF_FLAGS

TMF_SECONDS

TMF_HUNDREDTHS

TMF_NO_HOURS

TMF_NO_MINUTES

TMF_TWELVE_HOUR

TMF_TWENTY_FOUR_HOUR

TMF_ZERO_FILL

TMF_COLON_SEPARATOR

TMF_NO_SEPARATOR

TMF_UPPER_CASE

TMF_LOWER_CASE

TMF_SYSTEM

VIS_FLAGS

VIS_READ

VIS_CREATE

VIS_READWRITE

VIS_COPY

VIS_OPENCREATE

VIS_TEMPORARY

VIS_TEXT

VIS_BINARY

Zinc 4.1 Addenda and Errata 45

Addenda

TABLE 2. Flag-checking functions

Function name
Lists

AllowsMultipleSelection()

AutoSortsData()

AllowsDragSelection()

SelectsOnDownClick()

HasWrappedData()

HasOwnerDrawChildren()

IsScrollable()

Window object actions

UsesOutsideRegion()

IsNoncurrent()

IsTemporary()

IsDestroyable()

UsesNormalHotKeys()

IsSizable()

IsMovable()

IsModal()

IsLocked()

IsCopyDraggable()

AcceptsDrop()

IsMoveDraggable()

IsMDI()

IsDialog()

Window objects

IsLeftJustified()

IsCenterJustified()

IsRightJustified()

IsBordered()

UsesUserData()

IsViewOnly()

IsSupport()

IsDefaultUnanswered()

IsDefaultInvalid()

46

Affected flag
WNF_FLAGS

WNF_SELECT_MULTIPLE

WNF_AUTO_SORT

WNF_CONTINUE_SELECT

WNF_AUTO_SELECT

WNF_NO_WRAP

WNF_OWNERDRAW_CHILDREN

WNF_NO_SCROLL

WOAF_FLAGS

WOAF_OUTSIDE_REGION

WOAF_NON_CURRENT

WOAF_TEMPORARY

WOAF_NOJ)ESTROY

WOAF_NORMAL_HOT_KEYS

WOAF_NO_SIZE

WOAF_NO~OVE

WOAF_MODAL

WOAF_LOCKED

WOAF_COpy_DRAG_OBJECT

WOAF_ACCEPfS_DROP

WOAF_MOVE_DRAG_OBJECT

WOAF_MDCOBJECT

WOAF_DIALOG_OBJECT

WOF_FLAGS

WOF_JUSTIFY_CENTER I WOF_JUSTIFY_RIGHT

WOF_JUSTIFY_CENTER

WOF_JUSTIFY_RIGHT

WOF_BORDER

WOF_NO_ALLOCATE_DATA

WOF_VIEW_ONLY

WOF_SUPPORT_OBJECT

WOF_UNANSWERED

WOF_INVALID

Zinc 4.1 Addenda and Errata

New mouse message

TABLE 2. Flag-checking functions

Function name

UsesAvailableRegion()

IsSelectable()

IsAutoclear()

UsesDefaultCellCoordinate()

UsesDefaultMinicellCoordinate()

UsesDefaultPixelCoordinate()

Window object status

HasConvertedCoordinates()

IsCurrent()

HasChanged()

IsSelected()

IsUnanswered()

IsInvalid()

IsMaximized()

IsMinimized()

IsUpToDate()

HasReadError()

IsOwnerDraw()

New mouse message

Affected flag
WOF_NON_FIELD_REGION

WOF_NON_SELECTABLE

WOF_AUTO_CLEAR

WOF_MINICELL I WOF_PIXEL

WOF_MINICELL

WOF_PIXEL

WOS_FLAGS

WOS_GRAPHICS

WOS_CURRENT

WOS_CHANGED

WOS_SELECTED

WOS_UNANSWERED

WOS_INVALID

WOS_MAXIMIZED

WOS_MINIMIZED

WOS_REDISPLAY

WOS_READ_ERROR

WOS_OWNERDRAW

In 4.1, Zinc added a new mouse message entitled DM_DRAG, which
has a value of -1214. This new message changes the mouse cursor to a
drag image. Though your applications that use drag and drop already
behave this way, you can now trap for this flag explicitly.

Zinc 4.1 Addenda and Errata 47

Addenda

New open and print document events
Many graphical user intetfaces enable the user to open and print documents
by double-clicking and dragging their icons. To enable you to write Zinc
applications that offer this ability, Zinc added two events:

• S_OPEN_DOCUMENT

Generated when the user double-clicks on one or multiple document
icons, or when the user drags and drops a document onto an applica
tion icon. The system launches the application or makes it current if
it's already running, then sends S_OPEN_DOCUMENT to the appli
cation. S_OPEN_DOCUMENT contains a pointer to a ZIL_ICHAR,
which indicates the pathname of the document to be opened.

The system also generates S_OPEN_DOCUMENT when the user

-double-clicks the application icon

-launches the application without specifying a document name to
open. For example, under Macintosh, the user may select the applica
tion icon from the Finder and chooses File I Open from the menu bar.

• S_PRINT_DOCUMENT

Generated when the user drags one or multiple document icons onto
the printer icon. The system launches the application or makes it cur
rent, then sends S_PRINT_DOCUMENT to the application. S_
PRINT_DOCUMENT contains a pointer to a ZIL_ICHAR, which
indicates the pathname of the document to be printed.

Implementing opening and printing functionality
Remember, Zinc provides the potential for your applications to open and
print documents-it does not provide the implementation. In order to enable
your applications to open and print files, you must implement those features
yourself. However, by implementing these features, your Zinc application
will act like any other native application.

Implementing these features will enable the user to open a document by
double-clicking on a document icon, even if the Zinc application associated
with the document is inactive or is not currently running. Further, it will
enable the user to print a document associated with a Zinc application by
dragging the document icon to a printer icon without first launching the
application.

48 Zinc 4.1 Addenda and Errata

New open and print document events

Since Zinc is a multiplatform-enabled development environment, imple
menting these features will allow opening and printing a document to work
in any graphical user interface that Zinc supports.

Restrictions on drag-and-drop under Macintosh
Under the Macintosh operating system, you can open a document by drag
ging and dropping it on the application icon only if the document's type is in
the application's database of valid documents.

Ifyou drag and drop a document on an application icon and the application
can open the document type, the application icon will become highlighted.
But if you try this with a document type not supported by the application,
the application icon will not change.

Environment-specific mapping
Zinc objects can map system events to Zinc events. However, at present, the
only environment in which Zinc maps system events to Zinc events is Mac
intosh, where Zinc maps Apple events into the corresponding S_OPEN_
DOCUMENT and S_PRINT_DOCUMENT events. Zinc will provide
additional mappings for other environments in future releases.

Using these events programmatically
This code snippet demonstrates a control structure for using S_OPEN_
DOCUMENT and S_PRINT_DOCUMENT in a derived Window Man
ager class.

Zinc 4.1 Addenda and Errata 49

Addenda

50

Program 1. Using the open and print document flags

EVENT_TYPE DERIVED_WINDOW_V~AGER::Event(const &event)
{

if (event. type == S_OPEN_DOCUMENT)
{

if (event. text)
{

II Open the document specified by event.text
*this + UIW_WINDOW::Generic(O, 2, 20, 6, event.text);
delete event. text;

}

else

II Open a new document
*this + UIW_WINDOW::Generic(O, 2, 20, 6, "Untitled");

return (event.type);
}

else if (event.type == S_PRINT_DOCUMENT)

II Print the document specified by event.text
II Printing code goes here
delete event.text;
return (event.type);

}

else
return (DI_WINDOW_MANAGER: :Event (event)) ;

Using S_OPEN_DOCUMENT
To use S_OPEN_DOCUMENT, employ the following approach.

1. Derive a class from a button or menu item that posts S_OPEN_
DOCUMENT to the event queue.

2. Derive a class that contains a mechanism for opening a document
from within your application when it receives S_OPEN_DOCU
MENT. Zinc recommends you derive this class from UI_
WINDOW_MANAGER; this will allow your application to run
without modification under all platforms that Zinc supports.

3. Trap for S_OPEN_DOCUMENT in the derived object's Event()
function. When Event() receives S_OPEN_DOCUMENT, it can use
UI_PRINTER to print the document to the system printer.

Zinc 4.1 Addenda and Errata

New support for 3D controls in Zinc 4.1

4. After the event is processed, and if event.text has a value other than
null, delete event.text to deallocate the memory the pathname used.
(If it has a null value, the pathname took up no memory and need not
be deleted.)

Using S_PRINT_DOCUMENT
To use S_PRINT_DOCUMENT, employ the following approach.

1. Derive a class from a button or menu item that posts S_PRINT_
DOCUMENT to the event queue.

2. Derive a class that contains a mechanism for printing within your
application. In this example, Zinc derives this class from UI_
WINDOW_MANAGER to keep the opening and printing mecha
nism in the same class.

3. Trap for S_PRINT_DOCUMENT in the derived object's Event()
function. When Event() receives S_PRINT_DOCUMENT, it can
use UI_PRINTER to print the document to the system printer.

Zinc recommends that your mechanism for printing within your
application print the document without opening it. This way, you can
generalize the printing behavior of your application for all circum
stances. For example, if your application prints the document with
out opening it, you can use the same mechanism for both when the
user has an active document and when he doesn't. If your mecha
nism opened the document to print it, the user could find herself in
the unexpected position of having two open copies of her document
for the duration of the print job.

4. As with S_OPEN_DOCUMENT, delete event.text to deallocate the
memory the pathname used.

New support for 3D controls in Zinc 4.1

Starting with Zinc 4.1, control objects can use the popular 3D look and feel.
This feature is available only with Zinc applications running under Win
dows.

To use 3D controls in Zinc 4.1, do the following:

1. In UI_ENV,HPP, uncomment

Zinc 4.1 Addenda and Errata 51

Addenda

#define ZIL_WINDOW_CTL3D

2. Rebuild the library.

3. In your program's makefile, add CTL3DV2 to the WIN_LIBS vari
able.

4. Make sure the include and lib path includes a path to the CTL3D.H
header file and the control library. Also make sure CTL3D.DLL is in
your path.

Functions moved from Designer to the library
Zinc moved the following functions from the Designer to the library in
order to enable all Zinc programs to use their functionality.

eNormalizePosition()

static void NormalizePosition(
UI_WINDOW_OBJECT *object, II object with position to use

const UI_EVENT &event, II event.position to convert
UI_POSITION &position II converted position

Compares a coordinate's event.position to an object's true region.
Does this by converting event.position to a normalized coordinate.
This enables comparison with an object's true region (object->true).

eNormalizeString()

static void NormalizeString(
ZIL_ICHAR *destination, II destination string
const char *source II source string

Converts an eight-bit string to a 16-bit string, even if the 8-bit string is
in Unicode.

eTrueToRelative()

static void TrueToRelative(
UI_WINDOW_OBJECT *object,11 Object with coord to compare
const UI_POSITION &true, II Coord to position
UI_POSITION &relative II Converted position

Compares an object's relative coordinate with its relative region. Does
this by converting event's true coordinate to a relative coordinate.
Eliminates complications caused by nonfield-region objects and
object contexts.

52 Zinc 4.1 Addenda and Errata

System events

System events

All system events available to the user
The documentation does not clarify that all native system events are avail
able to the Zinc programmer.

Some logical events generic to all platforms
The documentation does not clarify which logical events are generic to all
platforms. The following is a list of logical events you can use on all plat
forms:

TABLE 3. Logical events generic to all platforms

Logical events

L_MDICHILD_EVENT (ADD 500)

L_LOGICAL_EVENT 100

L_EXIT 1000

L_SELECT 1002

L_BEGIN_SELECT 1003

L_CONTINUE_SELECT 1004

L_END_SELECT 1005

L_HELP 1009

L_CANCEL 1010

L_EXIT_FUNCTION 1011

L_DOUBLE_CLICK 1012

L_MOVE 1013

L_SIZE 1014

L_PREVIOUS 1054

L_NEXT 1055

L_BEGIN_MARK 1101

L_CONTINUE_MARK 1102

L_END_MARK 1103

L_BEGIN_MOVE_DRAG 1150

L_CONTINUE_MOVE_DRAG 1151

L_END_MOVE_DRAG 1152

L_BEGIN_COPY_DRAG 1153

Zinc 4.1 Addenda and Errata 53

Addenda

TABLE 3. Logical events generic to all platforms

Logical events

L_CONTINUE_COPY_DRAG

L_END_COPY_DRAG

L_LOGICAL_LAST

PowerPak 32 and crashing applications

1154

1155

9999

54

If you build applications with the Borland PowerPak 32 DOS extender and
without UCAPPLICATION::Main(), your applications could crash unex
pectedly. When using PowerPak 32, your program can attempt to allocate
memory for the stack while servicing a 16-bit real-mode interrupt, such as
when the user moves the mouse. Due to a Borland bug, this will sometimes
cause the application to crash.

To work around the problem, your program should allocate stack space
while in 32-bit mode. For an example of how to do this, see the
CommitStack() function in the Zinc source file Z_APP.CPP.

Zinc ships a patch for this problem on your distribution disks. You can find
it in Zinc\Powerpak.

Zinc 4.1 Addenda and Errata

Errata

This document contains the errata to the documentation of Zinc Application
Framework 4.1. Information in this document supersedes any infonnation
contained in manuals printed prior to release 4.1.

To use this document, scan the Table of Contents for the section in the doc
umentation about which you have a question, then open the appropriate
page. Or you can use the index to search for occurrences of a specific topic.

ProgrammersReference Volume One
Support Objects

Introduction

UIW_STRING inheritance
Although the class hierarchy indicates that UIW_STRING inherits from
multiple parents, it is actually a normally derived object.

Chapter 1-UI_APPLICATION

argc and argv
Contrary to the documentation of the constructor, argc and argv are avail
able in Windows. In all environments, argc is always >=I,and argv[O] con
tains the program name.

Zinc 4.1 Addenda and Errata 55

Errata

Chapter 7-UI_DISPLAY

UI_DISPLAY::Text()
The description for left and top of UCDISPLAY::Text() incorrectly states
that they are relative to the region identified by the screenID passed in.
Actually, left and top are relative to the coordinate system that is in turn rel
ative to the true region passed into the function. (You can identify the true
region by its screenID.)

Calling VirtualGet() and VirtualPut()
You must call VirtualGet() and VirtualPut() before calling any of the dis
play primitives.

Chapter 12-UI_EVENT_MANAGER

DeviceState()
The manual erroneously stated in the description for DeviceState() that if
the deviceType parameter is E_DEVICE, then each device's state will be set
to deviceState. The manual should have stated that setting the parameter to
E_DEVICE will affect only devices that exactly match the device'JYpe.

Chapter 14-UI_GEOMETRY_MANAGER

Pixel and minicell
You can specify the geometry-management constraints using minicell or
pixel coordinates.

• WaF_MINICELL

Sets minicell coordinates.

• WaS_GRAPHICS

Sets pixel coordinates.

56 Zinc 4.1 Addenda and Errata

Incorrect class name
The UCHELP_SYSTEM::SetLanguage section is incorrectly entitled
UIW_HELP_SYSTEM:: SetLanguage. (This error also occurs in the Table
of Contents.)

Chapter 2Q-UI_LIST

Undocumented behavior of Add()
The documentation didn't explain all the functionality of the ill_LIST::
Add() function.

Before adding an item to a list, UCLIST::Add() and ill_LIST::operator +
check to confinn that the element is not already in the list. If it is present,
that item then becomes current.

When you add an element to a list, Add() makes that element current,
whether or not it was previously a member of the list. In other words, if you
have a list that contains the elements A, B, C, and you add element D to the
list, element D will become current. And if you readd element A to the list,
element A will become current

Chapter 22-UI_MACINTOSH_DISPLAY

maxColors
The member maxColors is actually an unsigned long instead of an int.

MapRGBColor()
The manual erroneously described the MapRGBColor() function as a
static function. It should have described it as a virtual function.

pattemTable and rgbColorMap
ill_MACINTOSH_DISPLAY no longer has the pattemTable or rgbColor
Map member variables.

PTN_RGB_COLOR
ill_MACINTOSH_DISPLAY now uses the PfN_RGB_COLOR identi
fier.

Zinc 4.1 Addenda and Errata 57

Errata

FontRec **fRec
All references to FontRec **tRec should now read FontInfo flnfo. flnfo is a
Macintosh Toolbox structure that contains infonnation about the font

PTN_INTERLEAVE_FILL is now used on the Macintosh. Zinc uses the
QuickDraw 50% gray pen-pattern for this entry.

Chapter 32-UI_PRINTER

Dot-matrix printer support
In 4.1, a Zinc application running under DOS graphics or text mode is now
able to print to an Epson-compatible nine- and 24-pin dot-matrix printer.
This functionality is not available under other environments.

UCPRINTER contains one member function specific to printing using a
dot-matrix printer. It is

UI_PRINTER::PrintDotMatrixString(char *string)

Using this function prints the string passed in as a parameter.

One limitation of the UCPRINTER class is that you cannot print graphics
to a dot-matrix printer. Zinc is considering implementing this feature in a
future release.

Using UI_PRINTER
To print documents with UCPRINTER, use the following VI_PRINTER
member functions:

58 Zinc 4.1 Addenda and Errata

• Begin all print jobs with UCPRINTER::BeginPrintJob().

• End all print jobs with UI_PRINTER: :EndPrintJob().

• Begin printing a page with ill_PRINTER: :BeginPage().

• End printing a page with UI_PRINTER::EndPage().

• Place your drawing routines after BeginPage() and before EndPage().

• Print all pages after BeginPrintJob() and before EndPrintJob().

• UCPRINTER::ScreenDump() calls BeginPrintJob, EndPrintJob,
BeginPage, and EndPage. ScreenDump() is the only exception to the
above rules.

• In DOS, you must create an environment variable ZINC_PRINTER
and set the Ipt identifier to a string that identifies the type of default
printing and the printer port. If an environment variable doesn't exist,
the class will write printer output to a PostScript file.

Types of default printing:

-PS

-PCL

-DM9

-DM24

Types of Ipt values:

-LPfl

-LPf2

-LPf3

Examples:

SET ZINC_PRINTER=PS,LPTl

Sets defaults to PostScript output, port 1.

SET ZINC_PRINTER=PCL,LPT2

Sets defaults to PCL output, port 2.

SET ZINC_PRINTER=DM9,LPT3

Sets defaults to nine-pin dot matrix, port 3.

SET ZINC_PRINTER=DM24,LPTl

Sets defaults to 24-pin dot matrix, port 1.

Zinc 4.1 Addenda and Errata 59

Errata

When printing output to a PostScript file, the ZINC_PRINTER environ
ment variable is ignored.

New BeginPage() function
After the documentation was printed, Zinc added a BeginPage() function:

virtual void BeginPage(int left, int top, int right, int bot
tom, int orientation = 0, int resolution = O)j

Use BeginPage() to print within a certain region and to print a document in
landscape mode. Use PRM_LANDSCAPE for the orientation parameter to
print landscape.

New TextFonnat() function
After the documentation was printed, Zinc added a new member function
TextFormat(). This member function formats text to fit on the page and
inserts new lines and page breaks where necessary.

virtual void TextForrnat(ZIL_SCREENID screenID, int x, int y,
ZIL_ICHAR *text, const OI_PALETTE *palette, int width = -1,
ZIL_LOGICAL_FONT font = FNT_DIALOG_FONT)j

For an example of how to use this function, read the source code to the
PRINTR example.

CHAPTER 38-UI_RELATIVE_CONSTRAINT

Centering flags
The documentation incorrectly described the RLCF_HORIZONTAL_
CENTER and RLCF_VERTICAL_CENTER flags, which center an object
accurately in a window. It should have explained that flags cause the
object's relative position to be calculated from the horizontal center and the
vertical center of the object, instead of the left, right, top, or bottom of the
object.

exitFunction
The documentation incorrectly defined the member variable exitfunction.
The actual definition is:

EVENT_TYPE FunctionNarne (OI_DISPLAY *display, OI_EVENT_MANAGER
*eventManager, OI_WINDOW_MANAGER *windowManager)j

60 Zinc 4.1 Addenda and Errata

New member function and flag
After the documentation was printed, Zinc added the following member
function and flag to UI_WINDOW_OBJECT.

-DrawFocus()

EVENT_TYPE DrawFocus(ZIL_SCREENID screenID,

UI_REGION ®ion, EVENT_TYPE ccode);

Draws a focus rectangle on the object.

-WOF_PIXEL

Causes the object's position and size parameters to be interpreted as
pixel coordinates.

Chapter 53-ZIL_DECORATION_MANAGER

New defaultOSName
New member variable defaultOSName contains the ISO name of the cur
rent operating system.

Chapter 57-ZIL_118N_MANAGER

New defaultOSName
New member variable defaultOSName contains the ISO name of the cur
rent operating system.

Chapter 61-ZIL_LANGUAGE_MANAGER

New defaultOSName
New member variable defaultOSName contains the ISO name of the cur
rent operating system.

Zinc 4.1 Addenda and Errata 61

Errata

Chapter 64-ZIL_LOCALE_MANAGER

New defaultOSName
New member variable defaultOSName contains the ISO name of the cur
rent operating system.

Programmers Reference Volume Two
Window Objects

Introduction

Although the class hierarchy indicates that UIW_STRING inherits from
multiple parents, it is actually a normally derived object.

Chapter 1-UIW_BIGNUM

Information requests
The documentation incorrectly describes the CDECREMENT_VALUE
and CINCREMENT_VALUE requests for the Information() function. It
states that the data parameter must be a pointer to an int. Instead, the param
eter must be a pointer to ZIL_INT32.

NMF_SCIENTIFIC not supported
UIW_BIGNUM does not support the NMF_SCIENTIFIC flag.

Chapter 3-UIW_BUTTON

Toggling behavior
Ifa button is added to a vertical or horizontal list and if the BTF_NO_TOG
GLE flag is on, it will have its BTF_NO_TOGGLE flag turned off.

62 Zinc 4.1 Addenda and Errata

Toggling appearance
The manual erroneously states that a toggle button usually appears flat if
BTF_NO_TOGGLE is toggled to the selected state. Instead, the toggle but
ton usually will appear depressed when toggled to the selected state.

TOP is bottom edge
Buttons are positioned with TOP as the bottom edge of the button.

Chapter 5-UIW_DATE

Information requests
The manual erroneously describes the CDECREMENT_VALUE and C
INCREMENT_VALUE requests for the Information() function. It states
that the data parameter must be a pointer to an int. Instead, the parameter
must be a pointer to ZIL_INT32.

MNIF_ABOUT for Macintosh only
MNIF_ABOUT is currently ignored in all environments except Macintosh.
On the Macintosh, a pop-up item created with this flag will be created as the
About... option in the Apple menu. Please note that this is the preferred
method for creating the Apple IAbout. .. option. The method documented in
the Reference Manual will still work but might be removed in the future.

Chapter 19-UIW_REAL

NMF_DIGITS should be NMF_DECIMAL
The manual erroneously labeled a flag NMF_DIGITS. Its name is actually
NMF_DECIMAL.

Zinc 4.1 Addenda and Errata 63

Errata

Default width and height
A vertical scroll bar or slider created with a width of 0 will have a default
width. A horizontal scroll bar or slider created with a height of 0 will have a
default height

Adding objects to status bar
The documentation should explain that objects are added to the status bar
the same way objects are added to a window.

Chapter 24-UIW_SYSTEM_BUTTON

Using Apple menu "Abouf' item
The section describing how to create the Apple menu's "About" item on the
Macintosh is no longer valid. While this method may still work, the pre
ferred method is to use the new MNF_ABOUT flag, described in this docu
ment in the UIW_POP_UP_ITEM chapter section.

Chapter 25-UIW_TABLE

Building library with persistence
Currently, the library must be built with persistent load and store capability
in order for the table object to function properly.

Cbapter 29-UIW_TIME

Information requests
The documentation omitted a description of the CDECREMENT_VALUE
and CINCREMENT_VALUE requests for the Information() function. See
the description of these requests in the UIW_REAL chapter.

64 Zinc 4.1 Addenda and Errata

Chapter 33-UIW_WINDOW

New constructor
The UIW_WINDOW class has a new constructor and two new functions
that allow it to use delta storage. The new constructor has the following sig
nature:

UIW_WINDOW(const ZIL_ICHAR *name,
const ZIL_ICHAR *deItaName ,
const ZIL_ICHAR *deltaPathName = ZIL_NULLP(ZIL_ICHAR),
ZIL_STORAGE_READ_ONLY *file = ZIL_NULLP(ZIL_STORAGE_READ_ONLY),
ZIL_STORAGE_READ_ONLY *deltaFile

=ZIL_NULLP (ZIL_STORAGE_READ_ONLY) ,
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM))j

The first new function has the following signature:

void DeltaLoad(const ZIL_ICHAR *name,
const ZIL_ICHAR *deltaName,
const ZIL_ICHAR *deltaPathName,
ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_READ_ONLY *deltaFile,
UI_ITEM *objectTable, UI_ITEM *userTable)j

The second new function has the following signature:

void DeltaStore(const ZIL_ICHAR *name,
const ZIL_ICHAR *deltaName,
const ZIL_ICHAR *deltaPathName = ZIL_NULLP(ZIL_ICHAR),
ZIL_STORAGE_READ_ONLY *file = ZIL_NULLP(ZIL_STORAGE_READ_ONLY),
ZIL_STORAGE *deltaFile = ZIL_NULLP(ZIL_STORAGE),
UI_ITEM *objectTable = ZIL_NULLP (UI_ITEM) ,
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM),
int appendNames = FALSE)j

Setting WOAF_MOl_OBJECT
Setting WOAF_MDCOBJECT clears the WOF_NON_FIELD_REGION
flag during construction.

Using default storage with the storage constructor
The documentation omitted an explanation ofhow to use the default storage
when calling the storage constructor ofUIW_WINDOW. Here's how to use
default storage with UIW_WINDOW's storage constructor:

Zinc 4.1 Addenda and Errata 65

Errata

UIW_WINDOW *window =

new UIW_WINDOW ("HELLO_UNIVERSE" ,
UI_WINDOW_OBJECT: :defaultStorage)i

This will load the window HELLO_UNIVERSE from the application's
DATfile.

New member variables
The ZAF_MESSAGE_WINDOW class now has three more member vari
ables:

• static ZIL_ICHAR _className[];

• static int defaultInitialized;

.const ZIL_LANGUAGE *myLanguage;

These members serve the same purpose as the members in UIW_
SYSTEM_BUTTON. See their description in that chapter.

66 Zinc 4.1 Addenda and Errata

Getting Started

Chapter 4-Writing Multiplatform Programs

Different contents than listed
The contents of some of the Macintosh libraries is different from what is
listed. The following descriptions are accurate:

• Mac_ZIL2 Device and display classes

• Mac_ZIL3 Window Manager, window object, error classes

• Mac_ZIL8 Number classes

• Mac_ZIL9 Button and geometry management classes

• Mac_ZIL10 Controls classes

New libraries
There are also two new libraries:

• Mac_ZILII-Window-derived classes

• Mac_ZIL12-Notebook and table classes

Also, the chapter erroneously calls the Macintosh application file an .EXE
file.

Chapter 7-Zinc and C++

Misspelling
In both the Object creation section and the Object deletion section (pages
90, 95) UI_WINDOW_MANAGER is misspelled as UI_WINDOW_
MANGER.

Zinc 4.1 Addenda and Errata 67

Errata

Chapter 18-Using Languages

Code to switch windows wrong
The code shown to switch windows when the user selects a new language is
incorrect. The new code subtracts the original window in the Event() func
tion rather than placing an S_SUBTRACT_OBJECT event on the queue.
The new code adds the new window, then places the DELETE_OBJECT
event on the queue.

CreateWin() function
The CreateWindow() function referred to in the Changing languages sec
tion is actually called CreateWinO.

Chapter 19-Program Design

Accelerator keys work differently
The accelerator keys work differently than described in the manual. Previ
ously, the accelerator keys worked only in DOS. They now work in all envi
ronments. The accelerator keys are now implemented as a custom event
map table, mapped when looking for an accelerator key.

Appendix A-Compiler Considerations

In addition to the Macintosh libraries listed, Zinc added a Mac_ZIlJ1
library.

Appendix B-Example Programs

Description of VAllOT program
The description of the VALlOT example program is inaccurate. Only one
window appears.

The description of the ANALOG example program is inaccurate. It no
longer has a status bar or a UIW_DATE object.

68 Zinc 4.1 Addenda and Errata

The PHONBK example refers to a UCSTORAGE_OBJECT_READ_
ONLY member function. It is now called ZIL_STORAGE_OBJECT_
READ_ONLY:

Appendix D-Keyboard and Mouse Mappings

Keyboard mappings for gray keys
All keyboard mappings for gray keys should be listed without '+.'

Backspace and Delete
The section for the Macintosh states that the <Backspace> key deletes the
character to the left of the current cursor location. The <Delete> key is used
for this purpose. The <Delete Right> key will delete the character to the
right of the current cursor location.

<Opt+Tab>
On the Macintosh, <Opt+Tab> will move to the next window.

Zinc 4.1 Addenda and Errata 69

Errata

Zinc Designer

Chapter 1-lntroducing Zinc Designer

Reactivating object on Mac
Because the Macintosh mouse only has one button, use <Option-click> to
reactivate the last object added.

Pull-down menu on Mac
On the Macintosh the pull-down menu will not appear on the screen while
editing a window. You can edit it through its parent window's Subobjects
page.

Chapter 11-Edit Options

Grouping objects on Mac
To group objects using the Macintosh Designer, press <Option> and click
somewhere in the window. Then you can draw a marquee around the
objects.

Relative constraints in Zinc Designer
The documentation was unclear about how to set a relative constraint using
Zinc Designer. The following is a step-by-step explanation of how to set a
relative constraint in a new user interface using Zinc Designer.

1. Launch Zinc Designer.

2. Create a new window by selecting Window I Create.

3. Select the button object from the tool bar. Or, select Button from the
Object I Control pull-down menu. When you have selected a button,
the place object text field on the main window of Zinc Designer will
display "Button."

4. Place the button on the window by clicking on the window.

5. Once you have placed the button, double-click it to open its informa
tion notebook.

6. Once you have opened the information notebook, select the Geome
try notebook page.

7. Inside the Geometry notebook page, select Relative constraint.

70 Zinc 4.1 Addenda and Errata

8. Inside the Geometry notebook page and inside the CONSTRAINT
group, click in the text field labeled Offset. Type in the amount of
offset you wish.

When using relative constraints in Zinc Designer, offset is a percent
age of distance from one border to its opposite border.

For example, if the button's parent window is 50 minicells wide, and
if you type 40 in the Offset text field, Zinc Designer will place the
button 20 minicells (40%) from the left border. If you enlarge the
window to 100 minicells, Zinc Designer will place the button 40
minicells from the left border.

Chapter 15-Control Objects

Can't set Send flag for pull-down item
You can't set the Send user message flag for a pull-down item.

Chapter 17-Qther Objects

There are several new features of UIW_TABLE.

Columns and RecordSize
The General Page of the table's Information notebook has two new fields.

-Columns

Specifies the number of columns that appear in the table. A table
record will appear in each column.

- Record Size

The Record Size field specifies the size of the programmer's data
structure used to store data for a single record. This value is used by
the table, in conjunction with the number of records in the table, to
determine how much memory to allocate for the table's data space.

Initializing table with DataSet()
After loading a window with a table on it in your application, call the table's
DataSet() function to initialize the fields in the table.

Zinc 4.1 Addenda and Errata 71

Errata

72

Manipulating table visually
• You can size the table headers and table records visually by grabbing

their border with the mouse and dragging it, just like with any other
object. If a header or record is sized, the corresponding record or
header should be sized appropriately so that the table headers and
table records will scroll synchronously.

• You can add objects to the table records visually by dropping them on
the record with the mouse, just like adding fields to a window.

• Double-clicking on a table header opens the table header's editor.

• Double-clicking on a table record opens the table record's editor.

• Double-clicking on an object in a table record opens the object's edi
tor.

Window Object option in Zinc Designer
The documentation omitted an explanation of how to use Zinc Designer's
Window Object option, which enables you to work visually with derived
window objects. The Window Object option is located in the tool bar, as
well as under Object IOther.

The following is a step-by-step explanation of how to use Window Object
in a new application interface.

1. Launch Zinc Designer.

2. Create a new window by selecting Window ICreate.

3. Select Window Object from the tool bar. (It's the last object in the
tool bar.) Or, select Window Object from the Object IOther pull
down menu. When you have selected Window Object, the place
object text field on the main window of Zinc Designer will display
"Window Object."

4. Place the derived window object on the window by clicking on the
window.

5. Once you have placed the derived object, double-click it to open its
information notebook.

6. Once you have opened its information notebook, select the
Advanced notebook page.

7. Inside the Advanced notebook page, click in the text field labeled
DerivedName. Type in the name of your derived class.

Zinc 4.1 Addenda and Errata

8. Using the same derived class name you typed in the text field, derive
a class within your source code the way you do normally. However,
since your derived class will be loaded from a .DAT file, you must
define a Load() function. Further, you must provide your class with
a static New() function.

Chapter 19-1mage Editor

Grouping objects
To group objects on the Macintosh, press <Option> and drag the mouse.

Appendix A-Compiling the Designer

Libraries
The manual mentions a Macintosh SCCPP700 Libraries folder. The folder
is actually called SCCPP700 Library.

In addition to the Macintosh libraries listed in step 2, there is also a Window
4 library.

Defaults Editor
The manual refers improperly to the Defaults Editor as the I18N Defaults
Editor in the Macintosh section.

Integrated Zinc Designer modules
At the time the documentation was printed, Zinc Designer running under
the Macintosh was composed of different applications that you compiled
separately. Currently, however, Zinc Designer under the Macintosh is an
integrated application; that is, all of the editors have been placed into the
same application. Access to any Zinc Designer editor on the Macintosh is
accomplished through the Tools menu.

Drag and drop
Zinc Application Framework now supports drag and drop. Several new
flags, events, and mouse states are required to use this capability. In addition
to these values, described below, you must compile the library with ZIL_
STORE and ZIL_LOAD defined in UCENY.HPP in order for drag and
drop to work.

Zinc 4.1 Addenda and Errata 73

Errata

74

The Reference manual lists the WOAF_DRAG_OBJECT in several places;
WOAF_MOVE_DRAG_OBJECT and WOAF_COPY_DRAG_OBJECT
replaced it after the manual went to press.

Here is a list of the flags you can use with drag-and-drop:

• WOAF_ACCEPfS_DROP

Indicates that the object can accept a drop operation.

• WOAF_MOVE_DRAG_OBJECT

Indicates that the object can be moved in a drag and drop operation.

• WOAF_COPY_DRAG_OBJECT

Indicates that the object can be copied in a drag and drop operation.

·DM_CANCEL

Indicates that a drop may not be performed at the present mouse loca
tion.

• DM_DRAG_MOVE

Indicates that a drop at the present mouse location would result in a
move operation.

• DM_DRAG_COPY

Indicates that a drop at the present mouse location would result in a
copy operation.

• DM_DRAG_MOVE_MULTIPLE

Indicates that a drop at the present mouse location would result in a
move operation.

• DM_DRAG_COPY_MULTIPLE

Indicates that a drop at the present mouse location would result in a
copy operation.

• S_DRAG_MOVE_OBJECT

Sent to an object when a move operation is performed over the object.
The object sets the mouse cursor to an appropriate state.

·S_DRAG_COPY_OBJECT

Sent to an object when a copy operation is performed over the object.
The object sets the mouse cursor to an appropriate state.

Zinc 4.1 Addenda and Errata

• S_DRAG_DEFAULT

Sent to an object when a drag operation is in effect but neither a copy
or move has been specified. The object receiving this event deter
mines the type of drag and sets the mouse cursor appropriately.

• S_DROP_MOVE_OBJECT

Sent to an object to indicate that a move drop was just performed on
the object.

• S_DROP_COPY_OBJECT

Sent to an object to indicate that a copy drop was just performed on
the object.

• S_DROP_DEFAULT

Sent to an object when a drop operation is in effect but neither a copy
or move has been specified. The object which is receiving this event
then determines the type of drag and sets the mouse cursor appropri
ately.

• L_BEGIN_MOVE_DRAG

Indicates that a move-drag operation was just started with a mouse
down-click.

• L_CONTINUE_MOVE_DRAG

Indicates that a move-drag operation is continuing with the mouse
being dragged while the mouse button is depressed.

• L_END_MOVE_DRAG

Indicates that a move-drag operation was just completed with a mouse
up-click.

• L_BEGIN_COPY_DRAG

Indicates that a copy-drag operation was just started with a mouse
down-click.

• L_CONTINUE_COPY_DRAG

Indicates that a copy-drag operation is continuing with the mouse
being dragged while the mouse button is depressed.

·L_END_COPY_DRAG

Indicates that a copy-drag operation was just completed with a mouse
up-click. If an object with the WOAF_ACCEPTS_DROP flag set
receives an S_DRAG_* or an S_DROP_* message, it will call the
receiving object's user function, passing it the S_* message it

Zinc 4.1 Addenda and Errata 75

Errata

received. The user function can process the message, if desired. The
user function must return one of the following values when it receives
a drag or drop message:

·S_ERROR

Indicates that the dragged object cannot be dropped here.

oindicates that the user function processed the message.

·S_UNKNOWN

Indicates that the user function did not process the message and that
the receiving object should handle the message.

Mac and NEXTSTEP File and Edit menus
To allow maximum flexibility in your Zinc applications running under
Macintosh and NEXTSTEP, Zinc recommends that you use the following
menus and items and implement the following functionality:

• File

-New

Create a new document.

-Open

Open an existing document.

-Close

Close the current document.

-Print

Print the current document.

-Quit

Quit the application.

• Edit

-Cut

Cut the selected text or object from the document and place in the
paste buffer (Clipboard in Mac, Pasteboard in NEXTSTEP).

-Copy

Copy the selected text or object to the paste buffer.

76 Zinc 4.1 Addenda and Errata

-Paste

Paste text or an object from the paste buffer to the current cursor
location in the document.

Microsoft and Watcom graphics
In DOS, if you are using the UCMSC_DISPLAY with the Microsoft com
piler, or the UCWCC_DISPLAY with the Watcom compiler, put HELVB.
FON somewhere in the path so that the fonts can be loaded.

New virtualized Add() and Subtract() functions
For 4.1, Zinc has modified the Add() and Subtract() member functions of
some classes derived from UIW_WINDOW. Before Zinc 4.1, Add() and
Subtract() were defined in the VI_LIST class; adding and subtracting ele
ments to and from a list was accomplished by an instance of VI_LIST. In
Zinc 4.1, Add() and Subtract() are virtual functions, so that objects derived
from VI_LIST can implement new adding and subtracting functionality
specific to those objects.

These newly virtualized functions will have no effect on classes derived
from VI~ISTwhen upgrading existing Zinc applications to 4.1.

The classes with overloaded Add() and Subtract() functions are:

• UIW_VT_LIST

• UIW_HZ_LIST

• UIW_COMBO_BOX

• UIW_STATUS_BAR

• UIW_PULL_DOWN_MENU

• UIW_POP_UP_MENU

Zinc 4.1 Addenda and Errata 77

Errata

Recommended stack size
The following are recommended stack sizes for use with Zinc for applicable
environments and compilers.

TABLE 4. Recommended stack size by environment and compiler

Macintosh heap size

Environment

DOS

Windows

OS/2

Motif (DESQview/
X)

Motif (QNX)

Power Macintosh

Compiler

Watcom

Symantec (except 32-bit)

Symantec (32-bit)

Borland (real, PharLap 16-bit)

Borland (PowerPack 16, Rational DOS 16M 16
bit)

Borland (PowerPack 32) default

Microsoft 1.0 (PharLap TNT 6.1 32-bit) default

Microsoft 1.5 (real)

Microsoft 1.5 (PharLap 16-bit, DOS 16M 16-bit)

All compilers

All compilers

Watcom

Watcom

All compilers

Size

48K

20K

16K

20K

18.75K

1024K

32K

5K

12K

18.75K

94K

48K

48K

64K

78

A minimum heap size of I024K is recommended for any Macintosh appli
cation.

Zinc 4.1 Addenda and Errata

Zinc Technical Notes

This section contains the Technical Notes for Zinc Application Frame
work 4.1. The Technical Notes are brief technical explanations of how to
accomplish various programming tasks with Zinc. If you are having
problems using Zinc, scan the Technical Notes for a topic concerning
your problem. You can often find a note describing how to solve the
problem, thereby helping you avoid placing a call to Zinc Technical Sup
port.

80

Section 1
IDEs

Zinc 4.1 Addenda and Errata

1.1

Keywords:
Version:
Component:
Platforms:
Issued:

Question

Working with the Borland IDE

Borland IDE
3.6 Rl and later
Borland IDE
DOS, Windows
August 1, 1994

ZD-TN1000

What do I need to do in Borland's 4.0 IDE to make it work properly with Zinc?

Answer

Set up your project ftles first. Make sure you include.CPP ftles first, then Zinc .Lffi files as required for the
particular environment, then .DEF and .RC for Windows programs.

Be careful that the project hierarchy is correct. Borland has changed the way that projects are set up in the
IDE of Borland 4.0. The library and code ftles should come directly under the target executable unless one of
the .CPP files is dependent upon another.

For example:

Correct Incorrect

prog.exe [target] prog.exe [target]

- prog.cpp - prog.cpp

- sub.cpp 1- sub.cpp

- \zinc\lib\btcpp400\dos_zil.lib 1- \zinc\lib\btcpp400\dos_zil.lib

- \zinc\lib\btcpp400\dos~fx.lib - \zinc\lib\btcpp400\dos~fx.lib

- \zinc\lib\btcpp400\bc_lgfx.lib - \zinc\lib\btcpp400\bc_lgfx.lib

Make sure you have set the proper target. This is usually an .EXE file.

The only libraries that should be used in the IDE are the RUNTIME libraries. Don't use the GRAPHICS
(unless you are using the BGI graphics instead of the GFX), or the OWL, or CLASS libraries.

Make sure you turn off all exception handling and RTTI options. The reason for this is that Zinc libraries are
not compiled with exception handling or RTTI information. If you want this information you can recompile
the libraries with exception handling and RTfI information. This will, however, dramatically increase the
size of your executable.

Zinc 4.1 Addenda and Errata 81

Make sure the directories are correct for the include and library files. These should include Borland's include
and lib as well as Zinc's include and lib directories.

Select the large memory model.

82 Zinc 4.1 Addenda and Errata

Setting up the Microsoft IDE to work with Zinc ZD·TNlOO6

1.2

Keywords:
Versions:
Components:
Platforms:
Issued:

Question

Setting up the Microsoft IDE to work with Zinc

IDE, Microsoft,Visual C++
All
Microsoft IDE
DOS, Windows
August 1, 1994

ZD-TN1006

How do I set up the Microsoft IDE so that it works properly with Zinc?

Answer

The Microsoft IDE requires that scanning dependencies in the Workbench be resolved. Two methods can be
used to accomplish this. (The first method is recommended since it will eliminate the need for changes as
Zinc is updated.)

Either add the following filenames to the end of your MSVC\BIN\SYSINCL.DAT file:

• KEYSYM.H, XM.H, TIMER.H, INTRINSI.H, DPSNEXT.H, EVENT.H, and possibly other .H
references that Microsoft Workbench doesn't recognize.

Or comment out the following lines in the Zinc header files:

• Zinc 4.0: lines 652, 667 in UI_ENV.HPP and 641 in UI_MAP.HPP.

• Zinc 3.6: lines 641, 642 in UI_ENV.HPP and 630 in UI_MAP.HPP.

• Zinc 3.5: lines 477, 478 in UI_ENV.HPP and 598 in UI_EVT.HPP.

Change the settings inside Microsoft Workbench as follows:

• ~roject I~ew and set your ~roject type to MS-DOS or Windows Application (.EXE)

• Add your .CPP files.

• For DOS only:

-Add the DOS_ZIL.LIB.

-Add DOS_GFX.LIB or DOS_MSC.LIB.

-Add MS_LGFX.LIB if you use DOS_GFX.LIB.

• For Windows only:

-Add the WIN_ZIL.LIB

• Under Qptions I ~roject. ..

-Choose the ~ompiler••• Button

Zinc 4.1 Addenda and Errata 83

Setting up the Microsoft IDE to work with Zinc ZD-TN1006

-Under Code Generation set C~U to 8086/8088

-Under Memory Model set Model to Large

-Choose the Linker... Button

-Under Input, tum on Prevent Use of Extended Dictionary

-Under Memory Image, set Max Mumber of Segments to 256 (Zinc 4.0 only)

• For DOS only:

-Under Input, add ",graphics" to Libraries

-For Windows only:

• Under Memory Image, remove entry in Slack Size if using STACK in your .DEF file.

84 Zinc 4.1 Addenda and Errata

1.3

Keywords:
Versions:
Components:
Platforms:
Issued:

Question

Watcom 10.0 IDE for Windows

Watcom IDE, Windows
4.0

Windows
October 13, 1994

Watcom 10.0 IDE for Windows ZD-TNSOO6

ZD-TN5006

How do you build a Zinc application for Windows using the Watcom 10.0 IDE?

Answer

To build a Zinc application for Windows using the Watcom 10.0 IDE, do the following:

Create a new project by selecting File INew project (e.g., whellol.prj).

Enter the desired target name (e.g., wheUol.exe).

Name the source files needed to build the target by selecting Source INew source

(e.g., hellol.cpp c:\zinc\lib\wccpp\win_zil.lib whello.defwhello.rc).

Choose Options IC++ Compiler switches... and make the following modifications:

File Option Switches
• Include directories-should be amended to also include c:\zinc\include

Diagnostic Switches
• Warning level-should be set to Warning level 4[-w4]

Optimization Switches
• Style of optimization-should be set to Space optimizations [-os]

• Relax alias checking[-oa]-should be turned on

CodeGen Option Switches
• Constants in code segment[-zc] -- should be turned on

Memory Model and Processor Switches
• Memory Model-should be set to Large model[-ml]

Choose Options IWindows Linking Switches••• and make the following modifications:

Zinc 4.1 Addenda and Errata 85

Watcom 10.0 IDE for Windows ZD·TNS006

Basic Switches
• Other options[,]-should be set to op heapsize=28k

• Stack: [op st]-should be set to 16k

Resource Switches
• Requires Windows 3.0 or later[-30]-should be turned on

Make the target by selecting Thrgets IMake.

Run the target by selecting Targets IRun.

86 Zinc 4.1 Addenda and Errata

Watcom 10.0 IDE for Windows ZD-TNSOO6

Section 2
Fonts

Zinc 4.1 Addenda and Errata 87

Changing object fonts ZD-TNIOOI

2.1

Abstract:
Keywords:
Version:
Component:
Platforms:
Issued:

Question

Changing object fonts

Changing object fonts
font, fontTable
3.0 and later
Library
All
August 1, 1994

ZD-TN1001

How do I change a font for an object?

Answer

Each object derived from UI_WINDOW_OBJECT has a member variable called font. This member is an
index into the font table. The font table is an array offonts. The size of the array is 10. ThefontTable variable
is a member of the display class that you have chosen to use such as UI_GRAPIDCS_DISPLAY It is a
protected member of the class and is not directly accessible. There are two ways to modify this variable.

You can derive your own object and change the font value in the constructor of your object such as:

MY_OBJECT::MY_OBJECT(...) : UI_WINDOW_OBJECT(...)
{

font = 3;

This will cause the object to use entry 3 in the font table.

Version 3.6 introduced a new public member function of the UI_WINDOW_OBJECT class. This function
is called Font(LOGICAL_FONT _font), and takes an integer value as a parameter. The same thing is
accomplished as in the previous example by making the following call.

object->Font(3);

This function can be used by any valid object pointer. Typically the use of this function would be for objects
that have viewable text associated with them, such as strings, prompts, buttons, etc.

Notes:

For additional information on changing/adding fonts, see the technote on creating and adding a new font.
There are also system specific technotes available.

88 Zinc 4.1 Addenda and Errata

Adding a new font to the fontTable under OS/2 ZD·TN1002

2.2

Keywords:
Version:
Component:
Platforms:
Issued:

Question

Adding a new font to the fontTable under OS/2

OS/2, font, fontTable
3.5 and later
Library
OS/2
Julyl8, 1994

ZD-TN1002

How do I add a new font to the fontTable under OS/2?

Answer

To load a font, use specific OS/2 system commands found in the OS/2 code file O_DSP.CPP. The following
is an extract from this file.

Get a pointer to the desktop.
HPS desktopPS = WinGetPS(HWND_DESKTOP) ;

Get the number of available fonts from the system.
LONG maxFonts = 0;
maxFonts = GpiQueryFonts(desktopPS, QF_PUBLIC, (PSZ)lCourier", &rnaxFonts,

sizeof(FONTMETRICS), NULLP(FONTMETRICS));

Create the space for the new font.
FONTMETRICS *font = new FONTMETRICS[maxFonts];

Load the available fonts into the newly created font.

GpiQueryFonts(desktopPS, QF_PUBLIC, (PSZ)lCourier", &maxFonts, sizeof(FONTMETRICS),
font) ;

Add the font, based on 100 point, into the fontTable so it is available for use.

for (int i = 0; i < maxFonts; i++)

if (font[i) .sNominalPointSize <= 100 &&
!UI_OS2_DISPLAY::fontTable[MY_FONT_ENTRY) .1Match)

UI_OS2_DISPLAY::fontTable[MY_FONT_ENTRY) = font[i);
break;

Free the space.

delete font;
WinReleasePS(desktopPS) ;

Zinc 4.1 Addenda and Errata 89

Adding a new font to the fontTable in GFX graphics ZD·TNlOO3

2.3

Keywords:
Versions:
Components:
Platforms:
Issued:

Question

Adding a new font to the fontTable in GFX graphics

font, GFX, fontTable
All
GFX Graphics, VI_GRAPHICS_DISPLAY
DOS
July 29, 1994

ZD-TN1003

How do I create and add a new font to the fontTable using GFX graphics?

Answer

Create the font using one of two methods.

The fIrst method is to use Borland's font editor to create the font. When you save it, the font editor will pro
duce a .CHR fIle. Then use the BGI2GFX program to convert the .CUR fIle to a .CPP fIle. This fIle can then
be linked into your code. If the utility is not compiled, the code for BGI2GFX is located in
\z1Nc\sOURCE\CONVERT subdirectory and can be readily compiled with the existing makefIle.

The second method is to get the GFX font editor from C-Source, the developer of GFX, or get their fonts.
These can be readily linked into your source. C-Source may be contacted at 616-725-4882.

Make sure that the following declarations have been added to the bottom of your newly created .CPP font
fIle. There should be a structure defInition as well as a function that returns a pointer to the newly created
font The following is an extract from the ISO_DIAL.CPP fIle located in your \zINc\sOURCE\GFX sub
directory.

• Structure defInition of the new font:

static FONT iso_dial

iso_dial_offset_table, iso_dial_data_table, 176, 13, 0, 255, 12, 0, 11, a
} ;

• Function that returns the pointer to the new font:

return (&iso_dial);

Next, declare in your main .CPP fIle or header fIle some external reference to the same functions that are
located in the bottom of your font's .CPP fIle. The following is an example of the type of declaration that
should be used to return a pointer to your new font. The code sample is taken from D_GFXDSP.CPP.

90 Zinc 4.1 Addenda and Errata

Adding a new font to the fontTable in GFX graphics ZD-TNlOO3

Finally, load the font into the font table for use. The member, fontTable, is a public member of the display
class that you are using, such as UI_GRAPmCS_DISPLA~ and can contain up to ten fonts. Loading the
font must done after your display has been constructed and before you create your objects. If you are using
UI_APPLICATION then we suggest doing it at the top of your code since it constructs your display. That
way the font will be loaded into the fontTable where you can use it as you load your various resources. The
following is an extract from D_GFXDSP.CP~

• Initialize a new font variable for use.

GRAPHICSFONT font = { 0, 0, 0 }i

FONT *tmpi

• Load and insert the new font into the fontTable.

font. font = OpenMemFont(tmp = GFX_DIALOG_FONT(»);
if (font. font >= 0 && _loadFont)
{

font.maxWidth = tmp->widest_cell - 1;
font.maxHeight = tmp->height - 1;
II Locations 0 .. 9 are possible.
UI_GRAPHICS_DISPLAY: :fontTable[FNT_DIALOG_FONT] font;

Notes:
• The sample code shown here is used to load the dialog font into thefontTable. This is to give you

something tangible to look at when you are trying to load your own. The files that are referred to in
this technote are ISOJ)IAL.CPP and D_GFXDSP.CPP and should be consulted.

Zinc 4.1 Addenda and Errata 91

Adding a new font to the fontTable in Motif ZD-TN2001

2.4

Keywords:
Versions:
Components:
Platforms:
Issued:
File:

Question

Adding a new font to the fontTable in Motif

font, Motif
3.5, 3.6, 4.0
Library
Motif
July 14, 1994
M_FONTS.TAR

ZD-TN2001

How do I change or add a font in Motif?

Answer

The ftrst three entries of the font table are initialized by Zinc in M_DSP.CPP. Fonts are loaded from default
strings in the Zinc App.Xdefaults fIle. If the .Xdefaults fIle is not found, or the font strings are not found in
the .Xdefaults ftle, there are default strings in M_DSRCPP that are used as the default. The fIrst three fonts
can be changed at run time by modifying the ZincApp .Xdefaults fIle. For example, to change the small font
used by Zinc the small font entry could be changed from:

zincSrnallFont:--helvetica-rnedium-r-*--12-*-iso8859-1

to the following for a italic small font.

zincSrnallFont:--helvetica-rnedium-o-*--14-*-iso8859-1

Fonts can also be added in code. Ifa new font is added to the font table there should also be added an entry in
the .Xdefaults ftle for that font. The following code is necessary for adding an italic small font to the font
table.

const int FNT_ITALIC_SMALL= 3;
II Create pointer for string in XResource data base.
typedef struct {

char *italicsmallFont;
} AppData;
#define XmNitalicSrnallFont" italicsmallFont"
#define XmCItalicSrnallFont" ItalicsmallFont"
II Create XResource sturcture
static XtResource resources[]

XmNitalicsmallFont,
XmCltalicsmallFont,
XmRString,
sizeof (char *) /
XtOffsetOf(AppData, italicsmallFont),

92 Zinc 4.1 Addenda and Errata

Adding a new font to the fontTable in Motif ZD·TN2001

XmRString,
II If the .Xdefaults file or the font string is not found this font will be used.

(XtPointer) "-*-helvetica-mediurn-o-*--12-*-iso8859-1"
},

} ;

II Get the font name from X and load it.
AppData appData;
XtGetApplicationResources(display->topShell, (XtPointer) &appData, resources,

XtNumber(resources), NULLP(Arg), 0);
display->fontTable[FNT_ITALIC_SMALL] .fontStruct =

XLoadQueryFont(display->xDisplay, appData.italicSmallFont);
II If using Zinc's Unicode Key
#if defined (ZIL_UNICODE)
II Create font set and load font for Unicode

XmFontListEntry entry;
XmFontType type;
entry = XmFontListEntryLoad(display->xDisplay, appData.italicSmallFont,

XmFONT_IS_FONTSET,XmFONTLIST_DEFAULT_TAG);
display->fontTable[FNT_ITALIC_SMALL] .fontList = XmFontListAppendEntry(NULL,

entry) ;
display->fontTable[FNT_ITALIC_SMALL].fontSet =

(XFontSet) XmFontListEntryGetFont (entry, &type);
XmFontListEntryFree(&entry);

#else
display->fontTable[FNT_ITALIC_SMALL] .fontList

XmFontListCreate(display->fontTable[FNT_ITALIC_SMALL].fontStruct,
XmSTRING_DEFAULT_CHARSET);

#endif

The following line should be added to the .Xdefaults file:

italicSmallFont:--helvetica-mediurn-o-*--14-*-iso8859-1

Note:
• Other platforms use different methods to load new fonts into the font table. See technotes for those

platforms for specific information.

• There is a program on our BBS and ftp server that uses the above code to add more fonts to the font
table. On the BBS the file is in the 3.6 Conference under User Contributions and is called M_
FONTS.TAR. On the Internet the file is in PUB/CONTRIB/36 and is called M_FONTS.TAR.Z. This
example also contains an example of the .Xdefaults file.

Zinc 4.1 Addenda and Errata 93

Adding a fixed-width font to the fontTable under Windows ZD-TNSO02

2.5

Keywords:
Versions:
Components:
Platforms:
Issued:

Question

Adding a fixed-width font to the fontTable under Windows ZD-TN5002

fixed-width font, fontTable, Windows
3.0 and later
Library
MS Windows
August 1, 1994

How do you add a fixed-width font to the fontTable under MS Windows?

Answer

Adding a fixed-width font to the fontTable under MS Windows is straightforward. The following code shows
how this is done.

II Initialize the display.
UI_DISPLAY *display = new UI_MSWINDOWS_DISPLAY(hInstance, hPrevInstance, nOmdShow)i

II Get a handle to a fixed width font.
HFONT fixedFont = GetStockObject(ANSI_FIXED_FONT)i

II Assign the fixed-width font to the 4th entry (index 3) of the fontTable.
UI_MSWINDOWS_DISPLAY: :fontTable[3J = fixedFonti

II Assign the appropriate index to a window object.
object->Font(3) i

The font ID passed to GetStockObject() could also be OEM_FiXED_FONT or SYSTEM_FiXED_FONT.
See your MS Windows reference guide for additional information concerning stock fonts.

94 Zinc 4.1 Addenda and Errata

Adding a fixed-width font to the fontTable under Windows ZD·TN5002

Section 3
Event flow, messaging,
and flags

-----~--

Zinc 4.1 Addenda and Errata 95

Event Oow ZD-TNIOOS

3.1

Keywords:
Version:
Component:
Platforms:
Issued:

Question

Event flow

event, message passing
All
Library
DOS, OS/2, Windows, Macintosh
August 22, 1994

ZD-TN1005

How do events flow through the system?

Answer

Zinc uses three different methods for event flow in order to maintain full compatibility with operating sys
tems. The three methods are top-down, bottom-up, and NEXTSTEP. This technote explains the first two.

Top-Down (OOS, Macintosh, Curses):

After the event is placed in the event queue, the Event Manager pulls the event from the queue and dispatches
it to the window manager. At that point the Window Manager has three options:

• Act on the event-as in the case of S_CLOSE;

• Dispatch the message to the current window; or

• Make an object (a window) current, then dispatch the message.

Ifa window receives the event, it then has the same three options:

• Act on the event-as in the case of L_NEXT (the <tab> key);

• Dispatch the message to the current object; or

• Make an object current, then dispatch the message (mouse click on a button).

If an object receives the event it has two options:

• Act on the event; or

• Pass the message to its base class (usually UI_WINDOW_OBJECT) and let it handle the event.

If the object still doesn't know what to do with the message then S_UNKNOWN is returned. At this point the
parent object may pass the message to its base class. The message is propagated back to the window manager
in this manner, and if nothing is done with the message, it is then discarded.

Bottom-Up (Windows, OS/2, Motif):

In the case of bottom-up event flow, the event manager gets the event and gives the event to the window
manager. At that point the window manager has two options:

96 Zinc 4.1 Addenda and Errata

Event flow ZD-TNlOOS

• Pass the event to the operating system if the events are native system messages (most); or

• Pass the message as described in top-down (Zinc-specific messages).

The operating system event handler-Zinc calls it the "black box"-then passes the event to the current
object where it has the same two choices described for top-down:

• Act on the event; or

• Pass the message to its base class (usually UIW_WINDOW_OBJECT) and let it handle the event.

If the message is not used by the object then the message is given back to the operating system where its
default callback function is called.

Notes:

• Top-down event flow may seem like a long route for a message to follow, but very few messages
ever get this far, so overhead incurred by this flexible architecture is minimal.

• All Zinc-specific messages are passed as described in the top-down section. Mouse and keyboard
messages are all system specific.

• NEXTSTEP event flow resembles bottom-up, except that the event is not handled first by the Zinc
Event Manager. Zinc 'sees' the event for the first time at the object level and handles or passes the
event from there.

Zinc 4.1 Addenda and Errata 97

LoatI control loops ZD-TNlOO8

3.2

Keywords:
Versions:
Components:
Platforms:
Issued:
File:

Question

Local control loops

control, main loop, local, modal
All
Library
All
November 17, 1994
ctloop.zip

ZD-TN1008

How do I determine when to write a local control loop?

Answer

Local control loops can cause of difficult problems and are not recommended unless absolutely necessary. If
not implemented properly, the system may become confused because it doesn't know the origin or destination
of events.

There are few instances require a local control loop. The only reason to have a local control loop is if the
user's input is necessary for the completion of a currently running task. The error system falls in this category.
Another use could possibly be for to allow the user to break out of a running process. Regardless, you must
design tasks to work in "pieces," thereby preserving the event-driven characteristics of graphical user inter
faces.

A local control loop is used to take complete control over the trapping and dispatching of events. This means
that all normal event flow is halted. If the programmed loop doesn't responsibly take control then other events
could slip through, thereby causing confusion in the system.

For a good example of a local control loop you should examine the DOS error system. On DOS it was neces
sary for Zinc to create its own error system since OOS does not provide one. On other operating systems Zinc
is able to call native controls to handle the task (e.g. Windows calls MessageBox(), OS/2 calls
WinMessageBox(), etc.) These environment-specific objects wait for the user to select one of the buttons
on the window, then allows Zinc to test the retum value and respond accordingly.

The control code in this technote was taken from the DOS ErrorMessage() function in D_ERRORl.CPP
and modified for the purpose of this example. The following snippet shows one case statement from a
derived window's Event() function.

Note that the WOP_WINDOW must be modal or it will not work properly. The do/while loop is waiting for
eitherWOP_OK orWOP_CANCEL which are user-defined EVENT_TYPE values sent by OK and Cancel
buttons. Because all other events are being sent to the windowManager this window must be modal, or other
windows or objects could receive messages.

case CONTROL_LOOP:

98 Zinc 4.1 Addenda and Errata

Local control loops ZD·TNlOO8

LOOP_WINLOW *window = new LOOP_WINDOW ("test.dat-LOOP_WINDOW") ;
*windowManager + window;

II Make sure the window is modal.
UI_EVENT event;
EVENT_TYPE ccode = 0;
do
{

eventManager->Get(event, a-NORMAL);
ccode = event.type;

II LOOP_OK and LOOP_CANCEL are user defined values (>=10000)
II and programmed into the buttons that are on the LOOP_WINDOW.
if (ccode == LOOP_OK II ccode == LOOP_CANCEL)

*windowManager - window;
else

ccode = windowManager->Event(event);
while (windowManager->Index(window) != -1);

*windowManager - window;
delete window;

break;

The control loop will break when one of two conditions occurs.

• Either LOOP_OK came through, or

• LOOP_CANCEL. If LOOP_CANCEL was seen the window is subtracted from the windowManager
and the second part of the while loop test will fail and end the loop.

Zinc 4.1 Addenda and Errata 99

Interpretation of events in Zinc ZD·TN4572

3.3

Keywords:
Versions:
Components:
Platforms:
Issued:

Question

Interpretation of events in Zinc

event interpretation
3.0 and later
Library
All
July 7, 1994

ZD-TN4572

How do events get interpreted in Zinc?

Answer

All raw events-for example, those coming from a keyboard or mouse-are passed to the receiving object.
The receiving object's Event() function interprets and processes the event if it pertains to that object.

The following concepts are important:

One system-wide event map table contains entries for each object, and all logical events that correspond to a
given raw event for that object. The event map table is a member variable ofUI_WINDOW_OBJECT. The
default event map table is located in g....event.cpp. The definition is:

UI_EVENT_MAP *eventMapTable;

The programmer may modify this table, or reassign the event map-table to a programmer defined table.

All objects contain an eventMapTable pointer since they all inherit from UI_WINDOW_OBJECT. When
instantiate~ each object points to the default (system-wide) eventMapTable.

All objects contain a virtual Event() member function. While most changes to event handling can be handled
with changes to the default eventMapTables, the Event() function can be easily overloaded to handle pro
grammer defined events, etc.

Example

For our example, a text field is the current object. Its Event() function demonstrates how Zinc processes and
translates a raw event.

EVENT_TYPE UIW_TEXT::Event(const UI_EVENT &event)
{

II get logical event from event map table
EVENT_TYPE ccode = LogicalEvent(event, ID_TEXT);

II process event
switch (ccode)

100 Zinc 4.1 Addenda and Errata

Interpretation of events in Zinc ZD·TN4572

case S_CREATE:
case S_SIZE:

II any unprocessed events are passed to base class for processing
default:

ccode = UIW_WINDOW::Event(event)j
breakj

Internal Details

LogicaiEvent() searches the event map table, finds an exact match for the event, event raw code and object
(e.g. window, button etc), or finds a match to the closest object from which the object is inherited and returns
the logical event associated with this match, or if no match is found, no mapping occurs.

LogicaiEvent() lives in z_win2.cpp, MapEvent() in z_map.cpp. To fully understand the algorithm, you
must first understand window/D, which shows inheritance-the entries for window/Dr]. For example, a
UIW_GROUP would have:

windowID[O] =
windowID[l]
windowID[2]
windowID[3]
windowID[4]

ID_GROUPj
ID_WlNOOWj
ID_WlNOOW_OBJECTj
ID_WlNOOW_OBJECTj
ID_WlNOOW_OBJECTj

To modify the eventMapTable and reassign it to an object, refer to the following example:

#define MY_EVENT 10001
static UI_EVENT_MAP _eventMapTable[]

{ ID_TEXT, S_CLOSE, WM_KEYUP,
{ ID_TEXT, L_TOP, WM_KEYOOWN,
II Define my new event in the event
{ ID_TEXT, MY_EVENT, WM_CHAR,
II End of array.
{ ID_END, 0, 0, 0 } } j

= {
F8 },
F7 },

table
F6 },

II then in code, assign the new table to a text object
UIW_TEXT *text = new UIW_TEXT(2,2,20,20,"1,50);
text->eventMapTable = _eventMapTablej

If this is done, when the text object is current, only the above logical events will be mapped by the text's
Event() function. For more complete examples see the Zinc BBS.

Zinc 4.1 Addenda and Errata 101

Interpretation of events in Zinc ZD·TN4572

Notes:
• When a user clicks with the mouse on a text field, the raw mouse event code is placed in the event

queue and the event is passed to the text object.

• The text object's Event() function calls LogicalEvent(), which in turn calls MapEvent().

• The raw event is mapped to a logical event (by looking it up in an eventMapTable) and which is then
returned by LogicalEvent(). In this case, the logical event will be L_BEGIN_MARK, and the x1y
information in the event will indicate where in the text field to begin marking. (Alternatively, if a
button were the current object, this same mouse click would generate an L_SELECT for the ccode,
and the Event() function for the button would process it accordingly.)

• The Event() function acts on the logical event. (You might have the Event() function pass control to
your callback function here, or send another event to a programmer-defined object.)

102 Zinc 4.1 Addenda and Errata

3.4

Keywords:
Versions:
Components:
Platforms:
Issued:

Question

Trapping the S_CLOSE event

S_CLOSE
3.0+
UI_WINDOW_MANAGER.
All
January 20, 1995

Trapping the S_CLOSE event ZD·TNIOIO

ZD-TN1010

Where can I trap S_CWSE?

Answer

Here are two ways of trapping S_CLOSE.

The fIrst way is to trap for S_DEINITIALIZE in the Event() function of your derived window. Once the
Event function receives the event, you know that the window is about to be closed by the Window Manager.
When this happens you can do any special cleanup or handling before passing the event to the base class. The
drawback to this method is that the window is already in the process of being closed and shouldn't be
blocked. The following snippet ofcode illustrates.

EVENT_TYPE DERIVED_WINDOW::Event(const UI_EVENT &event)
{

case S_DEINITIALIZE: II Done in the Event() function of my derived window.
{

II Do any data handling or cleanup, then pass it to the base class.
ccode = UIW_WINDOW:: Event (event) ;
}

break;

The second way is deriving your own Window Manager. When S_CLOSE is put on the queue, the Window
Manager will see it fIrst, since it handles this type of message. Once it sees the event, you can continue to
delete the window, or block the event upon conditions you defIne. The following snippet illustrates.

EVENT_TYPE NEW_WINDOW_MANAGER::Event(const UI_EVENT &event)
{

case S_CLOSE: II Trap the S_CLOSE to swap the windows.
{

II Get a pointer to the old window.

UI_WINDOW_OBJECT *currentWindow = First(); II current == first.
II Make sure it is OK to delete the window.

Zinc 4.1 Addenda and Errata 103

Trapping the S_CLOSE event ZD·TNIOIO

if (deleteWin == OK)
ccode = UI_WlNOOW_MANAGER:: Event (event) ;

II Else whatever condition is met to keep the window.
}

break;

104 Zinc 4.1 Addenda and Errata

3.5

Keywords:
Versions:
Platforms:
Issued:

Question

Working with Flags

Flags
3.0+
All
January 20, 1995

Working with Flags ZD-TN7000

ZD-TN7000

What are flags, and what do they do?

Answer

Flags are what you use to set and check infonnation contained in objects; they provide more functionality to
objects than just their class. For example, a UIW_BUTTON object uses flags to determine whether it is a
radio button, a check box, or a button that appears three-dimensional.

Defined more technically, flags are const declarations, located in class definitions, with bits set to ones in

binary places (2°, 21,22, etc.). For readability by humans, the names of flags reflect what types of classes the
flag affects. For example, the window object flag WOF_JUSTIFY_CENTER is

canst WOF_JUSTIFY_CENTER = 00000001

the flag WOF_BORDER is

canst WOF_BORDER = 00000100

and the flag WOF_MINICELL is

canst WOF_MINICELL = 01000000

This way, a window object can be center justified and bordered, and use minicell coordinates, at the same
time.

The following is a table of flag types, their naming conventions, and an example of how they affect the status
or attributes of objects~

Zinc 4.1 Addenda and Errata 105

Working with Flags ZD·TN7000

Flag naming convention

Flag type Class Example

Attachments ATCF_FLAGS ATCF_STRETCH

Buttons BTF_FLAGS BTF_RADIO_BUTTON

Button status BTS_FLAGS BTS_DEPRESSED

Dimension constraints DNCF_FLAGS DNCF_WIDTH

Dates DTF_FLAGS DTF_ASIAN_FORMAT

Icons ICF_FLAGS ICF_DOUBLE_CLICK

Images IMP_FLAGS IMP_TILED

Menu items MNIF_FLAGS MNIF_MINIMIZE

Numbers NMF_FLAGS NMF_SCIENTIFIC

Relative constraints RLCF_FLAGS RLCF_VERTICAL_CENTER

Strings STF_FLAGS STF_UPPER_CASE

System buttons SYF_FLAGS SYF_GENERIC

Storage UIS_FLAGS UISjJINARY

Lists WNF_FLAGS WNF_AUTO_SORT

Window object actions WOAF_FLAGS WOAF_MDCOBJECT

Window objects WOF_FLAGS WOF_NON_FIELD_REGION

Window object status WOS_FLAGS WOS_SELECTED

Flag functionality

Although there are flag types for nearly every window object in Zinc, flags do only one of two things: check
status or set status. There are only a few status flags, and quite a few other flags. Use the status flags to deter
mine if the user has changed your object in some way. Use the status flags to set or change the attributes of
your objects.

• status flags

-Flag prefixes that end in "S," as in WOS_. These reflect the status of an object, such as whether
the user minimized or maximized it, or whether the user clicked in it.

106 Zinc 4.1 Addenda and Errata

Working with Flags ZD·TN7000

• other flags

-Flag prefixes that end in "F," as in WOAF_. These set the attributes of an object, such as whether
the object takes up the entire window region, is lowercase, or is a vertical or horizontal scroll bar.

Where to find a complete list offlags

As we mentioned earlier, flags are really declarations of constants. To learn about the different flags that Zinc
objects can use, you have several resources:

• The Quick Reference Guide

-Lists the flags that each class uses, as well as the hexadecimal values of the flags.

• Programmer's Reference Vols. 1 and 2

-Lists an class's different members, including the flag-setting member variables.

• The source code

-You can always read the source code to find out the flags a class uses, and find out what happens
to an object when it receives a specific flag after it's constructed.

How do I use flags?

You use flags to set or check the state of an object. You can use them three ways.

1. You can use an object's flag-checking functions.

2. You can set the flags in the object's constructor when you use the new operator.

3. After the object's construction, you can

-set a flag into an object's flag member with a bitwise OR

-unset a flag into an object's flag member with a bitwise AND

-toggle a flag into an object's flag member with a bitwise XOR.

Using an object's flag-checking functions

Each object class definition contains some flag-checking functions that you can use with an object flag mem
ber. The functions return TRUE if the condition is met, or FALSE if it is not.

An example of a flag-checking function is UI_WINDOW_OBJECT's IsLeftJustified(). Here's an example
of how you can use it:

UIW_STRING *myString;

if (myString->IsLeftJustified())
\\ do something

There are quite a few flag-checking functions you can use. For an exhaustive list of them, consult Table 2,

"Flag-checking functions," on page 42.

Zinc 4.1 Addenda and Errata 107

Working with Flags ZD·TN7000

Setting flags in the object's constructor with a new operator

To set a flag in the object's constructor with the new operator, do the following:

UIW_TEXT *myTextObject = new UIW_TEXT(O, 0, 60, 20, HN, 256, WNF_NO_FLAGS, WOF_NON_
SELECTABLE);

Setting flags with the flag members

To set a flag with an object's woFlags member, use a bitwise OR. If the object is attached to the Window
Manager, call the object's Information() function to cause it to redisplay itself.

object->woFlags I=WOF_NON_SELECTABLE; \\ set the object as nonselectable
object->Information(I_CHANGED_FLAGS, ZIL_NULLP(void); \\ tell the object its flag changed
only if attached to Window Manager

To unset a flag with an object's woFlags member, use abitwise AND. If the object is attached to the Window
Manager, call the object's Information() function to cause the object to redisplay itself.

object->woFlags &= WOF_NON_SELECTABLE; \\ set the object as nonselectable
object->Information(I_CHANGED_FLAGS, ZIL_NULLP(void); \\ tell the object its flag changed
only if attached to Window Manager

To toggle a flag with an object's woFlags member, use a bitwise XOR. Ifthe object is attached to the Window
Manager, call the object's Information() function to cause the object to redisplay itself.

object->woFlags A=WOF_NON_SELECTABLE; \\ set the object as nonselectable
object->Information(I_CHANGED_FLAGS, ZIL_NULLP(void); \\ tell the object its flag changed
only if attached to Window Manager

108 Zinc 4.1 Addenda and Errata

Working with Flap ZD·TN7000

Section 4
Drawing, video, and
graphics

Zinc 4.1 Addenda and Errata 109

The Drawltem() function ZD·TN1007

4.1

Keywords:
Versions:
Components:
Platforms:
Issued:

Question

The Drawltem() function

Drawltem(), drawing, VirtualGet(), VirtualPut()
All
Drawltem()
All
November 11, 1994

ZD-TN1007

How do I use the Drawltem() function?

Answer

Use the Drawltem() function when you want an object to appear differently than its default appearance, or
when you want additional graphics drawn on a generic object. The generic format follows.

EVENT_TYPE CLASS_NAME: :DrawItem (const DI_EVENT &event, EVENT_TYPE ccode)
{

DI_REGION region = true;
display->VirtuaIGet(screenID, region);
II Possibly call the base class (if you'll draw on "top" of the standard object)
BASE_CLASS: :DrawItem (event, ccode);

II Programmer defined drawing (use display class primitives)

display->VirtuaIPut(screenID);

return (TRUE) ;

If the object is derived from one of Zinc's class objects then the user may want to call the base class
Drawltem() function before he does his drawing (which might draw on top of the default object.) At the
end of the Drawltem() function we return TRUE to indicate that the drawing is complete and no more
drawing should take place. If FALSE or 0 is returned then additional drawing may take place by the base
class. VirtualGet() and VirtuaIPut() functions attempt to optimize the amount of drawing done to the
screen.

Drawing should be based on the true coordinates and not relative; "true" is a UI_REGION structure and has the
proper region assigned to it.-lftheprogrammefdiiiwsoutside ofthis region then there may be unexpected results. If
drawing could occuroutside ofthis region, such as a long line, then an additional member, clip, also a UCREGION
structure, should be passed to the drawing primitives. This will ensure that any drawing outside of "true" will be
properly clipped; "true" is a public member and "clip" a protected member ofUI_WINDOW_OBJECT.

WOS_OWNERDRAW must be set in the object's woStatus member for this function to be called. For addi
tional information consult the Getting Started manual under the LSTITM example.

110 Zinc 4.1 Addenda and Errata

4.2

Keywords:
Versions:
Components:
Platforms:

Question

Multithreaded applications on OS/2

Event manager.
4.0+
UI_EVENT_MANAGER
OS/2

Multithreaded applications on OS/2 ZD·TNI017

ZD-TN1017

How do I get Zinc to work with multiple threads?

Answer

There are several things that must be done to get Zinc to function with multiple threads. Zinc is a non-reen
trant application. What this means is that a call to a function can't be interrupted by a subsequent call to the
same function or the variables will become corrupted Most C library functions are this way, and so is Zinc.

To get around this you must derive the Event Manager and override the Put() function. Since this is a virtual
function it very simple to do. Here is a typical class declaration that you might use with the Event Manager.

class ZIL_EXPORT_CLASS EVENT_MANAGER : public UI_EVENT_MANAGER
{

public:
EVENT_MANAGER(UI_DISPLAY *_display, int _noOfElements = 100);
virtual -EVENT_MANAGER();
void Put(const UI_EVENT &event, O-FLAGS flags);

} ;

Since the Put() function is non-reentrant it must be protected or the event queue will become corrupted.
There are two ways to do this. You can either use the OS/2 functions, DosEnterCritSec() and
DosExitCritSec() functions which is very simple or you can use the functions DosCreateMutexSem() and
DosCloseMutexSem().

The Enter and Exit critical section functions take no arguments and are therefore simple to use. The example
uses this method as illustrated by the following snippet of code.

void EVENT_MANAGER::Put(const UI_EVENT &event, O-FLAGS flags)
{

II Start the critical section.
DosEnterCritSec();
UI_EVENT_MANAGER::Put(event, flags);
II Exit the critical section.
DosExitCritSec();

Zinc 4.1 Addenda and Errata 111

Multithreaded applications on OS/2 ZD-TNI017

True OS/2 gurus would probably argue that this should be done with semaphores, using the other mentioned
functions. You should consult your OS/2 programming manual on the use of the other functions. They create
and delete mutual exclusive semaphores.

Once you have protected the Put() function this allows your other threads to post messages on the event
queue giving you the ability to communicate with Zinc. The only constraint on this is that Zinc must remain
on a single thread. It can't at this time be split apart into multiple threads. Threading allows you to run other
programs or processes next to your Zinc program.

112 Zinc 4.1 Addenda and Errata

4.3

Key words:
Versions:
Components:
Platforms:
Issued:

Question

Changing video modes at run time

display mode, resolution, run time
Zinc 3.5 and later
Library
DOS
September 15, 1994

Changing video modes at run time ZD·TN2005

ZD-TN2005

How do you change graphics or text resolution at run time?

Answer

Changing the display mode requires:

• Notifying the Window Manager and Event Manager that the display is being changed;

• Deleting the current display;

• Creating the new display; and

• Notifying the Window Manager and Event Manager of the new display.

The following is an example program that can change between two possible text modes and two possible
graphics modes. The graphics display used in this example is the UI_GRAPIDCS_DISPLAY: The major
portion of the MY_WIN::Event() function came from the ZINCAPP.CPP module in the ZINCAPP tuto
rial.

Note: If using Zinc 3.6 or Zinc 3.5 you will need to replace ZIL_NULLF(ZIL_USER_FUNCTION) with
NULLF and ZIL_NULLP(void) with NULLP(void).

#include <ui_win.hpp>

canst int TDM_25X40 = 10000i
canst int TDM_43X80 = 10001i
canst int GR_DEFAULT = 10002i
canst int GR_102 = 10003i

class MY_WIN : public UIW_WINDOW
{

public:

MY_WIN()i

virtual -MY_WIN(){}
virtual EVENT_TYPE Event (canst UI_EVENT &event)i

} i

Zinc 4.1 Addenda and Errata 113

Changing video modes at run time ZD·TN2005

*this
+ new UIW_BORDER
+ new UIW_MAXIMIZE_BUTI'ON
+ new UIW_MINIMIZE_BUTI'ON
+ new UIW_SYSTEM_BUTTON(SYF_GENERIC)
+ new UIW_TITLE ("TEST")

+ & (*new UIW_PULL_OOWN_MENU()
+ & (*new UIW_PULL_OOWN_ITEM ("Text Mode")

+ new UIW_POP_UP_ITEM("TDM_25" , MNIF_SEND_MESSAGE, BTF_NO_3D,
WOF_NO_FLAGS, ZIL_NULLF(ZIL_USER_FUNCTION), TDM_25X40)

+ new UIW_POP_UP_ITEM("TDM_43", MNIF_SEND_MESSAGE, BTF_NO_3D,
WOF_NO_FLAGS, ZIL_NULLF(ZIL_USER_FUNCTION), TDM_43X80))

+ & (*new UIW_PULL-l)OWN_ITEM("Graphics Mode")
+ new UIW_POP_UP_ITEM("Default", MNIF_SEND_MESSAGE, BTF_NO_3D,

WOF_NO_FLAGS, ZIL_NULLF (ZIL_USER_FUNCTION), GR_DEFAULT)
+ new UIW_POP_UP_ITEM ("SuperVGA", MNIF_SENDj1ESSAGE, BTF_NO_3D,

WOF_NO_FLAGS, ZIL_NULLF(ZIL_USER_FUNCTION), GR_I02)));

EVENT_TYPE MY_WIN::Event(const UI_EVENT &event)
{

UI_EVENT tEvent;
int isGraphics = FALSE;
EVENT_TYPE ccode = LogicalEvent(event);

II Check if the event is a zinc system event.
if (ccode < TDM_25X40)

return (UIW_WINOOW::Event(event));
else

switch (ccode)
{

case TDM_25X40:
tEvent.rawCode TDM_25x40;
break;

case TDM_43X80:
tEvent.rawCode TDM_43x80;
break;

case GR_DEFAULT:
tEvent.rawCode = 4;
isGraphics = TRUE;
break;

case GR_I02:
tEvent.rawCode = Oxl02;
isGraphics = TRUE;
break;

114

}

tEvent.type

Zinc 4.1 Addenda and Errata

Changing video modes at run time ZD-TN200S

tEvent.data = ZIL_NULLP(void);

II Notify the event and window managers that we are changing the display.
windowManager->Event(tEvent);
eventManager->Event(tEvent);
delete display;

II Check for text or graphics mode.
if (isGraphics)
{

display = new UI_GRAPHICS_DISPLAY(tEvent.raWCode);
if (!display->installed)
{

delete display;
display = new UI_TEXT_DISPLAY();

}

else
display = new UI_TEXT_DISPLAY(tEvent.raWCode) ;

II Make sure the window doesn't have negative coordinates. If you have
II more than one window, this will need to be done for each window.

if (relative. top < 0)
{

relative.bottom = relative.Height() - 1;
relative. top = 0;

}

if (relative. left < 0)
{

relative. right relative.Width() - 1;
relative. left = 0;

II Notify the event and window managers that we changed the display.
tEvent.data = display;
eventManager->Event(tEvent);
ccode = windowManager->Event(tEvent);

}

return (ccode) ;

int UI_APPLICATION::Main (void)

UIW_WINDOW *window = new MY_WIN();
*windowManager

+ window;
UI_APPLICATION::Control();

Zinc 4.1 Addenda and Errata 115

Changing video modes at run time ZD-TN2005

II Must re-initialize the UI_APPLICATION class' display member to exit gracefully.
display = UI_WINDOW_OBJECT::displaYi
return(O) i

116 Zinc 4.1 Addenda and Errata

4.4

Keywords:
Versions:
Components:
Platforms:
Issued:
File:

Question

Palette mapping in Zinc

color, palette mapping
3.0 and later
Library
All
July 7, 1994
PALETTE.ZIP

Palette mapping in Zinc ZD·TN4573

ZD-TN4573

How are object colors handled in Zinc?

Answer

Palette mapping (color control) under Zinc follows these rules:

• The native operating system will draw objects in the native OS colors, unless the WOS_OWNER
DRAW flag is set for that object.

• In DOS and Curses Zinc's Drawltem() function will be called to draw each object.

• If the WOS_OWNERDRAWflag is set, the following applies:

- In DOS, Zinc will always call a programmer-defined Drawltem() function for the drawing of
the object.

-In other operating systems, the OS will defer the drawing of that object to Zinc's Drawltem()
function for the object or to a programmer defined Drawltem() function, if defined.

• Each object has a pointer to a palette map table which contains entries for each object, possible
states for that object (e.g. selected, current, noncurrent etc.,) and a corresponding set of colors for
that object's state.

• This table can be directly modified by the programmer or the programmer can reassign an object's
palette map table to a programmer defined table.

• Objects are drawn (or redrawn) whenever the object or its parent receives a message to draw. For
example, objects are redrawn when they receive S_REDISPLAYor S_SIZE messages, etc.

• The palette map table is a member of UI_WINDOW_OBJECT and is defined as:

UI_PALETTE_MAP *paletteMapTablei

Zinc 4.1 Addenda and Errata 117

Palette mapping in Zinc ZD·TN4573

• All objects contain apaletteMapTable pointer since they all inherit from UI_WINDOW_OBJECT.
Upon instantiation, each object's paletteMapTable pointer will point to the default palette map table
found in ~pnorm.cpp.

Example
EVENT_TYPE UIW_STRING::DrawItem(const UI_EVENT &, EVENT_TYPE ccode)

II The DrawItem() function is defined virtual so the base class's DrawItem() function II
can be overridden by a programmer defined DrawItemO function.
{

UI_REGION region = true;

II lastPalette is set under the S_DISPLAY_ACTIVE I S_DISPLAY_INACTIVE
II event in the string's Event() function by a call to the LogicalPalette()

II function in z_mapl.cpp. It calls MapPallette() in z_win2.cpp.
display->Rectangle(screenID, region, lastPalette, 0, TRUE, FALSE, &clip);

DrawText(screenID, region, text, lastPalette, FALSE, ccode);

return (ccode);

To fully understand this algorithm, the following concepts are important:

windowID[1shows inheritance. The entries for windowID[1for a UIW_GROUP object would be

windowID[O]
windowID [1]
windowID[2]
windowID [3]
windowID [4]

ID_GROUP;
ID_WINDOW;
ID_WINDOW_OBJECT;
ID_WINDOW_OBJECT;
ID_WINDOW_OBJECT;

F1agSet() and F1agsSet() are defined as follows:

#define FlagSet(flagl, flag2) ((flagl) & (flag2))
#define FlagsSet(flagl, flag2) (((flagl) & (flag2))

LOGICAL_PALETTE values:

const LOGICAL_PALETTE PM_ANY= OxOOOO;
const LOGICAL_PALETTE PM_ACTIVE= OxOOOl;
const LOGICAL_PALETTE PM_INACTIVE= Ox0002;
const LOGICAL_PALETTE PM_CURRENT= Ox0004;
const LOGICAL_PALETTE PM_SELECTED= Ox0008;
const LOGICAL_PALETTE PM_NON_SELECTABLE= Ox0010;
const LOGICAL_PALETTE PM_HOT_KEY= Ox0020;
I I Special mode palettes (WOAF_DIALOG_OBJECT border)
const LOGICAL_PALETTE PM_SPECIAL= Ox0040;

(flag2))

118 Zinc 4.1 Addenda and Errata

Palette mapping in Zinc ZD·TN4573

• An analysis of the LogicalPalette() and MapPaIette() algorithms shows an important concept for
palette map table entries: PM_ANY must be at the end of an object's grouping of UCPALETTE_MAP
states.

• To create a programmer-defined palette mapping for an object create a UI_PALETTE_MAP for the
object, add the specific entries, then assign object->paletteMapTable this new paletteMap.

static UI_PALETTE_MAP newPaletteMap[]
{

{ ID_WINOOW_OBJECT, PM_CURRENT,
{ I " attrib(YELLOW, BLACK), attrib(MONO_HIGH, MONO_BLACK), PTN_SOLID_FILL,

BLUE, WHITE, BW_BLACK, BW_WHITE, GS_BLACK, GS_WHITE } },
{ ID_WINOOW_OBJECT, PM_ANY,

{ , " attrib(YELLOW, LIGHTGRAY), attrib(MONO_HIGH, MONO_BLACK),
PTN_SOLID_FILL, WHITE, BLUE, BW_BLACK, BW_WHITE, GS_BLACK, GS_WHITE } },

II End of array.
{ ID_END, 0, { 0, 0, 0, 0, 0, 0 } }

} ;

object->paletteMapTable = newPaletteMapi

For more information see palette.zip on the Zinc BBS (3.6 conference, user contributions).

Zinc 4.1 Addenda and Errata 119

Loading large bitmaps with OS/2-specific functions ZD-TN10ll

4.5

Keywords:
Versions:
Components:
Platforms:

Question

Loading large bitmaps with OS/2-specific functions

bitmaps, OS/2
4.0+
UI_WINDOW_OBJECT
OS/2

ZD-TN1011

How do I display bitmaps larger than 128xl28 under OS/2?

Answer

A bitmap ID is assigned in a resource (.RC) file that corresponds to an OS/2 .BMP fIle. With that ID, a bit
map can be loaded using OS/2 calls. Once the bitmap is loaded it can be easily displayed using Zinc's UC
WINDOW_OBJECT class. The OS/2 function GpiLoadBitmap takes the bitmapID, loads the bitmap and
returns a handle to the bitmap. It is also necessary to get a handle to the presentation space with WinGetPS().
Once that is done then the call to WinDrawBitmap() can be used to display the bitmap as the following code
shows.

BITMAP_OBJECT::BITMAP_OBJECT(int _bitmapID) :
UI_WINOOW_OBJECT(O, 0, 0, 0, WOF_NON_FIELD_REGION, WOAF_NON_CURRENT),
bitmapID(_bitmapID), hBitmap(O)

BITMAP_OBJECT::-BITMAP_OBJECT()
{

II We need to make sure that we delete the bitmap when we destroy the object.
If (hBitmap)

GpiDeleteBitmap(hBitmap);

II Displaying the bitmap is done here.
EVENT_TYPE BITMAP_OBJECT: :DrawItem (canst UI_EVENT &, EVENT_TYPE)
{

UI_REGION region = true;
display->VirtualGet(screenID, region);

II We create an RECTL structure and fill it with our objects region to prepare for the
drawing of the bitmap.

RECTL recti
rect.xLeft = 0;
rect.yBottom = 0;
rect.xRight = true.Width() - 1;

rect.yTop = true.Height() - 1;

120 Zinc 4.1 Addenda and Errata

Loading large bitmaps with OS/2-specific functions ZD-TNIOll

II The bitmap is drawn with WinDrawBitmap.
WinDrawBitmap(hps, hBitmap, NULL, (POINTL *)&rect, 0, 0,

DBM_IMAGEA'ITRS I
(FlagSet(woFlags, WOF_NON_FIELD_REGION) ? DBM_STRETCH 0));

display->VirtuaIPut(screenID)j
return (TRUE) ;

}

EVENT_TYPE BITMAP_OBJECT::Event(const UI_EVENT &event)
{

EVENT_TYPE ccode = event. type;
switch (ccode)
{

case S_CREATE:
II Since we are doing the loading and displaying of the bitmap the object must be marked
with
I I WOS_OWNERDRAW flag.

woStatus 1= WOS_OWNERDRAW;
II In the event function under S_CREATE we first get a handle to the presentation space II
by calling WinGetPS then make the call to GpiLoadBitmap with the returned
II presentation space handle.

ccode = UI_WINDOW_OBJECT: :Event (event) ;
hps = WinGetPS(screenID)j
hBitmap = GpiLoadBitmap(hps, NULLHANDLE, bitmapID, 0, 0) j

breakj

default:
ccode = UI_WINDOW_OBJECT::Event(event)j

return ccode;

A complete set of code is available on our BBS for downloading upon request.

Zinc 4.1 Addenda and Errata 121

Setting the mouse cursor to a wait state ZD·TN4020

4.6

Keywords:
Version:
Component:
Platforms:
Issued:

Question

Setting the mouse cursor to a wait state

mouse, changing to an hourglass.
3.6,4.0
~ouse;eventl\1anager

Windows
January 31, 1995

ZD-TN4020

How can the I change the mouse cursor image an hourglass so that when the user moves the mouse, it doesn't
change back to a normal view cursor mouse image?

Answer

In Windows, each object detennines how the mouse cursor image is to be displayed when the mouse is
moved over that object. This means that when the mouse gets changed to an hourglass image (DM_WAl1), as
soon as the user moves the mouse, the object that the mouse is over gets a mouse move event, and changes
the mouse cursor image back to the image that object wants.

One simple way to force the mouse to remain as an hourglass, even when the user moves the mouse, is to trap
all mouse events before they get passed to the windowManager, and not pass any mouse events to the
windowManager that would change the mouse image (such as WM_MOUSEMOVE). This can be done writ
ing your own Control() loop as follows:

II Use the following code in place of UI_APPLICATION::Control()i
UI_EVENT eventi
EVENT_TYPE ccodei
do
{

I I get an event from the queue
eventManager->Get(event, ~NORMAL)i

II pass mouse event to windowManager only when not in hourglass state.
II When in hourglass state, windowManger->userFlags gets set by programmer
I I to l.
if (! ((windowManager->userFlags)

&& event.message.message ==WM_MOUSEMOVE))
ccode = windowManager->Event(event)i

else
eventManager->DeviceImage(E_MOUSE,DM_WAIT)i

while (ccode ! = L_EXIT && ccode ! = S_NO_OBJECT) i

In order for this to work, the mouse would have to be changed to an hourglass with the following line of code:

eventManager->DeviceImage(E_MOUSE, DM_WAIT)i

122 Zinc 4.1 Addenda and Errata

Setting the mouse cursor to a wait state ZD·TN4020

Then windowManager->userFlags could be set to a pointer to some object of window. This would cause the
if() statement to fail and no mouse move events would get processed which would force the mouse to remain
as an hourglass image.

When you want the hourglass image to be changed back, use the following:

eventManager->Devicelmage(E_MOUSE, DM_VIEW);
windowManager->userFlags =0;

For an example on doing this, see mwait.zip on the user contributions conference, Zinc 4.0 listing of the
bulletin board.

Zinc 4.1 Addenda and Errata 123

Setting the mouse cursor to a wait state ZD·TN4020

Section 5
Zinc Designer

124 Zinc 4.1 Addenda and Errata

Integrating Directory Services from Zinc Designer ZD-TNlOO9

5.1

Keywords:
Versions:
Components:
Platforms:
Issued:

Question

Integrating Directory Services from Zinc Designer

Services, Zinc Designer
4.0+
Directory services from Zinc Designer.
All
November 21, 1994

ZD-TN1009

How do I use the directory services incorporated in Zinc Designer?

Answer

In versions of Zinc previous to version 4.0, directory services have existed only as an example program
called FILEEDIT. With version 4.0 this example has been eliminated, and the directory services directly
supported as a component of Zinc Designer. This means that directory services has been added to the
Designer libraries, and, even better, has been implemented as a separate module so the user can integrate this
into his own code.

To make directory services available to your code:

In your code file you need to include DIRECT.HPP and in your makefile or project you need to include
SERVICE.Lm and DIRECT.Lm.

The header should be in your \ZINC\lNCLUDE directory and the .Lm files should be in the proper library
directory. If these files are not present, you can remake the Designer or just compile the libraries in
\ZINC\DESIGN\SERVICE and \ZINC\DESIGN\DIRECT.

To access directory services in your application you must create a new service manager and a new directory
services:

II Create service manager to handle storage for various services
_serviceManager = new ZAF_SERVICE_MANAGER;
II Create directory service
*_serviceManager + new ZAF_DlRECTORY_SERVICE;

Various services take requests and return answers to those requests. You first need to set up the requestor, the
request, then you activate the service as follows:

int myRequest = OPT_FILE_OPEN;
II Set up the requestor
directoryService->Information(I_SET_REQUESTOR, this);
II Make a request to the directory service.
directoryService->Information(I_SET_REQUEST, &myRequest);
II Activate the service.
directoryService->Information(I_ACTIVATE_SERVICE, ZIL-NULLP(void));

Zinc 4.1 Addenda and Errata 125

Integrating Directory Services from Zinc Designer ZD·TNlOO9

The requestor is the object which will receive the return event. The request is what you want the service to do.
In this case the requestor is set as the derived window and the request to open a file. When terminated, the
service will return the negative value of the original request (when you choose OK on the service window.)
The returned request is put into the data portion of the event that is passed back to the window.

The following is a simple program that shows how to implement the directory service. You should look
closely at the Event() function of the derived window. This program assumes that there is a resource with a
menu or button with the value ooסס1 assigned to it, and that there is a UIW_STRING field with the stringlD
ofSTRING_FlEW. The program takes the return value and copies the data into the string field.

#include <ui_win.hpp>
#include <direct.hpp>

class WINDOW : public UIW_WINDOW
{

public:

WINOOW();

virtual -WINDOw() {}
virtual EVENT_TYPE Event (const DI_EVENT &event);
ZAF_DIRECTORY_SERVICE *directoryService;

protected:
UI_WINDOW_OBJECT *field;

} ;

WINDOW: :WINDOw() : UIW_WINDOW("p_rnain.dat-MAIN_WINDOW")
{

directoryService = new ZAF_DIRECTORY_SERVICE;
field = Get ("STRING_FIELD") ;
windowManager->Center(this);

EVENT_TYPE WINDOW::Event(const UI_EVENT &event)
{

EVENT_TYPE ccode = LogicalEvent(event);
switch (ccode)
{

case OPEN_FILE:

EVENT_TYPE myRequest = OPT_FILE_OPEN;
II Set the requestor to be this window.
directoryService->Information(I_SET_REQUESTOR, this);
II Make a request to the directory service.
directoryService->Information(I_SET_REQUEST, &myRequest);
II Activate the service.
directoryService->Information(I_ACTIVATE_SERVICE,ZIL_NULLP(void»;

126 Zinc 4.1 Addenda and Errata

Integrating Directory Services from Zinc Designer ZD·TNlOO9

break;

case -OPT FILE OPEN: II The return request is the opposite of the initial request.
field->Information(I_SET_TEXT, event.data);

break;

default:
ccode = UIW_WINDOW::Event(event);

}

return (ccode) ;

UI_APPLICATION::Main()
{

WINDOW *win = new WINDOW;

_serviceManager = new ZAF_SERVICE_MANAGER;
*_serviceManager + win->directoryService;

*windoWManager + win;

Control();

delete _serviceManager;
return(O) ;

Zinc 4.1 Addenda and Errata 127

The Service Manager ZD·TNI015

5.2

Keywords:
Versions:
Components:
Platforms:

Question

The Service Manager

Service Manager
4.0
ZAF_SERVICE_MANAGER
All

ZD-TN1015

Why do I need the Service Manager to use the directory service?

Answer

By default the Service Manager overrides the error system, help system, and the exit function. Because of
this, you should override the Service Manager's allocation of these systems when using your own.

Service Manager manages the storage files for the services. The services request files from the Service Man
ager, then the Service Manager opens the file. After opening the file, the Service Manager returns the storage
file pointer to the requesting service.

The Service Manager works similarly to the Window Manager. While the Window Manager manages the
message passing to attached windows, the Service Manager handles attached services. This makes services
reusable through the life of the program without instantiating the services over and over.

To override the Service Manager's errorSystem, helpSystem, and ExitFunction, assign them after allocating
the Service Manager itself. Make sure that the memory to errorSystem and helpSystem is deleted before you
reassign them, because the Service Manager has already allocated them. Ifyou reallocate them without delet
ing them first, your program will have a memory leak.

II The Service Manager allocates the helpSystem and errorSystem.
_serviceManager = new ZAF_SERVICE_MANAGER;

II If you want your copy of these they must be set after allocating the Service Manager.
II Delete the previous copy or you will have a leak.
delete UI_WINDOW_OBJECT::errorSystem;
UI_WINDOW_OBJECT::errorSystem = new UI_ERROR_SYSTEM;

II Reassign the exitFunction if needed. No Deletion is necessary for this.
windowManager->exitFunction = MyExitFunction;

II Process user responses.
Control();

II Clean up.
delete _serviceManager;

II Don't delete errorSystem or helpSystem, Service Manager is already removing them!
return (0);

128 Zinc 4.1 Addenda and Errata

5.3

Keywords:
Versions:
Components:
Platforms:

Question

Exporting a window to text

Export, .DAT, .TXT
4.0+
UIW_WINDOW
All

Exporting a window to text ZD·TNI016

ZD-TN1016

What does exporting a .DAT file to a .TXT file give me?

Answer

Exporting a .DAT file to a .TXT file outlines the relationships and contents of the objects in the .DAT file in a
text file. The contents of the text file are the object's stringID and text.

Exporting a .DAT file to a .TXT file outputs the stringID and the text but does not output the type of object.
This means that exporting a .DAT file to text is a one way operation; you can't import a .TXT file back into
the Designer. You could, however, enter the text into the Designer through delta storage, if your application
must support multiple languages. You could also create separate .DAT files for each language. Exporting a .
DAT file to a text is useful in translating. You can send this file to your translators who can then return you a
translation of the text in your main application's GUI. You can then enter the translation into your .DAT file.

Here is an output of a simple window. This window has a menu with several popup items, a status bar, and a
notebook with three pages and a few objects on each page.

WINDOW = "Window"

FIELD_2 = "item"
{

FIELD_44 = "item"
FIELD_45 = "item"
FIELD_46 = "item"

STATUS_STRING = "empty string"
STATUS_PROMPT = "Status:"

}

NOTEBOOK
{

PAGE_1 = "Page 1"
{

FIELD_9 = "string"

Zinc 4.1 Addenda and Errata 129

Exporting a window to text ZD-TNI016

FIELD_10 "string"
FIELD_11 "string"
FIELD_12 "button"
FIELD_13 "button"
VERTICAL_LIST
{

FIELD_15
FIELD_16
FIELD_17
FIELD_18
FIELD_19

}

PAGE_2 = "Page 2"
{

"Check-box"
"Check-box"
"Check-box"
"Check-box"
"Check-box"

HORIZONTAL_LIST
{

FIELD_21
FIELD_22
FIELD_23
FIELD_24
FIELD_25
FIELD_26
FIELD_27
FIELD_28
FIELD_29

"Radio-button"
"Radio-button"
"Radio-button"
"Radio-button"
"Radio-button"
"Radio-button"
"Radio-button"
"Radio-button"
"Radio-button"

}

PHONE_FIELD = "(_l _-__"
DATE_FIELD = "5-2-1995"
TIME_FIELD = "8:21 a.m."

PAGE_3 = "Page 3"
{

MAIN_GROUP = "Main Group"
{

FIELD_34
FIELD_35
FIELD_36
FIELD_37

"Radio-button"
"Radio-button"
"Radio-button"
"Radio-button"

}

HUE

SATURATION
VALUE
FIELD_41 "Hue:"
FIELD_42 "Sat:"
FIELD_43 "Val:"

130 Zinc 4.1 Addenda and Errata

Using multiple .DAT tiles in one application ZD-TN2003

5.4

Keywords:
Versions:
Components:
Platforms:
Issued:

Question

Using multiple .OAT files in one application

.DAT
3.5, 3.6, 4.0
.DAT files
All
September 8, 1994

ZD-TN2003

Can I have more than one .DAT file in an application?

Answer

Yes, you can have more than one .DAT file in an application. However, there are some things that must be
done to do this. The designer generates three files when saving a resource file: the .DAT file itself, a .CPP
and an .HPP. The .CPP contains a user table and an object table. The .HPP file contains the help context and
the numberIDs for the objects.

To use multiple .DAT files, the user tables and object tables from all of the .CPP files must be combined into
one user table and one object table. When combining the object tables, there must only be one entry for each
type of object. When combining the user tables, there must only be one entry for each user function or com
pare function. The .HPP files must also be included in the one .CPP file.

Following is a simple example of combining two .CPP files created by Zinc Designer 4.0. Both original .
CPP files are listed first, followed by a step-by-step merge of the two files:

TESTl.CPP

#include <ui_win.hpp>
#define USE_DERIVED_OBJECTS
#include "testl.hpp"
void z-:jump_dummy (void) {} / / Bug fix for broken linkers.
extern EVENT_TYPE Function1(UI_WINDOW_OBJECT *, UI_EVENT &, EVENT_TYPE};
static ZIL_ICHAR _Function1[] = { 'F', 'u', 'n', 'c', 't', 'i', '0', 'n', '1',0 };

static UI_ITEM _userTable[] =

{

0, ZIL_VOIDF(Function1}, _Function1, 0 },
ID_END, ZIL_NULLP(void}, ZIL_NULLP(ZIL_ICHAR}, 0 }

};

UI_ITEM *UI_WINDOW_OBJECT::userTable = _userTable;

static UI_ITEM _objectTable[] =
{

ID_BORDER, ZIL_VOIDF(UIW_BORDER: :New}, UIW_BORDER: :_className, 0 },
ID_BUTTON, ZIL_VOIDF(UIW_BUTTON::New}, UIW_BUTTON::_className, 0 },

Zinc 4.1 Addenda and Errata 131

Using multiple .DAT files in one application ZD·TN2003

IDJ1AXIMIZE_BUTTON, ZIL_VOIDF(UIW_MAXIMIZE_BUTTON: :New),

UIW_MAXIMIZE_BUTI'ON: : _className, 0 },

ID_MINIMIZE_BUTTON, ZIL_VOIDF (UIWJ1INIMIZE_BUTTON: :New) ,

UIW_MINIMIZE_BUTI'ON: :_className, 0 },

ID_STRING, ZIL_VOIDF(UIW_STRING: :New), UIW_STRING: :_className, 0 },

ID_SYSTEt-CBUTI'ON, ZIL_VOIDF (UIW_SYSTEM_BUTI'ON: :New) ,

UIW_SYSTEM_BUTTON::_className, 0 },

ID_TITLE, ZIL_VOIDF(UIW_TITLE::New), UIW_TITLE::_className, 0 },

ID_WINOCM, ZIL_VOIDF(UIW_WINOOW: :New), UIW_WINOCM: :_className, 0 },

ID_END, ZIL_NULLP(void), ZIL_NULLP(ZIL_ICHAR), 0 }

} ;

UI_ITEM *UI_WINDOW_OBJECT::objectTable = _objectTable;

TEST2.CPP
#include <ui_win.hpp>

#define USE_DERIVED_OBJECTS

#include "test2.hpp"

void z-Jurn~,-dummy(void) {} / / Bug fix for broken linkers.

extern EVENT_TYPE Func2 (UI_WINDOW_OBJECT *, UI_EVENT &, EVENT_TYPE);

static ZIL_ICHAR _Func2[] = { 'F', 'u', 'n', 'c', '2',0 };

static UI_ITEM _userTable[]

{

0, ZIL_VOIDF (Func2), _Func2, 0 },

ID_END, ZIL_NULLP(void), ZIL_NULLP(ZIL_ICHAR), 0 }

} ;

UI_ITEM *UI_WINOCM_OBJECT:: userTable = _userTable;

static UI_ITEM _objectTable[] =
{

ID_BORDER, ZIL_VOIDF(UIW_BORDER: :New), UIW_BORDER: :_className, 0 },

ID_BUTTON, ZIL_VOIDF(UIW_BUTI'ON: :New), UIW_BUTTON: :_className, 0 },

ID_ICON, ZIL_VOIDF (UIW_ICON: :New), UIW_ICON: :_className, 0 },

ID_MAXIMIZE_BUTTON, ZIL_VOIDF(UIW_MAXIMIZE_BUTTON: :New) ,

UIW_MAXIMIZE_BUTTON::_className, 0 },

ID_MINIMIZE_BUTTON, ZIL_VOIDF(UIW_MINIMIZE_BUTTON::New),

UIW_MINIMIZE_BUTI'ON::_className, 0 },

ID_SYSTEM_BUTTON, ZIL_VOIDF (UIW_SYSTEM_BUTTON: :New),

UIW_SYSTEM_BUTTON: :_className, 0 },

ID_TITLE, ZIL_VOIDF(UIW_TITLE::New), UIW_TITLE::_className, 0 },

ID_WINOCM, ZIL_VOIDF(UIW_WINOOW: : New) , UIW_WINOCM: :_className, 0 },

ID_END, ZIL_NULLP(void), ZIL_NULLP(ZIL_ICHAR), 0 }

} ;

UI_ITEM *UI_WINDOW_OBJECT::objectTable = _objectTable;

TESTl.CPP and TEST2.CPP rombined
#include <ui_win.hpp>

#define USE_DERIVED_OBJECTS

#include "testl.hpp"

132 Zinc 4.1 Addenda and Errata

Using multiple .DAT mes in one application ZD-TN2003

Must add the include for test2.hpp.
#include "test2.hpp"
void z-:jurnp_dummy (void) {} / / Bug fix for broken linkers.
extern EVENT_TYPE Function1 (UI_WINOOVLOBJECT *, UI_EVENT &, EVENT_TYPE);
Must add the function prototype.
extern EVENT_TYPE Func2 (UI_WINDOW_OBJECT *, UI_EVENT &, EVENT_TYPE);
static ZIL_ICHAR _Function1[] = { 'F', 'u', 'n', 'c', 't', 'i', '0', 'n', '1',0 };
Must add the international string for the function name.
static ZIL_ICHAR _Func2[] = { 'F', 'u', 'n', 'c', '2',0 };

static UI_ITEM _userTable[]
{

{ 0, ZIL_VOIDF(Function1), _Function1, 0 },
Must add the function to the user table.

{ 0, ZIL_VOIDF (Func2), _Func2, 0 },
{ ID_END, ZIL_NULLP(void}, ZIL_NULLP(ZIL_ICHAR), 0 }

} ;

UI_ITEM *UI_WINDOW_OBJECT::userTable = _userTable;

static UI_ITEM _objectTable[] =
{

{ ID_BORDER, ZIL_VOIDF(UIW_BORDER::New), UIW_BORDER::_className, 0 },
{ ID_BUTTON, ZIL_VOIDF(UIW_BUTTON::New}, UIW_BUTTON::_className, 0 },

The UIW_ICON is the only object not already in the object table so it is the only object
that needs to be added.

{ ID_ICON, ZIL_VOIDF(UIW_ICON::New}, UIW_ICON::_className, 0 },
{ ID_MAXIMIZE_BUTTON, ZIL_VOIDF (UIW_MAXIMIZE_BUTTON: :New) ,

UIW_MAXIMIZE_BUTTON::_className, 0 },
ID_MINIMIZE_BUTTON, ZIL_VOIDF(UIW_MINIMIZE_BUTTON::New},
UIW_MINIMIZE_BUTTON: :_className, 0 },
ID_STRING, ZIL_VOIDF(UIW_STRING: :New}, UIW_STRING: :_className, 0 },
ID_SYSTEM_BUTTON, ZIL_VOIDF (UIW_SYSTEM_BUTTON: :New) ,
UIW_SYSTEM_BUTTON: :_className, 0 },

{ ID_TITLE, ZIL_VOIDF (UIW_TITLE: :New), UIW_TITLE: :_className, 0 },
{ ID_WINlXM, ZIL_VOIDF(UIW_WINDOW: :New} , UIW_WINlXM: :_className, 0 },
{ ID_END, ZIL_NULLP(void}, ZIL-NULLP(ZIL_ICHAR}, 0 }

} ;

UI_ITEM *UI_WINDOW_OBJECT::objectTable = _objectTable;

Notes:
• After combining all .CPP files you will only need to reference the proper .DAT file in your applica

tion.

• If you are referencing resources out of default storage you will need to delete the default storage and
create a new default storage with the correct .DAT file so that the default storage does not reference
the incorrect .DAT file.

• It may also necessary to combine both of the .HPP files similar to what is being done with the .CPP
files.

Zinc 4.1 Addenda and Errata 133

Security on a .DAT fIle ZD·TN2014

5.5

Keywords:
Versions:
Components:
Platforms:
Issued:

Question

Security on a .DAT file

Security, .DAT file, Designer, MAGIC_NUMBER
3.5+
Library
All
April 17, 1995

ZD-TN2014

How can I secure my .DAT file to prevent anybody with a Designer from opening the file?

Answer

To place security on a .DAT file, change MAGIC_NUMBER, located near the top of Z_STORE.HPP. If the
MAGIC_NUMBER in the .DAT file does not match the MAGIC_NUMBER in the library, the .DAT file will
not be opened.

When a .DAT file is opened, the library checks MAGIC_NUMBER. If you change MAGIC_NUMBER in
your library, you will need to change the magic number in your .DAT files to open them. The following is a
program that will change the magic number in your .DAT files by patching them.

#include <stdio.h>

#include <fcntl.h>

#include <io.h>

#include <ui_gen.hpp>

#include <z_store.hpp>
II This number must match exactly the number in Z_STORE.HPP.

#define NEW_MAGIC Ox47

int main(int argc, char **argv)

argc--; argv++;

while (argc)

int fd = open (*argv, O_RDWR);

ZINC_SIGNATURE tmp;

read(fd, &tmp, sizeof(tmp));

tmp.magicNumber = NEW_MAGIC;

134 Zinc 4.1 Addenda and Errata

Security on a .DAT file ZD·TN2014

lseek(fd, 0, 0);

write(fd, &tmp, sizeof(tmp));

close(fd) ;

argc--; argv++;

return 0;

To edit an existing .DAT file in the Designer or create a new .DAT file, compile the Designer with the newly
compiled library and patch the MAGIC_NUMBER of the Designer .DAT files. You can patch the Designer.
DAT files in each individual subdirectory under the Designer directory, or patch these in the ZINC\BIN direc
tory after you have built the Designer. The Designer .DAT files are all copied into the BIN directory as .ZNC
files for graphics mode or .Z_T for OOS text mode.

After changing the MAGIC_NUMBER, if an application fails to come up on start-up, or all you hear is a
beep, the magic number in the .DAT file probably does not match that of the library. Check the MAGIC_
NUMBER in Z_STORE.HPP and the program used to change the MAGIC_NUMBER and make sure that
the numbers exactly match. Ifone defined as a HEX value you must also define the other as a HEX value.

Zinc 4.1 Addenda and Errata 135

Loading a derived object from a .DAT file ZD·TN3010

5.6

Keywords:
Versions:
Components:
Platfonns:
Issued:
File:

Question

Loading a derived object from a .OAT file

.DAT, derived object, load
3.5 and later
Library
All
October 31, 1994
MY_BTN.ZIP

ZD-TN3010

How do I load a derived button from a .DAT file?

Answer

To load a derived object from a .DAT file you will need to create a static New() function for that class that
will call the persistent constructor for that class, which also must be provided.

Example

class MY_BUTTON:public UIW_BUTTON
{

public:
MY_BUTTON(const char *name, UI_STORAGE *directory, UI_STORAGE_OBJECT *file)

UIW_BUTTON(name, directory, file) {};

static UI_WINDOW_OBJECT *New(const char *name,
UI_STORAGE *directory = NULL, UI_STORAGE_OBJECT *file = NULL)
{ return(new MY_BUTTON(name, directory, file));}

} ;

The above code will load a derived button that has been stored in a .DAT file using Zinc Designer. It will
work for loading objects derived from any Zinc class. An example of this concept can be found on the Zinc
BBS (MY_BTN.ZIP in the Zinc 3.5 conference).

136 Zinc 4.1 Addenda and Errata

Using a table created in Zinc Designer ZD·TN3011

5.7

Keywords:
Versions:
Components:
Platforms:
Issued:

Question

Using a table created in Zinc Designer

table
4.0
Library, .DAT file
All
November 8, 1994

ZD-TN3011

How do I put information into a table that was created in the Zinc Designer?

Answer

There are two different approaches to using a table object designed in the Zinc Designer.

Set the record size in Zinc Designer and use DataSet() to set the data, number of records, and maximum
number of records. You will also need to set the user function for the table record, because the field to set it is
not currently available in the designer.

UIW_TABLE *table = (UIW_TABLE *) win->Get("TABLE");
table->DataSet(data, numberOfRecords);

UI_WINDOW_OBJECT *tableRecord = table->First();
tableRecord->userFunction = TableRecordCallBack;

In TableRecordCallBack(), event.data is a pointer to the data associated with that table record. The UIW_
TABLE maintains an internal array of data. Typecast the pointer into a pointer of the structure type that you
are using. The event. rawCode will contain the number of the table record that is calling the callback function.

EVENT_TYPE TableRecordCallBack(UI_WINDOW_OBJECT *object, UI_EVENT &event, EVENT_TYPE
ccode)

switch (ccode)
{

case S_SET_DATA:

MY_DATA *myData = (MY_DATA *) event. data;
object->Get ("NAME") ->Information(I_SET_TEXT, myData->name);

}

case S_NON_CURRENT:
case L_SELECT:

{

MY_DATA *myData = (MY_DATA *)event.data;
object->Get ("NAME") ->Information(I_COPY_TEXT, myData->name);

Zinc 4.1 Addenda and Errata 137

Using a table created in Zinc Designer ZD-TN3011

Set the WOF_NO_ALWCATE_DATA flag and maintain the data yourself.

UIW_TABLE *table = (UIW_TABLE *) win->Get("TABLE")j
table->woFlags 1= WOF_NO_ALLOCATE_DATAj
table->DataSet(O, numberOfRecords)j

In ThbleRecordCallBack() event.data is a pointer to the data associated with that table record. The UIW_
TABLE maintains an internal array ofdata. Since the WOF_NO_AUOCATE_DATA flag was set event.data
will be O. You will need to cast the pointer into the structure type that you are using. The event.rawCode will
contain the number of the table record that is calling the callback function. In the following example _
myData is a global array that has been allocated.

EVENT_TYPE TableRecordCallBack(UI_WINDOW_OBJECT *object, UI_EVENT &event, EVENT_TYPE
ccode)

{

switch (ccode)
{

case S_SET_DATA:
{

object->Get ("NAME") ->Infonnation(I_SET_TEXT,
_myData[event.rawCode] .name)j

}

case S_NON_CURRENT:
case L_SELECT:

{

object->Get ("NAME") ->Infonnation(I_SET_TEXT,
_myData[event.rawCode].name)j

Note:
• If the record size is set incorrectly in the .OAT file and you use OataSet() to initialize the table, then

you could get unexpected results. For this reason Zinc recommends using method 2. To determine
the size of your data structure, you could use a simple program that prints out the size of the struc
ture. If you are doing this on multiple platforms and the size of the structure is different on each plat-

138 Zinc 4.1 Addenda and Errata

Using a table created in Zinc Designer ZD·TN3011

form you could use #ifdefs to make the structures the same across platforms. This is only important
if you are setting the data's size and aren't using the "don't allocate data" flag. Zinc is currently
improving the ability to set the record size, and it will probably not be read in from the .DATfile.

• Access to the WOF_NO_ALLOCATE_DATA flag will probably be added in a future revision.

• The data array is to be maintained by the programmer, and the programmer is responsible for freeing
any memory that they have allocated. The programmer does have the opportunity to use a file of
records to provide virtual memory, in which case the above code for S_SET_DATA would contain a
read from the data file and the S_NON_CURRENT would store the changes back out to the file.

Zinc 4.1 Addenda and Errata 139

Checking for errors when reading .DAT files ZD·TN2007

5.8

Keywords:
Versions:
Components:
Platforms:
Issued:

Question

Checking for errors when reading .DAT files

WOS_READ_ERROR, DAT file
3.5 or later
Library
All
February 1, 1995

ZD-TN2007

How do I check for an error in reading an object from a .DAT file and exit gracefully if there is an error?

Answer

To check for an error when reading an object from a .DAT file, check the WOS_READ_ERROR status. If this
status is set, then the application can clean up and exit nonnally. This status is set if the .DAT file could not be
found, if the resource could not be found in the .DAT file, or if any object in the resource had a problem being
read in. If the WOS_READ_ERROR status is set, you could call error system to display a message, explaining
that there was an error reading the resource from the .DAT file. Then the program can exit. The following is
an example:

UI_WINDOW_OBJECT::errorSystem = new UI_ERROR_SYSTEMj
UIW_WINOOW *window = new UIW_WINOOW ("test. dat-WINOOW_l") ;
if (FlagSet(window->woStatus, WOS_READ_ERROR)
{

window->errorSystem->ErrorMessage(windowManager, WOS_NO_STATUS, "There was a
problem loading the window from the .DAT file", ".DAT FILE ERROR") j

delete window;
delete UI_WINDOW_OBJECT::errorSystemj
return(O);

If the window is read in, but a WOS_READ_ERROR is generated, you can traverse the list of the window and
check each object's WOS_READ_ERROR status to determine which object caused the problem.

140 Zinc 4.1 Addenda and Errata

5.9

Keywords:
Versions:
Components:
Platforms:
Issued:

Question

Deriving an object in Zinc Designer

Designer, deriving object
4.0
Designer
All
February 3, 1995

Deriving an object in Zinc Designer ZD-TN2009

ZD-TN2009

How do I derive an object in Zinc Designer?

Answer

To derive an object in Zinc Designer, first place an object on the window. Open the edit window for that
object and select the advanced page. In the field for Derived Name, replace <none> with the name of the
derived class. For example, if a class called MY_BUTTON was derived from UIW_BUTTON, replace
<none> with MY_BUTTON.

When saving a file, the Designer generates a .CPP and a .HPP file, and you must include the header file with
the derived class declaration in the generated .CPP file. For example:

#include <ui_win.hpp>
#define USE_DERIVED_OBJECTS
#include "test.hpp"
void z-Jump_dumrny (void) { } / / Bug fix for broken linkers.
//Line added to include header file which contains the derived class declaration.
#include "rny_btn.hpp"

static UI_ITEM _userTable[]

Remember that because the Designer generates a new .CPP file each time a .DAT file is saved, you must edit
the .CPP file. You can prevent this by selecting Preferences under File on the Designer's main window and
deselecting Write CP~

Next, type in the class declaration, which must contain entries for the required persistent functions. These
functions are a persistence constructor and a static New() function. The following is an example of a class
declaration:

class MY_BUTTON:public UIW_BUTTON
{

public:
MY_BUTTON(const ZIL_ICHAR *narne, ZIL_STORAGE_READ_ONLY *directory, ZIL_STORAGE_OBJECT_

READ_ONLY *file) :
UIW_BUTTON (name , directory, file) {};

static UI_WINDOW_OBJECT *New(const ZIL_ICHAR *narne,

Zinc 4.1 Addenda and Errata 141

Deriving an object in Zinc Designer ZD·TN2009

ZIL_STORAGE_READ_ONLY *directory = ZIL_NULLP(ZIL_STORAGE_READ_ONLY), ZIL_STORAGE_

OBJECT_READ_ONLY *file = ZIL-.1'WLLP (ZIL_STORAGE_OBJECT_READ_ONLY))

{ return(new MY_BUTTON(name, directory, file));}

EVENT_TYPE Event (const UI_EVENT &);
} ;

142 Zinc 4.1 Addenda and Errata

5.10

Keywords:
Versions:
Components:
Platforms:
Issued:

Question

Designer fails to launch

Designer, .ZNC, .Z_T
4.0
Designer
All
February 8, 1995

Designer rails to launch ZD·TN2011

ZD-TN2011

Why does the Designer fail to launch, and why does it only beep?

Answer

The Designer will not come up if it can not fmd its .ZNC or .Z_T files. In some environments it will bring up
an error message saying that it could not find a .ZNC or .Z_T file, however in other environments it will only
beep and close the Designer down. After the Designer has been built, these files will be found in the ZINC!
BIN directory. If these files are in the same directory as the Designer executable it should have no problems
fmding them. If they are in different directories you can create an environment variable, ZINC_PATH, which
contains the path to the .ZNC or .Z_T files.

The .zNC files contain the resources used by the Designer when run in graphics mode. The .Z_T files contain
the resources used when running the Designer in text mode. It is not necessary to have separate .DAT files for
text and graphics mode. The Designer has separate .DAT files so that when running in text mode the
resources are positioned proportionally correct.

Zinc 4.1 Addenda and Errata 143

Designer import and export file types ZD·TN2012

5.11

Keywords:
Versions:
Components:
Platforms:
Issued:

Question

Designer import and export file types

Designer, import, export, .DAT, .TXT, .BMP, .lCO, .XPM
Zinc 4.0
Designer
All
February 14, 1995

ZD-TN2012

What types of files can I import into and export out of each service in the Designer?

Answer

You can import and export the following file types:

Wmdow Editor

• .DAT

• .TXT

Image Editor

• .BMP

• .ICO

• .XPM

• .DAT

Note: You can only import and export the file type for the specific platform you are running the Designer in.
For example you can not import a Windows .BMP into the Designer when running in OS/2. It would need to
be a OS/2 .BMP file.

Help Editor

• .DAT

• .TXT

Message Editor

.DAT

144 Zinc 4.1 Addenda and Errata

Displaying information in a table created in the Designer ZD·TN3011

5.12

Keywords:
Versions:
Components:
Platforms:
Issued:

Question

Displaying information in a table created in the Designer

table, Designer
4.0 Release 1
Library, .DAT file
All
November 8, 1994

ZD-TN3011

How do I display information in a table that was created in the Zinc Designer?

Answer

There are two different approaches to displaying information in a table object designed in the Zinc Designer.
The first method is to use the WOF_NO_ALLOCATE_DATA flag and the second method is to allow the
table to allocate the associated data. The WOF_NO_ALLOCATE_DATA flag is used to tell the table object
not to allocate internal memory to track the information presented in its records. For the callbacks of both
methods event.data will be a void pointer to the memory allocated (if any was allocated) by the table for the
information, and event.rawCode will be the index of the record being accessed. Access to the WOF_NO_
ALLOCATE_DATA flag is accessible in Zinc Designer with revision 2.

Method 1: Using the WOF_NO_ALLOCATE_DATA flag:

The following code initializes the table to have a maximum of 15 records and to start with 15 records.

UIW_TABLE *tablel = (UIW_TABLE *)win->Get("NO_ALLOCATE_TABLE");
if (tablel)
{

tablel->woFlags 1= WOF_NO_ALLOCATE_DATA; IIThis should be set in the Designer
II after revision 2.

table1->DataSet(ZIL_NULLP(void) , 15, 15);
_tableData = new ZIL_ICHAR *[15];
for (int i = 0; i<15; i++)

_tableData[i] = new ZIL_ICHAR[15];11 _tableData is a global variable
sprintf (_tableData [i], "String_%d", i);

In the callback associated with this table, NoAllocateCallback, the WOF_NO_ALLOCATE_DATA flag is
set so event.data will be NULL, and event.rawCode will contain the index of the record being handled by the
callback function.

EVENT_TYPE NoAllocateCallback(UI_WINDOW_OBJECT *object, UI_EVENT &event, EVENT_TYPE
ccode)

{

Zinc 4.1 Addenda and Errata 145

Displaying information in a table created in the Designer ZD·TN3011

switch (ccode)
{

case S_SET_DATA:
{

UI_WlNOOW_OBJECT *winObject = object->Get("STRING");
winObject->Information(I_SET_TEXT, tableData[event.rawCode));

}

break;

case L_SELECT:
case S_NON_CURRENT:

UI_WINOOW_OBJECT *winObject = object->Get("STRING");
winObject->Information(I_COPY_TEXT, _tableData[event.rawCode));

}

break;

return 0;

However, with the method of using the WOF_NO_ALLOCATE_DATA flag any memory allocated to keep
track of infonnation related to the table must be maintained by the programmer. In a database application,
one method of handling data would be to use a file of records to provide virtual memory, in which case the
above code for S_SET_DATA would contain a read from the data file and the S_NON_CURRENT would
store the changes back out to the file.

Method 2: Letting the table allocate the data.

Set the record size in the Zinc Designer and use the DataSet function to set the data, number of records and
maximum number of records. The following code initializes the table to have a maximum of 15 records and
to start with 15 records. It also initializes the data associated with the table.

UIW_TABLE *table2 = (UIW_TABLE *)win->Get ("ALLOCATE_TABLE");
if (table2)
{

ZIL_ICHAR table2Data[15) [15];
for (int i = 0; i<15; i++)
{

sprintf(table2Data[i) , "String_%d", i);
}

table2->DataSet(table2Data, 15, 15);
}

In AUocateCallback() event.data will be a pointer to the data that is associated with that table record. The
UIW_TABLE maintains an internal array ofdata. Typecast the pointer into a pointer of the structure type that
you are using.

146 Zinc 4.1 Addenda and Errata

Displaying information in a table created in the Designer ZD·TN3011

EVENT_TYPE AllocateCallback(UI_WINDOW_OBJECT *object, UI_EVENT &event, EVENT_TYPE
ccode)

{

ZIL_ICHAR *string (ZIL_ICHAR *)event.data;

switch (ccode)
{

case S_SET_DATA:
{

UI_WINOOW_OBJECT *winObject = object->Get("STRING");
winObject->Information(I_SET_TEXT, string);

}

break;

case L_SELECT:
case S_NON_CURRENT:

{

UI_WINOOW_OBJECT *winObject = object->Get("STRING");
winObject->Information(I_COPY_TEXT, string);

}

break;

return 0;

Zinc 4.1 Addenda and Errata 147

Using the ZAF_STRING_EDITOR class of the Designer ZD·TN4025

5.13

Keywords:
Version:
Component:
Platforms:
Issued:

Question

Using the ZAF_STRING_EDITOR class of the Designer

String editor
4.0
Designer; ZAF_STRING_EDITOR
ALL
January 31, 1995

ZD-TN4025

How can I use the String Editor outside of the Designer?

Answer

The String Editor of the Designer is an instance of the ZAF_STRING_EDITOR class. The fue that contains
the source code for the ZAF_STRING_EDITOR is found in zinc\design\stredit\stredit.cpp. Also in this
directory are the makefiles and a sample program module, main.cpp,to build an executable program that uses
the String Editor. Since the String Editor depends on functions found in the ZAF_SERVICE_MANAGER
class, build service.lib by running the appropriate makefile from zinc\rlesign.

A look at main.cpp from zinc\design\stredit shows the following:

#include "s tredit.hpp"
int UI_APPLlCATION::Main(void}
{

UI_APPLICATION: :LinkMain() i

_serviceManager = new ZAF_SERVICE_MANAGERi

II Create and add the support editors.
ZAF_STRING_EDITOR *stringEditor = new ZAF_STRING_EDITORi
stringEditor->Information(I_ACTIVATE_SERVICE, ZIL_NULLP(void»i

II Process user responses.
DI_APPLICATION: :Control() i

II Clean up.
return (0) i

Familiarize yourself with these main components of the String Editor and their use:

148 Zinc 4.1 Addenda and Errata

Using the ZAF_STRING_EDITOR class of the Designer ZD-TN4025

ZAF_SERVICE_MANAGER

The _serviceManager is declared in SERVICE.HPP in zine\design\serviee. SERVICE.HPP is included in
STREDIT.HP~ Create _serviceManager first, the ZAF_STRING_EDITOR class references it. The _
serviceManager is responsible for managing the persistent object storage file for the String Editor, p_stredit.
zoe.

ZAF_STRING_EDITOR

The constructor of ZAF_STRING_EDITOR creates the String Editor window in memory. It also creates
and adds a string driver device to the eventManager. The purpose of the string driver device is to monitor the
event queue, and when an F12 key is pressed, the String Editor service is restored from its iconized state. This
occurs with the following line of code found in the Poll() function of the string driver device:

Information (I_ACTIVATE_SERVICE, ZIL_NULLP(void));

After the computer executes the above line of code, the current editable object on the screen, if any, is found.
Then, with the following line of code found in the Poll() function of the string driver device, the current
editable object is set to the object that gets String Editor service:

Information (I_SET_REQUESTOR, requestor);

I_ACTIVATE_SERVICE-Infonnation request

The purpose of the line

stringEditor->Information(I_ACTIVATE_SERVICE,ZIL_NULLP(void));

is to add the string edit window created in the ZAF_STRING_EDITOR constructor to the
windowManager. If it already exists in the windowManager's list, this will make the string edit window
become the current window. Also, if it was previously minimized, it gets restored to its normal size.

I_SET_REQUESTOR-Infonnation request

When the user presses the F12 key, the string driver detects this and gets a pointer to the current window if
one exists. It then searches the current window for an editable object that is current. If it finds one, it assigns
this pointer as the requestor of the string editor service with the following line of code:

stringEditor->Information(I_SET_REQUESTOR, requestor);

After this occurs, the user can then select the characters in the table that are to appear in the requestor's text
field.

If the user then selects the OK button on the string edit window, the text that the user has entered in the
''Current'' field of the string editor gets set as the actual text for the requestor object. After the text for that
object gets set, the string edit window gets minimized if its WOAF_WCKED flag is set. If this flag is not set,
the string edit window is closed.

Zinc 4.1 Addenda and Errata 149

Using the ZAF_STRING_EDITOR class of the Designer ZD-TN4025

The only minor modification you may want to make to stredit.cpp is to increase the max length of the UIW_
EDIT_STRING class from 100 to 1024. This is helpful when editing large text fields. The string editor
requires the p_string.znc persistent object file for retrieval of the string editor window.

In addition to your .DAT file, if any, p_string.znc must accompany your application. Ifyou do not want two
persistent object storage files with your application, you can take a copy of this file and use the Window I
Import selection to add your resources to this file. When doing this you would need to link in p_string.cpp
to your application.

The string edit window defaults to code page ISO 8859-1 in Unicode mode. The code page control is nonse
lectable unless you are using the Unicode Designer that comes with the Umcode key. With code page control
enabled, you can access fonts from the Unicode character set, including Japanese, Chinese, and the Korean
font set.

An example using the ZAF_STRING_EDITOR outside of the Designer can be found on the bulletin board,
user main conference, Tech Support listing.

150 Zinc 4.1 Addenda and Errata

Using the ZAF_STRING_EDITOR class of the Designer ZD-TN4025

Section 6
ill objects and

•programmmg
techniques

Zinc 4.1 Addenda and Errata 151

Removing geometry constraints ZD·TNI014

6.1

Keywords:
Versions:
Components:
Platforms:
Issued:

Question

Removing geometry constraints

Geometry management, constraints
4.0+
UI_GEOMETRY_MANAGER, UCCONSTRAINT
All
May 15, 1995

ZD-TN1014

If I delete an object that has geometry constraints, my program doesn't continue to function properly. What
can I do to fix this?

Answer

In this technote we will discuss how to remove any geometry constraints associated with an object.

Because Zinc has defined geometry management so that there is no extra overhead in the UI_WINDOW_
OBJECT class, you must delete any geometry constraints associated with the object.

First we must get a pointer to the geometry manager.

UI_GEOMETRY_MANAGER *geometryManager = (UI_GEOMETRY_MANAGER *)Get(NUMID_GEOMETRY)i

This example maintains the pointer as a member of the controlling class. When you delete an object that is
managed, search through all the constraints and compare the constraint's object with the object that you are
deleting. If they are equal remove that particular constraint. You can have multiple geometry constraints for
any given object. All of these constraints must be removed or your program will terminate abnormally.

Here is a code snippet that will search for and delete any geometry constraints associated with an object.

II Get a pointer to the object to be deleted.
UI_WINDOW_OBJECT *button = Get ("RIGHT_BOTTOM") i

II Maintain a separate pointer for comparison.
UI_WINDOW_OBJECT *constObj;

II Get the first constraint.

UI_CONSTRAINT *geoConst = geometryManager->First()i

II Continue while there are constraints.
while (geoConst)
{

II Get the next constraint.

UI_CONSTRAINT *nextConst = geoConst->Next();
geoConst->Information(I_GET_OBJECT, &constObj)i

152 Zinc 4.1 Addenda and Errata

Removing geometry constraints ZD-TNI014

II Compare the objects.
if (constObj == button)
{

II Delete this constraint.
*geometryManager - geoConst;
delete geoConst;

geoConst = nextConst;

II Now we can safely delete the object.
*this - button;
delete button;

II Redisplay the window to reflect the deletion of the object.
Event(S_REDISPLAY)i

When you delete an object that has been managed, you must delete any constraints that are associated with
that object.

Zinc 4.1 Addenda and Errata 153

Using a button to close a window ZD·TN2000

6.2

Keywords:
Version:
Component:
Platforms:
Issued:

Question

Using a button to close a window

close window, button
3.5, 3.6, 4.0
Library
All
July 14, 1994

ZD-TN2000

How do I close a window using a button attached to that window?

Answer

You may close a window using a button three different ways.

If the button is only used to close the window and performs no other action, you need only set the BTF_
SEND_MESSAGE flag on the button and set the button's value equal to S_CLOSE, or in the designer set the
value equal to -11.

If the button is to perform some other function besides closing the window, and the window is a derived
window, it can still be a BTF_SEND_MESSAGE button. Just set the value of the button equal to a user
defined event. When pressed the button will place the user defined event on the queue and it will be passed
down to the window. The window can then trap this event in its Event() function, perform any necessary
action and then place an S_CWSE on the queue with the following code.

eventManager->Put(S_CLOSE)i

If a user function has been attached to the button, before leaving the user function place an S_CWSE on the
queue with the following line of code:

object->eventManager->Put(S_CLOSE)i

Do not subtract the window from the windowManager while in the user function. Ifyou do, your application
will crash. This is because you are removing the object that called the user function and you must be able to
return to that object.

If the window is an MDI child you should use S_MDICHIW_EVENT + S_CLOSE (-511 in the Designer).
The S_MDICHILD_EVENTmessage instructs the windowManagerthat this message needs to be handled by
the MDI parent.

The first two methods are preferred when using a button to perform an action because they take advantage of
Zinc's event driven architecture.

154 Zinc 4.1 Addenda and Errata

Changing object flag or status at run time ZD-TN2002

6.3

Keywords:
Version:
Component:
Platforms:
Issued:

Question

Changing object flag or status at run time

flag, status, run time
3.5,3.6
Library
All
July 7, 1994

ZD-TN2002

How do I change the flag or status of an object at run time?

Answer

There are two methods that can be used to change a status or a flag on an object. One is to use the Informa
tion() function. The other is to mask the specific bit on or off. Following is an example of setting and unset
ting the selected status of a button.

Method 1 (lnformation() function):

UIS_STATUS status = WOS_SELECTED;
button->Information(SET_STATUS, &status, ID_WINDOW_OBJECT);
button->Information(CHANGED_STATUS, NULL);
button->Information (CLEAR_STATUS , &status, ID_WINDOW_OBJECT);
button->Information(CHANGED_STATUS, NULL);

When using the Information() function the proper objectID must be passed in or it will not work. Consult
the Programmer's Reference for the object's Information() function to determine the proper objectID to be
used with the specific flag or status you wish to change. When changing the flag of an object UIF_FIAGS
should be used in place of UIF_STATUS.

Method 2 (Bit masking):

Mask On

button->woStatus 1= WOS_SELECTED;
button->Information(CHANGED_STATUS, NULL);

Mask Off

button->woStatus &=-WOS_SELECTED;
button->Information(CHANGED_STATUS, NULL);

Whenever a status or a flag of an object has been changed the object must be told that it has been changed.
This is done with the Information() function and passing in a CHANGED_STATUS if a status was changed
or passing in a CHANGED_FIAGS if a flag was changed.

Zinc 4.1 Addenda and Errata 155

Check boxes or toggle buttons on a window ZD·TN2004

6.4

Keywords:
Versions:
Components:
Platforms:
Issued:

Question

Check boxes or toggle buttons on a window

check box, toggle, button
3.5 and later
Library
All
September 13, 1994

ZD-TN2004

When I select a check box or toggle button on my window I cannot deselect it.

Answer

When using check boxes or toggle buttons the WNF_SELECT_MULTIPLE flag must be set on the parent. If
this flag has not been set it will cause the check boxes or toggle buttons to behave as radio buttons.

This flag can be set on the following parent objects:

• UIW_WINDOW

• UIW_GROUP

• UIW_VT_LIST

• UIW_HZ_LIST

• UIW_POP_UP_MENU

156 Zinc 4.1 Addenda and Errata

Nonselectable gray and nonselectable black ZD·TN2013

6.5

Keywords:
Versions:
Components:
Platforms:
Issued:

Question

Nonselectable gray and nonselectable black

nonselectable gray, nonselectable black
3.5+
Library
All
April 17, 1995

ZD-TN2013

How do I make an object nonselectable gray or nonselectable black programmatically?

Answer

To make an object nonselectable gray, set the WaF_NaN_SELECTABLE flag on the object.

object->woFlags 1= WOF_NON_SELECTABLEi
object->Information(I_CHANGED_FLAGS, NULL)i //For versions earlier than 4.0 replace

//I_CHANGED_FLAGS with CHANGED_FLAGS.

To make an object nonselectable black, set the WOAF_NON_CURRENT and WaF_VIEW_ONLY flags.

object->woFlags 1= WOF_VIEW_ONLYi

object->woAdvancedFlags 1= WOAF_NON_CURRENTi
object->Information(I_CHANGED_FLAGS, NULL)i //For versions earlier than 4.0 replace
//I_CHANGED_FLAGS with CHANGED_FLAGS.

The aforementioned method only works on editable objects such as a UIW_STRING object. If you want to
make a noneditable object, such as button, nonselectable black:

• Derive your own button object.

• Set the WOAF_NON_CURRENT flag on the object.

• In the derived Event() function trap for the L_SELECT and L_BEGIN_SELECT messages. This
will prevent them from being passed to the base class.

Zinc 4.1 Addenda and Errata 157

Scrolling more than 32,767 records in a UIW_TABLE ZD-TN2016

6.6

Keywords:
Versions:
Components:
Platforms:
Issued:

Question

Scrolling more than 32,767 records in a UIW_TABLE

UIW_TABLE, scrolling
4.0+
Library
All
May 10, 1995

ZD-TN2016

How can I scroll more than 32,767 records in a table?

Answer

You can scroll more than 32,767 records by controlling the scrolling of the table. To control the scrolling of
the table, derive your own table class from UIW_TABLE. The class will require both an EventO function and
a ScrollEvent() function.

The EventO function will need to process the S_VSCROLL event The S_VSCROLL event is sent to the
table when the scroll bars position is changed. It should be passed to the ScrollEventO function. You may also
want to process the L_~ L_DOWN, L_PG~ L_PGDN, L_TOP, and L_BOTTOM to handle scrolling
from the keyboard. The L_ events are mapped from keyboard events, in the EventO function of an object.
When the EventO receives them it should translate them to a S_VSCROLL with the scroll.delta set to the
proper value. Then it should send them to the ScrollEvent() function.

The table should only contain the number of records that are visible. This makes it easier to control the scroll
ing of the table. If the table only contains the number of records that are visible, call DataSetO to change the
data in the records. Otherwise you must worry about scrolling the records and updating the data.

The information that the scroll bar maintains for scrolling is a ZIL_INT16, a 16-bit int. Because of this, the
scroll bar can only scroll through 32,767 positions. To overcome this, set up a ratio between the number of
objects you want to scroll and the number that can actually be scrolled. For example if you wanted to scroll
320,000 records in your table you could set the scroll bar's maximum to be 32,000 and scroll 10 records with
each position the scroll bar moves.

After the table's EventO function has received an S_CREATE, set the scroll infonnation on the table's scroll
bar. To do this create a UCSCROLL_INFORMATION structure and send it to the scroll bar's EventO func
tion. You may want to initialize the scroll infonnation like this:

UI_SCROLL_INFORMATION scrolllnfo;
scrolllnfo.current = 0;
scrolllnfo.minimum = 0;
scrolllnfo.maximum = 32000; II 320000 divided by 10
scrolllnfo.showing = 10;
scrolllnfo.delta = 1;

158 Zinc 4.1 Addenda and Errata

Scrolling more than 32,767 records in a UIW_TABLE ZD-TN2016

When ScrollEvent() receives a S_VSCROLL, the scroll bar's current position and the data in the table must
be updated. The scroll bars new position can be calculated by getting the scroll bars current position. Do this
by calling the scroll bar's InformationO function, with CGET_VALUE. The event.scroll.delta, passed into
the ScrollEventO function, contains the distance the scroll bar's thumb button was moved. Adding this to the
current value will give the scroll bar's new position, which will be used to calculate what data should be
displayed in the table. Then set the table data with a DataSetO and set the scroll bar's scroll information by
creating a new UI_SCROLL_INFORMATION structure that contains the scroll bar's new position as the
current position. Then send it to the scroll bar's EventO function, along with S_REDISPLAY: Update the data
in the table before the new scroll infonnation is sent to the scroll bar, otherwise the DataSetO on the table will
reset the scroll infonnation on the scroll bar.

In TN2016.ZIP, you can find an example that shows how to do this.

Zinc 4.1 Addenda and Errata 159

Columns in lists ZD-TN3000

6.7

Keywords:
Versions:
Components:
Platforms:
Issued:
File:

Question

Columns in lists

column, list
3.5 and later
Library
All
July 20, 1994
AGENCY.ZIP

ZD-TN3000

How do I get columns in a vertical list?

Answer

Derive a new class from UIW_BU'ITON, UIW_STRING, or UI_WINDOW_OBJECT and provide your
own DrawItem() function.

In the DrawItem() function, use the appropriate display member functions to display the data relative to the
true coordinates of the derived object. In this way you can ensure that your objects display in a fixed width
that will allow columns.

On the Zinc BBS, in the 3.6 conference, download the file AGENC~ZIP. The sample code in this ftle
shows how to get tabular data in a vertical list. You can also look at COLUMNS.ZIP. You can reach the BBS
by calling (801) 785-8997.

Note

Zinc Application Framework 4.0 supports a table object that aligns objects in columns automatically. This
may be more appropriate for some applications.

160 Zinc 4.1 Addenda and Errata

6.8

Keywords:
Version:
Component:
Platforms:
Issued:

Question

Retrieving the nth item from a list

combo box, list, nth item
3.0 and later
Library
All
July 8, 1994

Retrieving the nth item from a list ZD-TN3001

ZD-TN3001

How do I get a pointer to the nth element in my list-a window, vertical list, horizontallist-or in my combo
box?

Answer

There are two different techniques for getting a certain element from a list depending on which type of list
you are using.

To retrieve the third item from a UIW_WINDOW, UIW_VT_LIST, or UIW_HZ_LIST, execute the fol
lowing code with a pointer called list:

UI_WINDOW_OBJECT *itemi
item = list->UI_LIST::Get(2)i II The lists are zero based.

This method will not work with a combo box. For a combo box you must use method 2.

To retrieve the third item from a UIW_COMBO_BOX, use the Get() function. For example to get the third
element in a combo box with a pointer called comboBox execute the following code:

UI_WINDOW_OBJECT *itemi
item = comboBox->Get(2)i II The lists are zero based

Zinc 4.1 Addenda and Errata 161

Adding an object at ron time ZD·TN3002

6.9

Keywords:
Version:
Component:
Platforms:
Issued:

Question

Adding an object at run time

list, object, adding, run time
3.0 and later
Library
All
July 6, 1994

ZD-TN3002

How do I add an object to a list at run time? When I do, it doesn't show up on the screen.

Answer

To add an object to a list and have it show up, simply add the item(s) and call the list's Event() function with
an S_REDISPLAYmessage.

The object doesn't show up on the screen after you add it to a list because of a Zinc design principle. After
adding an item to a list, the list will not redisplay itself until it receives an S_REDISPLAY. This provides for
greater efficiency because it eliminates unnecessary (and slow) screen updates when adding several items to
a list.

EVENT_TYPE AddToList(UI_WINDOW_OBJECT *object, UI_EVENT &, EVENT_TYPE ccode)
{

if (ccode != L_SELECT)
return ccode;

UI_WINOOW_OBJECT *list = object->parent->Get ("VLIST") ;

if (list)
{

II Create the string to be added.
UIW_STRING *string = new UIW_STRING(O,O,O,"TEST");
II Create the event that will add the string to the vertical list.
UI_EVENT tEvent (S_ADD_OBJECT) ;
tEvent.data = string;
list->Event(tEvent);

II Redisplay the list
tEvent.type = S_REDISPLAY;
list->Event(tEvent);

return ccode;

This technique works equally well with other objects such as windows or combo boxes. The call to Event()
in each of these cases is exactly the same.

162 Zinc 4.1 Addenda and Errata

6.10

Keywords:
Version:
Component:
Platforms:
Issued:
File:

Question

Moving an object at run time

object, run time
3.5 and later
Library
All
July 12, 1994
None

Moving an object at run time ZD·TN3003

ZD-TN3003

How do I move an object on a window at run time?

Answer

Simply modify the relative coordinates of the object and then call the Information() function for that object
with a message of CHANGED_FLAGS. This will cause the object to update its information.

Example
EVENT_TYPE MY_WINDOW: :Event (const UI_EVENT &event)
{

II Get a pointer to the button
UI_WINDOW_OBJECT *button = Get ("THIS_BUTI'ON") ;

int new_height = button->true.bottom - button->true.top;
int string_width = display->TextWidth("Longest Button Text") I

display->ceIIWidth;

II Calculate its new coordinates
II 3/4 of the way across the screen
button->relative.left = (true.right - true.left)* 3/4 *

display->ceIIWidthj
II 3 cells from the bottom
button->relative.top = (true. top - true.bottom - 3) *

display->ceIIHeight;
button->relative.right = button->relative.left +

((string_width + 2) * display->ceIIWidth);
button->relative.bottom = button->relative.top + new_height;

II Cause the button to reposition and redisplay itself.
button->Information(CHANGED_FLAGS, NULL);

return (ccode)

Zinc 4.1 Addenda and Errata 163

Removing the title from a window with the Designer ZD·TN3004

6.11

Keywords:
Version:
Component:
Platforms:
Issued:

Question

Removing the title from a window with the Designer

window, title
3.0 and later
Library
DOS, Windows, OS/2, Motif
July 15, 1994

ZD-TN3004

How do I remove the title from a window created in the Designer?

Answer

Using the pointer to the window, get a pointer to the title with the Get() function. Then subtract the title from
the window and delete it.

UI_WINDOW_OBJECT *title = window->Get(NUMID_TITLE);

*window
- title;

delete title;

Note:

While this technique should compile in all environments, some environments, such as Macintosh, do not
allow windows without titles. In these cases the code would have no effect. Since this is not supported in all
environments you should avoid the practice in order to create applications that are feature-portable as well as
code-portable.

164 Zinc 4.1 Addenda and Errata

Selecting a check box or radio button programmatically ZD-TN300S

6.12

Keywords:
Version:
Component:
Platforms:
Issued:

Question

Selecting a check box or radio button programmatically

check box, radio button
3.0 and later
Library
All
July 13, 1994

ZD-TN3005

How do I cause a check box or radio button to be selected?

Answer

To cause the check box to be selected set the WOS_SELECI'ED flag in the woStatus member of the check
box. Then call its information function with CHANGED_STATUS. This will cause it to redisplay itself with
the new status.

checkBox->woStatus 1= waS_SELECTED;
checkBox->Information(CHANGED_STATUS, NULL);

To cause a radio button to be selected just read it to its group. You will need to have the WNF_AUTO_
SELECT flag set on the group that contains the radio buttons.

*group
+ radioButton;

Zinc 4.1 Addenda and Errata 165

Lifetime of an object ZD·TNJO06

6.13

Keywords:
Versions:
Components:
Platforms:
Issued:

Question

Lifetime of an object

messages, object
All
Library
All
August 4, 1994

ZD-TN3006

What messages does an object receive during its lifetime?

Answer

An object goes through the following steps during its lifetime:

When the object is first created, the object's constructor is called. Before it does anything it calls its base class
constructor(s). If the constructor called is the persistent constructor, it performs the following steps:

• It calls its nonpersistent base class constructor(s).

• It loads in its information from the data file.

• It directly calls the Information() function(s) of its base class(es) with an INITIALIZE_CLASS mes
sage. Note: In version 4.0 the INITIALIZE_CLASS message has been changed to CINITIALIZE_
CLASS.

The constructor then calls its own class's Information() function with an INITIALIZE_CLASS message.
This initializes any information that is not dependent on the object having a screenID (its internal flags, its
numberID, etc.) Note: In version 4.0 the INITIALIZE_ClASS message has been changed to I_INITIAUZE_
CIASS.

When the object is added to the Window Manager or a list that already has a screenID, such as a window, a
vertical or horizontal list, or a group, the list sends two messages to the object:

• First, an S_INITIALIZE message is sent to the object. This causes the object to set up its position
information. This is when the relative coordinates are converted (i.e. cell to graphics or vice versa).
These coordinates are determined by the status of the woStatus flags. (If the WOS_GRAPHICS flag
is set there is no conversion to graphics.)

• Second, the list sends the object an S_CREATE. This is when the screen position (i.e. true coordi
nates) is determined. This position is determined by the relative position of the field and the amount
of available space within the list.

When the object is removed from a list (e.g., as a result of an S_CLOSE message in the case of a window
attached to the Window Manager), we subtract the object from the list, and then send the object an S_DEINI
TIAUZE message. This informs the object that it has been removed from the screen, and it should save its

166 Zinc 4.1 Addenda and Errata

Lifetime of an object ZD-TN3006

data if necessary. The object then resets its screenID to O. In the case of a list object, the object passes the S_
DEINITIAUZE event to each of its children. In the case of an S_CLOSE the window manager then calls the
object's destructor (unless the WOAF_NO_DESTROYflag has been set on the window).

When the object is destroyed, the object's destructor is called; this in turn calls its base class destructor(s). At
this point the destructor takes care of freeing up any memory that the object is responsible for. This includes
calling the destructors for any child objects.

Note:
• An object is also sent S_INITIAUZE and S_CREATE messages if it is a child of a window that is

added to the Window Manager.

• Objects may receive many other messages (or events) during their lifetimes, but these messages are
common to all Zinc objects.

Zinc 4.1 Addenda and Errata 167

Forcing an invalid field to remain current ZD·TN3007

6.14

Keywords:
Versions:
Components:
Platforms:
Issued:
File:

Question

Forcing an invalid field to remain current

current, invalid field, validation
3.5,3.6
Library
All
July 26, 1994
CURVALID.ZIP

ZD-TN3007

I want to keep an object current until it passes its validation. How do I keep a user from tabbing or mouse
clicking out of it?

Answer

Zinc does not have this feature built in; however, you can simulate it by forcing the object to be current. To do
this:

Send a user-defined event to the window to tell it to make the correct object current again. To do this create a
new event that will tell the object's parent to add the object pointed to by userObject to itself.

const EVENT_TYPE READD_CHILD = 10001;

For the case of S_NON_CURRENT, in the user function for the object. set the parent's userObject pointer
equal to the object. Put an event on the Event Manager's queue that will tell the window to re-add the object
pointed to by the userObject pointer.

EVENT_TYPE myUserFunction(UI_WINDOW_OBJECT *object, UI_EVENT &, EVENT_TYPE ccode);
{

if(!object->parent->userObject)
{

object->parent->userObject = object;
object->eventManager->Put(UI_EVENT(READD_CHILD))i
}

In order to interpret the new event you must derive a new window from UIW_WINDOW like this:

class MY_WINDOW: public UIW_WINDOW
{

} ;

When the window receives the event, it must add to itself the object pointed to by userObject. Then the win
dow should set the userObject pointer = O.

168 Zinc 4.1 Addenda and Errata

Forcing an invalid field to remain current ZD·TN3007

MY_WINDOW::Event(const UI_EVENT &event)
{

case READD_CHILD:
*this + (UI_WINDOW_OBJECT *)userObject;
userObject = 0;

This method works equally well for vertical and horizonta1lists. The Zinc BBS has a user contribution that
shows this method. It is in the 3.6 Conference in the User Contributions directory and is called CURVALID.
ZW

Zinc 4.1 Addenda and Errata 169

Menus on the Macintosh ZD·TN3015

6.15

Keywords:
Versions:
Components:
Platforms:
Issued:

Question

Menus on the Macintosh

Menu, Macintosh
4.0 and later
Library
Macintosh
March 22, 1995

ZD-TN3015

How do I get the menus at the top of the screen to change when I change the current window?

Answer

To swap the menus when you change the current window do the following:

First, derive a~ from UIW_WINDOW with an Event() function to handle the S_CURRENT and S_
NON_CURRENT messages.

When handling these messages in the Event() function subtract the menu for that window on an S_NON_
CURRENT and add it to the window on an S_CURRENT. When deriving this class, provide the class defini
tion:

class MY_WINDOW: public UIW_WINDOW
{

public:

MY_WINOOW(const char *name, ZIL_STORAGE_READ_ONLY *file = NULL,

ZIL_STORAGE_OBJECT_READ_ONLY *object = NULL) i

-MY_WINDOw() i

virtual EVENT_TYPE Event (const UI_EVENT &event)i

protected:

UI_WINOOW_OBJECT *menu i

} i

Second, provide a comtroctor for your class.

In this example we load the window from the .DAT file and provide a persistent constructor. In the construc
tor get a pointer to the menu so that we can add and subtract the menu later.

MY_WINDOW::MY_WINDOW(const char * name , ZIL_STORAGE_READ_ONLY *file,

ZIL_STORAGE_OBJECT_READ_ONLY *object): UIW_WINOOW(name, file, object)

menu = Get ("MENU") i

170 Zinc 4.1 Addenda and Errata

Menus on the Macintosh ZD·TN3015

Third, provide a destructor for the window.

Since we add and subtract the menu from the window, our destructor must free the memory used by the
menu.

MY_WINDOW::-MY_WINDOW()
{

#if defined (ZIL_MACINTOSH)
delete menu;

#endif

Fourth, the window's Event() function must handle the S_CURRENT and the S_NON_CURRENT
events.

As we mentioned earlier, in Event() subtract the menu for S_NON_CURRENT and add it for S_CURRENT.

EVENT_TYPE MY_WINDOW::Event(const UI_EVENT &event)
{

EVENT_TYPE ccode = event. type;

swi tch (ccode)
{

#if defined (ZIL_MACINTOSH)
case S_CURRENT:

*this
+ menu;

ccode = UIW_WINDOW::Event(event);
break;

case S_NON_CURRENT:
*this

- menu;
ccode = UIW_WINDOW::Event(event);
break;

#endif
default:

ccode = UIW_WINDOW::Event(event);

return ccode;

Finally, call the constructor for your derived cla~ instead of the UIW_WINDOW constructor.

UI_APPLICATION: :Main()
{

UIW_WINDOW *winl = new MY_WINDOW (lip_test .dat-RESOURCE_l ");
UIW_WINDOW *win2 = new MY_WINDOW("p_test.dat-RESOURCE_2");

*windo1NManager
+ winl
+ win2;

Zinc 4.1 Addenda and Errata 171

Menus on the Macintosh ZD·TN3015

Control();

return (0);

For the sample code referred to in this technote refer to TN3015.HQX.

172 Zinc 4.1 Addenda and Errata

6.16

Keywords:
Versions:
Components:
Platforms:
Issued:

Question

Adding pop-up menus to the screen

pop-up menus, Window Manager
4.0 and later
Library
All
April 16, 1995

Adding pop-up menus to the screen ZD-TN3016

ZD-TN3016

I want to use a pop-up menu without attaching it to a menu bar. How do I add a pop-up menu to the screen
and have it display itself without a menu bar?

Answer

To use pop-up menu without attaching it to a menu bar, create a UIW_POP_UP_MENU object and add it
directly to the Window Manager.

Creating and adding a UIW_POP_UP_MENU to the Window Manager causes the pop-up to display itself
without a menu bar.

To create the menu, you can use two different constructors. The first constructor takes an array of UC
ITEMS:

EVENT_TYPE AddPopUpMenu(UI_WINDOW_OBJECT *object, UI_EVENT &, EVENT_TYPE ccode)
{

if (ccode != L_SELECT)
return (0) j

II Array of UI_ITEMS used to initialize the pop-up menu
UI_ITEM menuItems[]=

{

{S_CLOSE_TEMPORARY, ZIL_NULLP (void), "Cancel", MNIF_SEND_MESSAGE} ,
{O, ZIL_NULLP (void), "", MNIF_SEPARATOR} ,
{L_EXIT_FUNCTION, ZIL_NULLP(void) , "Exit" ,MNIF_SEND_MESSAGE},
{O, CloseWindow, "Close", MNIF_SEND_MESSAGE},
{O, ZIL_NULLP(void) , 0, O}

} j

UIW_POP_UP_MENU *menu = new UIW_POP_UP_MENU(object->true.right, object-
>true.bottom, WNF_NO_FLAGS, menuItems)j

menu->woStatus 1= waS_GRAPHICS;
menu->woAdvancedFlags 1= WOAF_TEMPORARYj
*object->windowManager

+ menu;
return (0) j

The second constructor takes an initial position:

Zinc 4.1 Addenda and Errata 173

Adding pop-up menus to the screen ZD-TN3016

EVENT_TYPE AddPopUpMenu2(UI_WINDOW_OBJECT *object, UI_EVENT &, EVENT_TYPE ccode)
{

if (ccode != L_SELECT)
return (0);

UIW_POP_UP_MENU *menu new UIW_POP_UP_MENU(object->true.left, object->true. top, WNF_NO_
FLAGS,

WOAF_TEMPORARY) ;
menu->woStatus 1= WaS_GRAPHICS;
*menu

+ new UIW_POP_UP_ITEM("Cancel 2", MNIF_SEND_MESSAGE,BTF_NO_3D, WOF_NO_FLAGS, 0,
S_CLOSE_TEMPORARY)

+ new UIW_POP_UP_ITEM()
+ new UIW_POP_UP_ITEM ("Exit 2", MNIF_SEND_MESSAGE, BTF_NO_3 D, WaF_NO_FLAGS, 0,

L_EXITYUNCTION)
+ new UIW_POP_UP_ITEM ("Close 2", MNIF_NO_FLAGS, BTF_NO_3D,

WOF_NO_FLAGS, CloseWindow)

menu->woAdvancedFlags 1= WOAF_TEMPORARY;
*object->windowManager

+ menu;
return (0);

To summarize, to use a pop-up menu without attaching it to a menu bar, create a UIW_pop_UP_MENU
object and add it directly to the Window Manager.

174 Zinc 4.1 Addenda and Errata

Upgrading applications to run on Zinc 4.1 ZD·TN3018

6.17

Keywords:
Versions:
Components:
Platforms:
Issued:

Question

Upgrading applications to run on Zinc 4.1

Zinc 1.0, Zinc 2.0, Zinc 4.1, upgrade, modify
All
Library, Designer
All
15 May 1995

ZD-TN3018

How do I upgrade my application frOIl) Zinc 1.0 or 2.0 to Zinc 4.1?

Answer

To upgrade to 4.1 from Zinc 1.0 or 2.0, change the following:

1. Generic()

Search for UIW_WINDOW::GENERIC() and replace it with UIW_WINDOW::Generic() and modify the
parameters to match the new form for the generic function. Replace all instances of UIW_SYSTEM_BUT
TON::GENERIC{) with UIW_SYSTEM_BUTTON::-Generic().

UIW_WINDOW: :GENERIC (int left, int top, int width, int height, USHORT

woFlags, USHORT

woAdvancedFlags, int helpContext, char *title);

has been changed to:

UIW_WINDOW: :Generic(int left, int top, int width, int height, ZIL_ICHAR

*title, UI_WINDOW_OBJECT

*minObject = ZIL_NULLP(UI_WINDOW_OBJECT), WOF_FLAGS woFlags = WOF_NO_

FLAGS, WOAF_FLAGS

woAdvancedFlags = WOAF_NO_FLAGS, UI_HELP_CONTEXT helpContext = NO_
HELP_CONTEXT) ;

UIW_SYSTEM_BUTTON::GENERIC()

has also changed to:

UIW_SYSTEM_BUTTON::Generic().

Note the change in case in the spelling of Generic, the change in the order of the parameters, the new icon
parameter, and the default arguments.

Zinc 4.1 Addenda and Errata 175

Upgrading applications to run on Zinc 4.1 ZD·TN3018

2 windowList

Change all references of "windowList" to "Ul_LIST::". Ul_EVENT_MANAGER, VI_WINDOW_MAN
AGER, UIW_WINDOW, and all objects derived from window no longer contain the variable "windowList"
because of the multiple inheritance from VI_LIST.

3. .first, Jast, .cunent, .previous, and .next

Use First(), Last(), Current(), Previous(), and Next() respectively instead of the member variables *first,
*last, *current, *previous, and *next Those member variables are now protected members of VI_LIST and
VI_ELEMENT.

4. Keyboard rawCodes

When using any of the constants for keyboard rawCodes (e.g., ALT_A, F3) place "#define USE_RAW_
KEYS" before the "#include <ui_win.hpp>".

5. Palette map structure

Modify any references to the VI_PALETTE_MAP structure to conform to the new structure.

The structure for palette maps has changed slightly. The attrib macro should no longer be called for the
graphics mappings. For example:

{ ID_WINDOW_OBJECT, PM_ANY, { I " attrib(BLACK, LIGHTGRAY), attrib(MONO_

NORMAL, MONO_BLACK), SOLID_FILL, attrib(BLACK, WHITE), attrib(BW_BLACK,

BW_WHITE), attrib(GS_BLACK, GS_WHITE)} }

would become:

{ ID_WINDOW_OBJECT, PM_ANY, { , " attrib(BLACK, LIGHTGRAY), attrib(MONO_

NORMAL, MONO_BLACK), PTN_SOLID_FILL, BLACK, WHITE, BW_BLACK, BW_WHITE, GS_

BLACK, GS_WHITE} }

6. Event devices

Move logic for derived devices from the Event() function of those devices to the Poll() function.

The event function of devices attached to the event manager is not called in UI_EVENT_MANAGER::Get
function to notify devices of the messages received. For SPY-type devices check the event queue in the
Poll() routine using:

In this example, ccode will be 0 if there is an event and negative if there isn't. (See VI_EVENT_MAN
AGER::Get in the Zinc Interface Library Programmer's Reference Volume 1.) Also notice that SOLID_FILL
has been changed to PfN_SOLID_FILL.

176 Zinc 4.1 Addenda and Errata

Upgrading applications to run on Zinc 4.1 ZD·TN3018

7. UI_DISPLAY

Check calls to display methods to make sure that they follow the new paramter lists.

The functionality of the VI_DISPLAY class has been expanded. Many of the member functions have a dif
ferent parameter list or do not exist in their original form. See VI_DISPLAY in the Programmer's Reference
Volume 1for specific information on procedures and functions as they now exist.

8. Help files

Move all help for your application into the .DAT file that your application uses.

Help is now stored in the .DAT files rather than in .HLP files. Also the method for converting is now to chose
Context I Import from the Help Editor window. All help files will need to be generated from their .TXT files
using the import utility from within the designer.

9. Icon format

The bitmap format for UIW_ICON's has changed. Read the chapter on UIW_ICON in the Programmer's
Reference Volume 2 for information on the new format.

10. Country information

Change all references to the VI_COUNTRY_INFO strucurre to appropriate calls to the ZIL_INTERNA
TIONAL class.

The structure ui_country_info has been replaced by the class ZIL_INTERNATIONAL. The new class will
allow for greater flexibility and robustness for handling country-specific information.

11• .DATfile

Convert any .DAT files that were created before Zinc 3.0 to the new format using the convert utility available
from Zinc. '

The .DAT file structure has changed significantly. Existing Zinc 2.0 .DAT files can be converted to version 3.
oformat using the convert utility CONVERT.ZIP found on the Zinc BBS. After doing this they can be
loaded into the Zinc 4.1 designer and converted to a format useful to Zinc 4.1. More objects can now be
stored in the data files and can be accessed within a quicker access time. A data file can contain up to 16,000
objects with the file size being up to 16 megabytes. A single object has a maximum size of 4 megabytes.

12. Device

Change all references to devices to use the new naming format.

The names of the devices have been changed, as follows:

UI_CURSOR

UI_BIOS_KEYBOARD

UI_MS_MOUSE

-> UID_CURSOR

UID_KEYBOARD

UID_MOUSE

Zinc 4.1 Addenda and Errata 177

Upgrading applications to run on Zinc 4.1 ZD·TN3018

This change was made to provide a better relation between the device classes. All device classes will have
the UID_ prefix.

13. Display

Change all references to display classes to conform to the new naming format.

The names of the displays have been changed, as follows:

UI_DOS_BGI_DISPLAY

UI_DOS_FG_DI SPLAY

UI_DOS_TEXT_DISPLAY

->

->

->

UI_BGI_DISPLAY

UI_FG_DISPLAY

UI_TEXT_DISPLAY

The _DOS_ portion of the above class names was considered to be redundant. The UCMSC_DISPLAY
class was added to allow display support for Microsoft C/C++.

14. Error system

Replace UCERROR_WINDOW_SYSTEM with UI_ERROR_SYSTEM, and UI_ERROR_SYSTEM with
UI_ERROR_STUB.

The UCERROR_WINDOW_SYSTEM class has been renamed to be the UI_ERROR_SYSTEM class. The
old UCERROR_SYSTEM class has been renamed to UCERROR_STUB. The error system window will
display the error text, an "Ok" button, and a "Cancel" button. Selecting the "Ok" button will restore the text
that was on the field before the current text was entered. Selecting "Cancel" will keep the text as was entered,
regardless of the error message. This allows the error system to function as a dialog window rather than
simply reporting the error. This interaction is more standardized with other interface environments.

15. Event manager

Add the same devices to the Event Manager in all environments. The UI_MSWINDOWS_MESSAGE class
has been deleted and is no longer required. For an example of how to start an application see the "Getting
Started" manual.

16. Help system

Replace references to UCHELP_WINDOW_SYSTEM with UCHELP_SYSTEM, and references to UI_
HELP_SYSTEM with ill_HELP_STUB.

The UCHELP_WINDOW_SYSTEM class has been renamed to the ill_HELP_SYSTEM class. The old
ill_HELP SYSTEM class has been renamed to the UCHELP_STUB class.

17. Hotkeys

Instead of using the hotkey member of the ill_WINDOW_OBJECT class, use the HotKey() function.

178 Zinc 4.1 Addenda and Errata

Upgrading applications to run on Zinc 4.1 ZD·TN3018

UCWINDOW_OBJECT::hotkey is now private. Use VI_WINDOW_OBJECT::HotKey(). Most member
variables should not be changed at random. However, the HotKey() function is provided to allow a means of
changing the hotkey.

18. Icons and windows

To use an icon as the minimize icon for a window pass a pointer to it to the constructor of the window.

When an icon is passed in as the minimize object as part of the UIW_WINDOW constructor, it will be dis
played when the window is minimized. If the WOS_MINIMIZED flag is set on the window before it is
added to the window manager, the window will appear in a minimized state (i.e., as the icon).

19. Jump list

Link in the generated .CPP fIles that the Zinc Designer writes when it saves your .DAT file.

Zinc Designer 2.0 created a .CPP file with a UCJUMP_LIST object that was used to provide a jump to the
constructors of the objects created in the designer. Zinc Designer 4.1 creates a similar table called _
objectTable. _objectTable is an array of VI_ITEM structures. In addition to _objectTable, Zinc Designer 4.1
creates _userTable. _userTable is a table of user functions that were assigned to specific objects in the
designer. For example, if a button was created (in the designer), and "Functionl" was entered for the user
function, _userTable will create an entry for "Function!." This change simplifies the process by which
objects (created using Zinc Designer) can be used in your code. User functions need only be implemented
and they will be called automatically.

20. Matrix

Change references to UIW_MATRIX to one of the UIW_HZ_LIST, UIW_VT_LIST, or UIW_TABLE.

The UIW_MATRIX class was divided into the UIW_HZ_LIST (horizontal list) and the UIW_VT_LIST
(vertical list). A vertical list will display a single scrollable column of objects. A horizontal list will display
multiple columns of objects. The horizontal list is scrollable in the horizontal direction only. For example, if
the horizontal list is 5 cell heights tall and 4 cell widths wide, it will have a viewable area of 4 columns
containing up to 5 objects each. Any objects added to the lists will be non-editable. These changes were
made to provide more standard objects across platforms. This will take advantage of the existing objects (e.g.
, MS Windows defined objects). Another alternative is to use the UIW_TABLE introduced in Zinc 4.0. For
examples on how to use the UIW_TABLE see the "Getting Started" manual.

21. Numbers

Use ZIL_BIGNUM and UIW_BIGNUM instead of UIW_NUMBER.

UIW_NUMBER has been replaced by ZIL_BIGNUM and UIW_BIGNUM. This change was to allow
greater flexibility regarding numbers. The bignum classes can handle fixed-point numbers that default to 30
digits to the left and 8 digits to the right of the decimal point. The number of allowable digits can be changed
by changing the values of ZIL_NUMBER_WHOLE and ZIL_NUMBER_DECIMAL which are #define
values located in VI_GEN.HPP. For example, changing ZIL_NUMBER_WHOLE to a value of 60 will

Zinc 4.1 Addenda and Errata 179

Upgrading applications to run on Zinc 4.1 ZD-TN3018

allow the existing code to support 60 digits to the left of the decimal point. ZIL_BIGNUM supports the
following operator overloads: =, +, -, ++, --, +=, -=, ==, !=, >, >=, <=, <. The additional operators will allow
greater flexibility in manipulating numerical values. Number formatting (currency, percent, etc.) is supported
by the UIW_BIGNUM class only. The UIW_INTEGER class is used to handle integer values only. The
UIW_REAL class handles double values and scientific notation. Scientific notation is only used if the length
of the number is longer than the length of the visible UIW_REAL field. Limiting the number formatting to
the UIW_BIGNUM class reduces the size of the library and the amount of code duplicated in the other num
ber classes. This allows for smaller executable programs.

22. Path

If you are instantiating your own copy of UCPATH use the new constructor and methods for the UI_PATH
class.

The UI_PATH class has been changed. It now implements a linked-list of UCPATH_ELEMENT objects.
The actual path information is contained in UI_PATH_ELEMENT. This change allows new paths to be,
more easily, added and deleted from the complete search path (i.e., UCPATH).

23. Redisplay

Call the Event() function with an S_REDISPLAY to redisplay an object.

In version 2.0, window objects were redisplayed by calling DataSet(NULL). Now objects should be redis
played by calling their Event() function with an S_REDISPLAY message. Since NULL is equivalent to 0,
doing a DataSet(O) will change the number field to 0 rather than re-displaying the field.

24. Scroll bars

Add scroll bars directly to the lists that they are to control.

UIW_SCROLL_BAR objects should be added directly to the object that they will control. In version 2.0, if
a scroll bar was added to a parent window directly before a list box, it would control the list box. In version
4.1, the scroll bar should be added to the list rather than before it. This allows the controlling object to have
better communication with the scrollbar object.

25. Status flags

Change references to WOAS_* flags to the appropriate WOS_* flags.

The window object advanced status (WOAS_) flags have been changed to window object status (WOS-l
flags in order to consolidate the status flags. There were so few of these flags that they were consolidated.

26. TIme

Use the new functionality of the ZIL_TIME class.

180 Zinc 4.1 Addenda and Errata

Upgrading applications to run on Zinc 4.1 ZD-TN3018

The ZIL_TThffi class is now derived from ZIL_INTERNATIONAL. This will aid with the conversion
between country- specific time fonnats. The =, +, -, ++, --, >=, <=, !=, +=, -= operator overloads have been
added. The additional operators will allow for more ways to manipulate times.

27. User functions

Modify user functions to use the new format.

In version 2.0, user functions were of the following format:

void userFunction(void *object, int ccode)i

In version 4.1, user functions use the following fonnat:

EVENT_TYPE userFunction(UI_WINDOW_OBJECT *object, DI_EVENT &event, EVENT_

TYPE ccode) i

The user function declaration was changed to allow user functions to receive the actual event that caused the
function to be called. In version 4.1, user functions will also be called when the associated window object
receives the L_SELECT (i.e., <ENTER> is pressed or the object is clicked with the mouse), S_CURRENT
(the field becomes current), and S_NON_CURRENT (the field becomes non-current) messages. This will
allow user functions greater flexibility. Additionally, user functions are now used as validation routines (e.g.,
for strings, dates, times, etc.). NOTE: Since existing user functions will now be called three times (on select,
current, non-current), it will be necessary to a check the ccode at the beginning of each user function to see
why it was called. In order to constrain the user function to only execute the body of its code when an L_
SELECT message is sent, the following check should be made:

if (ccode != L_SELECT)

return (ccode) i

28. ui--P3rse_range

Derive from UIW_STRING or a class derived from UIW_STRING in order to use the ParseRange() func
tion. The parse range function became a protected member of UIW_STRING. This change was made since
range parsing is only handled by UIW_STRING and objects derived from UIW_STRING.

29. Validate functions

If you provide a user function for an object, and you need the Validate() function called for that object, then
call the Validate function directly.

User functions are now used to validate input fields. The validate functions are no longer used. Please see the
"User function" section for details. Having a single function for both purposes eliminates some of the confu
sion as to the purpose and usage of each function. There is a new function Validate(), that was added to
UIW_BIGNUM, UIW_DATE, and UIW_TIME. This provides the programmer with a pre-defined valida
tion routine. If the userFunction variable for the particular object is NULL, Validate() will be called to vali
date the value when the object receives the S_CURRENT, S_NON_CURRENT, or L_SELECT messages.

Zinc 4.1 Addenda and Errata 181

Upgrading applications to run on Zinc 4.1 ZD-TN3018

Validate() will call UI_ERROR_SYSTEM::ReportError() to report a validation error. If a user function is
provided, Validate() is not called to allow the programmer to either do specialized validation or call the
object's Validate() function directly from within the provided user function.

30. UI_STORAGE and UI_STORAGE_OBJECT

Replace UI_STORAGE and UI_STORAGE_OBJECT with the new classes.

The class UCSTORAGE_ELEMENT had been replaced by the class UCSTORAGE_OBJECT. The UI_
STORAGE class has been split up and renamed. It now consists of the following classes:

ZIL_STORAGE_READ_ONLY

ZIL_STORAGE

The UI_STORAGE_OBJECT class has been split up and renamed. It now consists of the following classes:

ZIL_STORAGE_OBJECT_READ_ONLY

ZIL_STORAGE_OBJECT

If no storage functionality is needed or if only read capability is required, only the necessary storage code
need be linked in. The inclusion of read or write code is controlled by the ZIL_LOAD and ZIL_STORE
macros at compile time.

31. Range strin~

Change all range strings to use the newformat.

The format for specifying a range for the UIW_DATE, UIW_TIME, and UIW_BIGNUM objects has
changed. A date range must be specified using the following format:

YYYY-MM-DD

where YYYY is the full year, MM is the month and DD is the day of the month. A time range must be
specified using the following format:

HH:MM:SS.TT

where HH is the hour in 24 hour notation, MM is the minutes, SS is the seconds, and IT are the hundredths
(seconds and hundredths are optional). A bignum range must be specified using the following format:

[-] [nnn] . [nnn]

where negative numbers are marked with a minus sign, the decimal separator is a period, and no currency
sign is used. Along with the change in how ranges are specified, objects read from a persistent object file are
assumed to be in the new format ifthe file has been saved using the 4.1 storage functions (or created with the
4.1 Designer). If the file is still a 3.6 file (look at the first few characters in the file to see of it is not a 4.x file)
then it will be read assuming the range format to be a U.S. format if the ZIL_3x_COMPAT macro was
defined when the library was built. This macro is defined by default in UCENV:HPP to provide a smoother

182 Zinc 4.1 Addenda and Errata

Upgrading applications to run on Zinc 4.1 ZD-TN3018

upgrade path. Range fonnats should be updated as soon as possible. You should use the Designer to update
your objects, then run GC on the ftle to convert the ftle version. After you have done this, you may undefine
ZIL_3x_COMPAT and rebuild the library to remove the excess code.

32. New names

Change all old names to use the new names.

Many names have changed in the library. Among these are the following:

Old name

UI_BIGNUM

UI_DATE

UI_TIME

UI_STORAGE

UI_INTERNATIONAL

ichact

ibignum

rbignum

infonnation requests

ZIL_OLDDEFS

SCREENID

HBITMAP

mCON

IGNORE_UNDERSCORE

NULLP

NULLF

NULLH

VOIDF

VOIDP

int8

int16

Newoome

ZIL_BIGNUM

ZILJ)ATE

ZIL_TIME

ZIL_STORAGE and ZIL_STORAGE_READ_ONLY

ZIL.JNTERNATIONAL

ZILJCHAR

ZILJBIGNUM

ZILjUJIGNUM

now have an C prefix

ZIL_OLD_DEFS

ZIL_SCREENID

ZIL~ITMAP _HANDLE

ZILJCON_HANDLE

FNT_IGNORE_UNDERSCORE

ZILJWLLP

ZIL_NULLF

ZIL_NULLH

ZIL_VOIDF

ZIL_VOIDP

ZIL_INT8

ZILjNT16

Zinc 4.1 Addenda and Errata 183

Upgrading applications to run on Zinc 4.1 ZD·TN3018

int32 ZIL_INT32

uint8 ZIL_UlNT8

uint16 ZIL_UINT16

uint32 ZIL_UINT32

Max MaxValue

Min MinValue

Abs AbsValue

See the sections of the .HPP mes defined for ZIL_OLD_DEFS for a more complete list. Most changes
should not affect an application if ZIL_OLD_DEFS is defmed when compiling the application. We recom
mend, however, that applications be fully ported as soon as possible. Most changes were made to avoid the
possibility of namespace collisions with other libraries.

33. Internationalization

Use the new internationalization classses.

Many member functions and member variables pertaining to internationalization have been moved from
individual classes to the ZIL_LOCALE_MANAGER, ZIL_LOCALE, ZIL_LOCALE_ELEMENT, ZIL_
LANGUAGE_MANAGER, ZIL_LANGUAGE, ZIL_LANGUAGE_ELEMENT, ZIL_DECORATION_
MANAGER, ZIL_DECORATION, ZIL_BITMAP_ELEMENT, ZIL_TEXT_ELEMENT, ZIL_I18N_
MANAGER, and ZIL_I18N classes. There are now global instances of the ZIL_LOCALE_MANAGER
class (called localeManager), the ZIL_LANGUAGE_MANAGER class (called languageManager), and the
ZIL_DECORATION_MANAGER class (called decorationManager). Individual instances of an object can
now more easily use different locale and language information.

34. MS Windows screenID

Ifyou are using native windows API calls for a window, make sure that you use the appropriate handle.

In MS Windows a UIW_WINDOW object now has a "client window." A program written at the Zinc level
will not be affected, but if the application is taking advantage of some Windows API functionality it may
need to be adjusted. The Zinc parent of an object added to the window will still be the window. The MS
Windows parent will be the client window, though. Some objects, such as a status bar or tool bar on an MDI
parent window, need to be displayed outside the user-region (client-region) of the window. This change
makes this possible.

35. UNICODE.DAT

Make sure the I18N.DAT me is in your path for unicode applications.

184 Zinc 4.1 Addenda and Errata

Upgrading applications to run on Zinc 4.1 ZD·TN3018

The UNICODE.DAT, LANGUAGE.<ISO> and LOCALE._<ISO> data files have been replaced by the
I18N.DAT file. This file must be in the path at run-time if internationalization, including character mapping,
locale formatting and language translation, is to occur. The global instances of these classes will be created
before main starts.

36. UI_MOTIF_DISPLAY

Replaces references to the UI_MOTIF_DISPLAY class with UI_XT_DISPLAY

The UI_MOTIF_DISPLAY class introduced in Zinc 3.5 has been renamed to UI_XT_DISPLAY The name
is more appropriate and will allow easier support for other X-based windowing systems.

37. S_CHANGED

An S_CHANGED event has been added to the library. This event is sent when an object's size or position
has changed. When an object receives this event it should update its region as necessary. This event will
often be sent in cases where an S_SIZE event used to be sent, so you should trap for S_CHANGED wherever
you previously trapped for S_SIZE.

Zinc 4.1 Addenda and Errata 185

Deriving a thermometer-type object ZD·TN400S

6.18

Keywords:
Versions:
Components:
Platforms:
Issued:
File:

Question

Deriving a thermometer-type object

bar chart
3.5 and later
Library
All
November 8, 1994
Thermo.zip

ZD-TN4005

How to create an object that behaves like a thermometer, such as a bar chart-type object that sizes at run time.

Answer

This can be accomplished by deriving your own class from Zinc's UI_WINDOW_OBJECT class and creat
ing your own DrawItem() function and your own Event() function.

The Event() function receives a size event, modifying the size parameters of the bar chart object and issues a
call to the DrawItem() function, which redraws the object with the new parameters.

Note:

For an example see thermo.zip on the Zinc BBS.

186 Zinc 4.1 Addenda and Errata

6.19

Keywords:
Versions:
Components:
Platforms:
Issued:

Question

Using the dot matrix printer

VI_PRINTER; dot matrix printer
Zinc 4.1+
VI_PRINTER
DOS
April 11, 1995

Using the dot matrix printer ZD·TN4026

ZD-TN4026

How do I use the dot matrix printer under DOS?

Answer

Vnder DOS, Zinc 4.1 now supports text output to the dot matrix printer. Previously, dot matrix printer sup
port was only available on non-DOS platforms. The functions to accomplish this are Text() and
TextFormat().

Before using Text() or TextFormat(), the VCPRINTER instance must be instantiated, and the
BeginPrintJob() and BeginPage() functions must be called. Printing to a dot matrix printer can be specified
by setting the ZINC_PRINTER environment variable to DM9 or DM24, or by passing PRM_
DOTMATRIX9 or PRM_DOTMATRIX24 as the first parameter to the BeginPrintJob() function. PRM_
DOTMATRIX9 and PRM_DOTMATRIX24 are interchangable when printing text to a dot matrix printer
under DOS.

The Text() function prints a word or a line to a specified line and column on the printer page. All Text()
output must be done from left to right, top to bottom. In other words, you can't output text to the end of a page
and then go back to print text at the top.

The TextFormat() function prints multiple lines of text. TextFormat() word wraps the string automatically
and allows you to specify the number of columns to indent the paragraph as well as the starting line for the
text.

There are three variables that can be used to adjust output to a dot matrix printer. These are currently private
in the VCPRINTER class and should be public in a future release. To modify these for your application,
move them from private to public in ui_dsp.hpp.

The three variables are:

Zinc 4.1 Addenda and Errata 187

Using the dot matrix printer ZD·TN4026

• dotMatrixBottomMargin

Number of lines to leave for spacing at the end of each page. The default is 8.

• dotMatrixColumnsPerPage

Number of columns for the page for word wrapping. The default is 80 characters, but specifying 60,
for example, would cause word wrapping to start at column 60.

• dotMatrixRowsPerPage

Number of rows per page. This determines when the printer form feeds to the next page. The default
is 66.

The top margin is the physical position of the top of the paper in the printer.

See Reference Manual, Vol. 1 for more information on the ill_PRINTER class.

188 Zinc 4.1 Addenda and Errata

6.20

Keywords:
Versions:
Components:
Platforms:
Issued:

Question

Differences in platforms-Windows

Crossplatform issues; porting; Windows
Zinc 4.1+
LffiRARY
Windows
May 3,1995

Differences in platforms-Windows.ZD·TN4031

ZD-TN4031

How do I port an application to Windows or Windows NT?

Answer

In general, porting an application to Windows or Windows NT means recompiling your source code with a
compiler supporting the target environment.

The following are some differences and customization issues to be aware of.

1. Application Icon. You can specify the icon for the application in the .rc file.

rninlcon ICON iconPath

2. Changing the application name in the task list. Use the following:

windowManger->Inforrnation(I_SET_TEXT, "new Name");

3. If the system button is not on a window, it cannot be moved, sized, etc. Also, if the system button does not
have a move option (MNIF_MOVE) for example, the window cannot be moved.

4. Preventing the user from closing down Windows. In exitFunction, return S_CONTINUE. When a user
tries to shut down Windows, the exitFunction can prompt the user to really exit. Returning S_CONTINUE
from the exitFunction tells Windows not to shut down.

5. Disk reads from text file; outputting carriage return to text object. Under Windows, a carriage return and
line feed must be specified by a \r\n combination. When reading text from disk, make sure the file is opened
as binary.

6. Buttons in a UIW_VT LIST. When a button is selected, normally it does not change color to reflect that it
is selected. To get this effect, set the two-state flag for the button, or make sure the BTF_NO_TOGGLE flag
is off.

7. System events. The eventtype of any system specific event, such as a mouse click or keyboard press, has
eventtype equal to E_OS2. event.message.message contains the system event type, such as WM_MOUSE
MOVE; event.InputType() returns the Zinc event type, which could be E_MOUSE, E_KEY, etc.

Zinc 4.1 Addenda and Errata 189

DitTerences in platfonns-OS/2 ZD·TN4033

6.21

Keywords:
Versions:
Components:
Platforms:
Issued:

Question

Differences in platforms-OS/2

Crossplatform issues; porting application; OS/2
Zinc 4.1+
LIBRARY
OS/2
May 3,1995

ZD-TN4033

How do I port an application to OS/2?

Answer

In general, porting an application to OS/2 means recompiling your source code with a compiler supporting
the target environment.

However, there are some differences and customization issues to be aware of.

1. Application Icon. You can specify an icon for the application in the resource (.rc) file by adding the line
shown below.

DEFAULTICON iconPath.ico

2. Drag and Drop. Drag and Drop is done with the mouse button assigned to drag and drop in the OS\2 setup.
OS\2 uses the right button by default.

3. Preventing user from closing down the window. In exitFunction, return S_CONTINUE. When a user tries
to shut down Windows, the exitFunction can prompt the user to really exit. Returning S_CONTINUE from
the exitFunction tells Windows not to shut down.

4. Disk reads from text fIle; outputting carriage return to text object. Under OS\2 a carriage return\line feed
must be specified by a \r\n combination. When reading text from disk, make sure that the file is opened as
"binary." This is the standard in all environments.

5. Buttons in a UIW_VT LIST. When a button is selected, it normally does not change color to reflect that it
is selected. To get this effect, set the 2 state flag for the button (or make sure the BTF_NO_TOGGLE flag is
oft).

6. Notebooks. The notebook tabs adjust their width automatically.

7. Palette Mapping. This only works when changing the background color of a window. You can, however,
derive your own objects with their own DrawItem() function which draws the object with the palettes you
specify.

190 Zinc 4.1 Addenda and Errata

Differences in platforms-OS/2 ZD·TN4033

8. System events. The event.type of any system-specific event, such as a mouse click or keyboard press, has
an event.type equal to E_OS2; event.message.message contains the system event type, for example, WM_
MOUSEMOVE, whereas event.InputType() returns the Zinc event type, for example, E_MOUSE, E_KEY

9. OS\2 Designer. When running the Designer, if the editor icons do not show up, modify the OS\2 system
setup. In the OS\2 system folder, under System Settings ISystem IWindow, select Minimize window to desk
top.

Zinc 4.1 Addenda and Errata 191

Platform differences-Motif, Macintosh, NEXTSTEP, Curses ZD·TN4034

6.22

Keywords:
Versions:
Components:
Platforms:
Issued:

Question

Platform differences-Motif, Macintosh, NEXTSTEP, Curses ZD-TN4034

Crossplatform issues; porting application; Motif, Macintosh, NEXTSTEp, Curses
Zinc 4.1+
LffiRARY
Motif, Macintosh, NEXTSTEP, Curses
May 3,1995

How do I port an application to the Motif, Macintosh, NEXTSTEP and Curses platforms?

Answer

There is a text file for each of these platforms describing the specific things to be aware of when developing
for these environments. They also cover some compiler issues with these platforms. The files are:

• mac.txt (Apple Macintosh, PowerPC).

• motif.txt (OSF/Motif). Also available: port.txt and motif.white.paper on the FTP site in pub\doc.

• nextstep.txt (NEXTSTEP).

• curses.txt (Unix Curses).

You can find all the text files in Zinc\ as well as the bulletin board under the 4.0 conference.

192 Zinc 4.1 Addenda and Errata

6.23

Keywords:
Versions:
Components:
Platforms:
Issued:

Question

MOl application guidelines

MOl
Zinc 4.1+
LIBRARY
ALL
5-03-95

MDI application guidelines ZD·TN4035

ZD-TN4035

How do I write an MOl application?

Answer

The following are some guidelines for writing MOl applications:

1. The WOAF_MOCOBJECT flag must be set on both the parent and child windows.

2. The MOl parent should have a menu. It can also have a toolbar and a status bar. If a toolbar is added it
should have its WOAF_SUPPORT_OBJECT flag set (default). It should not have other client area objects,
such as buttons, strings, etc., added to it.

3. Events put on the queue that are intended for an MOl child should have the S_MOICHILO_EVENT con
stant added to it.

For example, to close the current MOl child window:

4. To get a pointer to the current MOl child use the following:

currentChild = mdiParent->Last();

5. To enable the use ofhotkeys on MOl children, use the following:

Zinc 4.1 Addenda and Errata 193

DGROUP exceeding 64K ZD·TN4036

6.24

Keywords:
Versions:
Components:
Platforms:
Issued:

Question

DGROUP exceeding 64K

DGROUP; DOS Compilers
Zinc 3.5+
LffiRARY
ALL
5-03-95

ZD-TN4036

How do I get around the linker error of "DGROUP exceeds 64k limit"?

Answer

The DGROlm which is limited to 64k, is used for global data variables, embedded strings,the stack and the
heap.

Here are some ways to free up DGROUP space.

1. Make global variables far.
char far *stringName;

int far someArray[50J [50J;

2. Assign embedded strings to a far char. Instead of ...
FILE *fh = fopen("dataFile.txt", "r+");

... use the following:
char far file [J = "dataFile";

char far mode[J = "r+";
FILE *fh = fopen(file, mode);

3. Also, when linking, use the -zH compiler option. (See your compiler manual if you need more info.)

4. The stack and heap size can also be decreased, although if your program requires a larger stack or heap
size, this solution is unworkable.

5. Another solution is to use a 32-bit extender, which eliminates the problem altogether.

194 Zinc 4.1 Addenda and Errata

6.25

Keywords:
Versions:
Components:
Platforms:
Issued:

Question

Creating vertical lists with buttons, fonts, and centered text ZD·TN5000

Creating vertical lists with buttons, fonts, and centered text ZD-TN5000

bitmap children, button, font, ownerdraw, vertical list
3.5 and later
Library
Windows, OS/2, Motif, Macintosh, NEXTSTEP
July 27, 1994

How do I create a vertical list with buttons, where each button uses a different font and has its text centered?

Answer

In non-DOS environments we create native window objects and in most cases, we let the environment draw
the objects for us. But in order to create a vertical list with several buttons, where each button uses a different
font and has its text centered, we must have Zinc draw the buttons for us. The following code sample shows
how to create such a list in Windows, OS/2, Motif, Macintosh and NEXTSTEP.

II Create a vertical list and four buttons.
UIW_VT_LIST list = new UIW_VT_LIST(2, 1, 20, 4, NULL, WNF_BITMAP_CHILDREN,
WOF_BORDER) ;
UIW_BUTrON *btnl = new UIW_BUTTON(O, 0, 20, "Button A", BTF_NO_3D,
WOF_JUSTIFY_CENTER);
UIW_BUTTON *btn2 = new UIW_BUTTON(O, 0, 20, "Button B", BTF_NO_3D,
WOF_JUSTIFY_CENTER);
UIW_BUTrON *btn3 = new UIW_BUTTON(O, 0, 20, "Button C", BTF_NO_3D,
WOF_JUSTIFY_CENTER);
UIW_BUTrON *btn4 = new UIW_BUTTON(O, 0, 20, "Button D", BTF_NO_3D,
WOF_JUSTIFY_CENTER);

II Set the ownerdraw status for each button in order to call its Drawltem().
II These Flags must be set before the buttons are added to the list.

btnl->woStatus 1= WOS_OWNERDRAW;
btn2->woStatus 1= WOS_OWNERDRAW;
btn3->woStatus 1= WOS_OWNERDRAW;
btn4->woStatus 1= WOS_OWNERDRAW;
II Assign a different font to each button.
btnl->Font(O);
btn2->Font(1);
btn3->Font(2);
btn4->Font(3);
II Add the buttons to the vertical list.
*list
+ btnl
+ btn2
+ btn3
+ btn4;

Zinc 4.1 Addenda and Errata 195

Creating vertical lists with buttons, fonts, and centered text ZD-TN5000

The above code assumes that the display has its font table initialized with the desired fonts. See other tech
notes which explain how to assign fonts to the display's font table in each environment.

196 Zinc 4.1 Addenda and Errata

Inserting a new object into a vt. or hz. list at run time ZD·TN5001

.... Ufo i* t'iJ 111111.'

6.26

Keywords:
Version:
Component:
Platforms:
Issued:
File:

Question

Inserting a new object into a vt. or hz. list at run time

list, object, run time
3.0 and later
Example
All
July 7, 1994
None

ZD-TN5001

How do you insert a new object into a vertical or horizontal list at runtime?

Answer

Inserting a new object into a vertical or horizontal list at runtime requires the use of UCUST::Add(). This
overloaded function does not do any of the initialization provided by the UIW_WINDOW::Add(), so the
programmer must provide it. Below is some sample code showing how to insert a new object (e.g., button)
into a vertical list, initialize the object, and redisplay the list.

II Create a new button.
UIW_BUTrON *button = new UIW_BUTI'ON (...) ;

II Get the current object in the vertical list.
UI_WINDOW_OBJECT *current = vtList->Current();

II Insert the button before the current object.
vtList->UI_LIST::Add(current, button);

II Assign the vertical list as the button's parent.
button->parent = vtList;

II Redisplay the vertical list.
vtList->Inforrnation(CHANGED_FLAGS, NULL);

See the Programmer's Reference for more information on UI_LIST::Add(Ul_ELEMENT *element, UI_
ELEMENT *newElement).

Zinc 4.1 Addenda and Errata 197

Drag and drop in 4.0 ZD·TN5003

6.27

Keywords:
Versions:
Components:
Platforms:
Issued:

Question

Drag and drop in 4.0

drag and drop
4.0
Library
All
September 9, 1994

ZD-TN5003

Object may be move-dragged

Object may be copy-dragged (both may be selected)

Object may accept the drop of another object

How does drag and drop work in Zinc 4.0?

Answer

Objects that may be dragged, or that may receive drops, must be indicated by setting flags on the objects.
Flags may be set either in code or in Zinc Designer. Relevant flags are:

WOAF_MOVE_DRAG_OBJECT

WOAF_COPY_DRAG_OBJECT

WOAF_ACCEPTS_DROP

Dragm~es

On a mouse down-click, the object under the mouse cursor receives an L_BEGIN_SELECT (usually
<1eft-mouse-button», L_BEGIN_MOVE_DRAG message (usually <Shift+left-mouse-button», or L_
BEGIN_COPY_DRAG (usually <Ctrl+left-mouse-button». When this message is received, the object per
forms two operations immediately:

The object sets windowManager->dragObjectto point to itself;

The object sets the mouse cursor to the proper image by calling

eventManager-> DeviceImage(E_MOUSE, DM_*).

Mouse cursor images

Standard mouse cursor images are:

DM_CANCEL

DM_DRAG_MOVE

DM_DRAG_COPY

DM_DRAG_MOVE_MULTIPLE

DM_DRAG_COPY_MULTIPLE

Drop not allowed at this location

Move of single object allowed to this location

Copy of single object allowed to this location

Move of multiple objects allowed to this location

Copy of multiple objects allowed to this location

198 Zinc 4.1 Addenda and Errata

Drag and drop in 4.0 ZD·TNSOO3

Drop operatiom

As the user drags the mouse over objects, Zinc does the following:

Checks objects under the drag cursor to see if the object is flagged as WOAF_ACCEPTS_DROP. If not, the
mouse cursor is set to DM_CANCEL.

If the object is flagged as WOAF_ACCEPTS_DRO~ Zinc sends the object's Event() function one of the
following messages (depending on the windowManager->dragObject flags):

L_CONTINUE_SELECT

L_CONTINUE_MOVE_DRAG

L_CONI'lNUE_COPY_DRAG

For default (usually left-mouse-button) drags

For move (usually Shift+left-mouse-button) drags

For copy (usually Ctrl+left-mouse-button) drags

If the object has a user function, the user function is called. The message passed to the user function depends
on the flags of the windowManager->dragObject and the message received by the object's Event() function.
It will be one of the following:

S_DRAG_DEFAUU

S_DRAG_MOVE_OBJECT

S_DRAG_COPY_OBJECT

Informs the user function ofa default drag

Informs the user function ofa move drag

Informs the user function ofa copy drag

In the user function, the programmer decides whether to accept a drop request, and informs Zinc of the deci
sion by returning one of the following result codes:

o
S_ERROR (-1)

S_UNKNOWN(-2)

User processed message, drop allowed

User processed message, drop not allowed

User did not process message

If the programmer returns 0 or S_ERROR, the user function should set the appropriate mouse cursor image
(see cursors above). If the programmer returns S_UNKNOWN, or if there is no user function, Zinc will send
the S_DRAG_*message to the object's Event() function, which will choose the appropriate mouse cursor.

When the user up-clicks, Zinc sends one of the following messages to the Event() function for the object
under the cursor:

L_END_SELECT

L_END_MOVE_DRAG

L_END_COPY_DRAG

End default drag

End move drag

End copy drag

If the object under the up-click is flagged as WOAF_ACCEPTS_DROp, and if it has a user function, the user
function will be called with one of the following messages:

Object dropped using "default" drop

Zinc 4.1 Addenda and Errata 199

Drag and drop in 4.0 ZD·TNSOO3

S_DROP_MOVE_OBJECf

S_DROP_COPY_OBJECT

Object dropped using "move" drop

Object dropped using "copy" drop

Then, the programmer can decide what to do in the target object's user function when the user drops an object
there. The user function should return the same values as the drag queries (section 4 above). If the user func
tion returns S_UNKNOWN, or if there is no user function, Zinc will send the S_DROP_* message to the
object's Event() function, which will perform the default action for a drop on the object.

The following is an overview of the MOVE and COpy actions for different types of Zinc library objects:

200 Zinc 4.1 Addenda and Errata

Drag and drop in 4.0 ZD-TN5003

Move operations

List to List

List Item to List

Field to List

List to Field

List Item to Field

All others

Copy operations
List to List

List Item to List

Field to List

List to Field

List Item to Field

All others

All objects in the source list flagged as WaS_SELECTED are subtracted from the source list and added to
the target list.

The source list item is subtracted from its parent list and added to the target list.

This operation is not allowed.

If there is one item selected in the source list, then that item is removed from the source list, the text from
the item replaces the text on the target field and the item is deleted. If there is more than one item selected
in the source list, the target field disallows dropping.

The source list item is removed from its parent list, its text replaces the text in the target field and the item
is deleted.

The text from the source object is used to set the text for the target object, then the text for the source object
is blanked out

All objects in the source list flagged as WaS_SELECTED are duplicated and added to the target list.

The source list item is duplicated and added to the target list.

The source field is duplicated and added to the target list.

If there is one item selected in the source list, then that item's text replaces the target field's text. If there is
more than one item selected in the source list, the target field disallows dropping.

The list item's text replaces the target field's text.

The text from the source object is used to set the text for the target object.

Notes
• Images for the mouse cursors and key/mouse actions for MOVE, COPY, and DEFA ULT are environ

ment dependent, but they are consistent with that environment.

• Unless overridden by the programmer, Zinc treats S_DRAG_DEFAULTthe same as S_DRAG_
MOVE_OBJECT

• Unless overridden by the programmer, Zinc treats S_DROP_DEFAULTthe same as S_DROP_
MOVE_OBJECT

• For MOVE actions, set the WOAF_MOVE_DRAG_OBJECT flag on the source and the WOAF_
ACCEPTS_DROP flag on the target.

• For moves of a list item to a list, set the WOAF_MOVE_DRAG_OBJECTflag on the items in the
source list, not on the source list itself.

• For COpy actions, set the WOAF_COpy_DRAG_OBJECT flag on the source and the WOAF_
ACCEPTS_DROP flag on the target.

Zinc 4.1 Addenda and Errata 201

Drag and drop in 4.0 ZD·TN5003

• For copies of a list item to a list, set the WOAF_COpy_DRAG_OBJECT flag on the items in the
source list, not on the source list itself.

• For all others set WOAF_DRAG_OBJECTon the source and WOAF_ACCEPTS_DROP on the tar
get.

202 Zinc 4.1 Addenda and Errata

Enabling table navigation using keyboard and mouse ZD-TN5004

6.28

Keywords:
Versions:
Components:
Platforms:
Issued:

Question

Enabling table navigation using keyboard and mouse

table interaction
4.0
Library
All
September 21, 1994

ZD-TN5004

How do you enable navigation through a UIW_TABLE object using the keyboard and mouse?

Answer

The UIW_TABLE class will have an "edit" mode, which can be toggled on and off at run time.

When the edit mode is on, all Zinc standard keyboard interaction will be supported within the current UIW_
TABLE_RECORD object, unless otherwise specified.

Pressing <Tab> will always move the focus to the next field in a record, unless the last field is current. If the
last field is current, and if the table has multiple columns, pressing <Tab> will move the focus from the last
field in one record to the first field in an adjacent record. In this manner, pressing <Tab> will always cycle
horizontally through the fields and records in a table.

Pressing <Shift+Tab> does the opposite of pressing <Tab>.

When the edit mode is off, the arrow keys will always move the focus between the records in the table and the
edit mode will remain off.

When the edit mode is on, the arrow keys will move the focus between the records in the table, only if the
arrow keys are not used by a child of the record. If the arrow keys do move the focus between records, the
edit mode will remain on.

Pressing the left mouse-button, with the mouse cursor over any field within the table, will cause the table to
enter edit mode, and will make that field the current field.

Pressing the left mouse-button, with the mouse cursor over any record other than the current record, but not
over any field within that record, will cause the record under the mouse cursor to become current and edit
mode to be turned off.

Pressing the left mouse-button, with the mouse cursor over the current record, but not over any field within
the current record, will have no effect.

Pressing <Enter> will cause validation of the current record (by sending an L_SELECT message to the
record's Event() function and/or user function) and will toggle the edit mode of the table.

Zinc 4.1 Addenda and Errata 203

Enabting table navigation using keyboard and mouse ZD-TNSOO4

Ifa UIW_TEXT object is the current field in the record, and the table is in edit mode, <Ctrl+Enter> will be
required to cause validation and to toggle the edit mode of the table.

Pressing <PageUp> or <PageDowD> will scroll the table up or down according to the number of visible
records.

See the Programmer's Reference Volume 2 for more information on the UIW_TABLE and UIW_TABLE_
RECORD objects.

204 Zinc 4.1 Addenda and Errata

Working with UIW_TABLE_RECORD ZD-TN2008

6.29 Working with UIW_TABLE_RECORD ZD-TN2008

Keywords:
Versions:
Components:
Platforms:
Issued:

Question

UIW_TABLE, S_SET_DATA, S_NON_CURRENT, L_SELECT, user function
4.0
Library
All
February 6, 1995

What are the similarities and differences between a using a user function with a UIW_TABLE_RECORD
and deriving my own table record?

Answer

One way using a user function with a UIW_TABLE_RECORD and deriving your own table record are simi
lar is that they must process the same messages. Both must process S_SET_DATA to update data in the table
record, as well as S_NON_CURRENT and/or L_SELECTto update the data in memory or in a database.

An advantage of the user function over deriving a table record is the user function is simpler to use and
requires less overhead. However, getting pointers to objects in the table record is required before their data
can be retrieved or set. To get the pointers, use the Get() or the Information() functions. (Because these
functions use a linear search they are not very fast.)

The following is an example of a user function:

EVENT_TYPE CarRecordFunction(UI_WINDOW_OBJECT *object, UI_EVENT &event, EVENT_TYPE
ccode)

{

//Type cast event.data to be the proper type of data structure.
CAR_ENTRY *carEntry = (CAR_ENTRY*) event .data;

/ /Update data in memory or in the database.
if((ccode == S_NON_CURRENT) I I (ccode == L_SELECT))
{

//Use the Get function to get a pointer to a field.
UI_WINIX)vCOBJECT *ownerField = object->Get ("OWNER_FIELD");

//Retrieve the data from the field and update the memory or database.
ownerField->Information(I_COPY_TEXT, carEntry->owner);
UI_WINDOW_OBJECT *losses = object->Get ("LOSSES");
losses->Information(I_GET_VALUE, &carEntry->losses);
break;

}

//Set the data into the table record.
else if(ccode == S_SET_DATA)
{

UI_WINDOW_OBJECT *ownerField = object->Get ("OWNER_FIELD");
ownerField->Information(I_SET_TEXT, carEntry->owner);

Zinc 4.1 Addenda and Errata 205

Working with UIW_TABLE_RECORD ZD·TN2008

UI_WINIX)W_OBJECT *losses = object->Get ("LOSSES" l ;
losses->Information(I_SET_VALUE, &carEntry->lossesl;
break;

Deriving from UIW_TABLE_RECORD is a powerful way to incorporate database support into the table
record. However, this requires the additional overhead of including a class declaration and persistence func
tions. The following is an example of a class declaration:

class CAR_RECORD: public UIW_TABLE_RECORD
{

public:
CAR_RECORD(int width, int height, ZIL_ICHAR *entryOWner};

virtual -CAR_RECORI(){}
virtual EVENT_TYPE Event (const UI_EVENT &event};

#if defined (ZIL_LOAD)
virtual ZIL_NEW_FUNCTION NewFunction(void} { return (CAR_RECORD::New);
static UI_WINDOW_OBJECT *New(const char *name,

ZIL_STORAGE_READ_ONLY *file = ZIL_NULLP(ZIL_STORAGE_READ_ONLYl,
ZIL_STORAGE_OBJECT_READ_ONLY *object =

ZIL_NULLP(ZIL_STORAGE_OBJECT_READ_ONLYl, UI_ITEM *objectTable =
ZIL_NULLP (DI_ITEM), UI_ITEM *userTable = ZIL_NULLP (UI_ITEM) }
{ return (new CAR_RECORD(name, file, object, objectTable, userTablel);

CAR_RECORD(const char *name , ZIL_STORAGE_READ_ONLY *file =
ZIL_NULLP(ZIL_STORAGE_READ_ONLYl, ZIL_STORAGE_OBJECT_READ_ONLY *object
ZIL_NULLP(ZIL_STORAGE_OBJECT_READ_ONLY}, UI_ITEM *objectTable
ZIL_NULLP(UI_ITEM}, UI_ITEM *userTable = ZIL_NULLP(UI_ITEM}};

#endif

protected:
UIW_STRING *ownerField;
UIW_INTEGER *losses;

} ;

Because all tables require persistence, you must defme ZIL_LOAD in the library and include persistence
functions in your derived table record. These functions include a NewFunction(), which returns the address
of the static New() function, also declared in the class; and a persistence constructor. The following is an
example of a persistence constructor:

#if defined (ZIL_LOADl
CAR_RECORD: :CAR_RECORD (const char *name, ZIL_STORAGE_READ_ONLY *directory,

ZIL_STORAGE_OBJECT_READ_ONLY *file, UI_ITEM *objectTable, UI_ITEM *userTable}
UIW_TABLE_RECORD(name, directory, file, objectTable, userTable}

{

//Get pointers to members declared in the class.
ownerField = (UIW_STRING * lGet ("OWNER_FIELD" l ;
losses = (UIW_INTEGER*lGet("LOSSES");

206 Zinc 4.1 Addenda and Errata

Working with UIW_TABLE_RECORD ZD·TN2008

}

#endif

In a derived class, the events S_SET_DATA, S_NON_CURRENT, and L_SELECT are handled in the event
function instead of the user function. Declare members in the class, that point to the child objects of the table
record. This eliminates the need to use the Get() or Information() functions each time one of these events is
processed. The following is an example of an Event() function for a derived class:

EVENT_TYPE CAR_RECORD::Event(const UI_EVENT &event)
{

/ /Map the event. Only keyboard and mouse events need to be mapped. Since many events / fare
processed it is good to avoid mapping when possible. If this function was not //trapping
for L_SELECT it would be possible to use EVENT_TYPE ccode = event.type //instead.

EVENT_TYPE ccode =LogicalEvent(event)i
switch (ccode)
{

/ /Update data in memory or in a database.
case S_NON_CURRENT:
case L_SELECT:

{

//Pass event to the base class so the base can do any necessary operations.
UIW_TABLE_RECORD: : Event (event) i

CAR_ENTRY *carEntry = (CAR_ENTRY*)datai
//Retrieve the data from the fields.

ownerField->Information(I_COPY_TEXT, carEntry->owner)i
10sses->Information(I_GET_VALUE, &carEntry->losses)i
break;
)

//Update data in the fields on the record.
case S_SET_DATA:

{

UIW_TABLE_RECORD::Event(event)i
CAR_ENTRY *carEntry = (CAR_ENTRY*) data;
ownerField->Information(I_SET_TEXT, carEntry->owner)i
10sses->Information(I_SET_VALUE, &carEntry->losses);
break;
}

//Pass any events not handled to the base class.
default:

ccode = UIW_TABLE_RECORD::Event(event);

return (ccode);

Zinc 4.1 Addenda and Errata 207

Displaying MDI children after adding to MDI parent ZD·TN2010

6.30

Keywords:
Versions:
Components:
Platforms:
Issued:

Question

Displaying MDI children after adding to MDI parent

MDI, S_REDISPLAY, S_DISPLAY_ACTIVE
3.5 or later
library
All
February 6, 1995

ZD-TN2010

How do I display a MDI child after it has been added to a MDI parent?

Answer

To display an MDI ,child after it has been added to its parent, tell the parent to redisplay itself. In Zinc 3.5 and
3.6 you did this by sending an S_REDISPLAY to the parent.

UIW_WINDOW *mdiChild = new UIW_WINDOW("test .dat-MDI_CHILD") i

*mdiParent
+ mdiChildi

mdiParent->Event(S_REDISPLAY)i

In Zinc 4.0, the entire parent does not need to be redisplayed. You can send the parent an S_DISPLAY_
ACTIVE and the region of the child that needs to be displayed. This results in faster performance. Following
is an example:

UIW_WINDOW *mdiChild = new UIW_WINDOW("test.dat-MDI_CHILD")i
*mdiParent

+ mdiChildi
mdiParent->Event(UI_EVENT(S_DISPLAY_ACTlVE, 0, mdiChild->true))i

208 Zinc 4.1 Addenda and Errata

6.31

Keywords:
Version:
Component:
Platforms:
Issued:
Obsolete:

Question

Graying out a bitmap on a button when it is nonselectable ZD·TN4016

Graying out a bitmap on a button when it is nonselectable ZD-TN4016

Toolbar; button, swapping bitmaps
3.6,4.0
Persistent Storage; Bitmaps
All
January 31, 1995
NA

How can the bitmap on a button to be grayed out when it is made nonselectable?

Answer

To grayout a bitmap on a button when it becomes nonselectable, replace the existing bitmap with another
bitmap that has the desired gray scale such that it gives the visual appearance of being nonselectable.

To get a new bitmap from the Designer, create a button in code that has the bitmap "grayed out" bitmap that
you want. This button is never added to the window. It is used only to access our new bitmap.

II tempButton is a temporary button that only exists in memory.
II It is never added to the screen.
tempButton =new UIW_BUTTON(O, 0, a, NN, a, 0, a, 0, Nnew_bitmapN);

Then get the width and height of the new bitmap:

int width, height;
tempButton->Information(I_GET_BITMAP_WIDTH, &width);
tempButton->Information(I_GET_BITMAP_HEIGHT, &height);

Then set the width and height for this new bitmap using the Information() function.

button->Information(I_SET_BITMAP_WIDTH, width);
button->Information(I_SET_BITMAP_HEIGHT, height);

Get a pointer to the new bitmap:
char *newBitmapArray;

tempButton->Informat ion (I_GET_BITMAP_ARRAY, newBitmapArray);

Then set newBitmap as the bitmap for the button:

button->Information(I_SET_BITMAP_ARRAY, newBitmapArray);

Since you never add tempButton to the window, delete it before exiting the application.

For a complete example on toggling the selectability and bitmap of a button on a toolbar, see sbitmap.zip on
the bulletin board, main conference, tech support listing.

Zinc 4.1 Addenda and Errata 209

Displaying geometric objects on a window ZD·TN4017

6.32

Keywords:
Version:
Component:
Platforms:
Issued:

Question

Displaying geometric objects on a window

ellipse, rectangle, text
3.6,4.0
DrawItem(), Derived Objects
All
January 31, 1995

ZD-TN4017

How can I display geometric objects on a window without creating a user-defined DrawItem() function for
that window?

Answer

You can create geometric objects with their own unique display features by creating a geometric object class
from the UI_WINDOW_OBJECT base class, and adding instances of this class directly to a window using
the Add() function.

We model our constructor after the display->Ellipse() function such that the parameters passed to the con
structor are similar to the parameters passed to the Ellipse() function.

Thus our end usage of our ELLIPSE class will be:

*window
+ new UIW_ELLIPSE(200, 200, 50, 100, 0, 360, WOF_NO_FLAGS, BLUE, BLUE);

Adding this ellipse to the window would put an ellipse on the window at position (200, 200) with respect to
the top left of the window. The ellipse would have an x radius of 50 pixels, and a y radius of 100 pixels. Its
start angle would be 0 degrees and its ending angle would be 360 degrees. Its drawing palette would be blue.
In designing an ellipse class, first create a common base class, UIW_GEOMETRY_OBJECT. This is used
not only as a base class for our ellipse, but it also as a base class for the other geometric objects that we create.

The following is the class declarations for the UIW_GEOMETRY_OBJECT and UIW_ELLIPSE classes.

II ellipse.hpp - class declaration for an UIW_GEOMETRY_OBJECT, UIW_ELLIPSE
#include <ui_win.hpp>

class UIW_GEOMETRY_OBJECT public UI_WINOOW_OBJECT
{

public:
UIW_GEOMETRY_OBJECT(int _left, int _top,int _right, int _bottom,

WOF_FLAGS _woFlags, ZIL_COLOR _colorForeground,
ZIL_COLOR _colorBackground, UI_REGION *_clipRegion);

EVENT_TYPE Event (const UI_EVENT &event);

void *Information(ZIL_INFO_REQUEST request, void *data,

210 Zinc 4.1 Addenda and Errata

Displaying geometric objects on a window ZD·TN4017

UI_PALETTE *palettei
UI_REGION *clipRegioni

} i

class UIW_ELLIPSE public UIW_GEOMETRY_OBJECT
{

public:
UIW_ELLIPSE(int _column, int _line, int _startAngle,

int _endAngle, int _xRadius, intYRadius, WOF_FLAGS woFlags = WOF_NO_FLAGS,
ZIL_COLOR colorForeground = BLACK, ZIL_COLOR colorBackground = WHITE,
int _fill = FALSE, int _xor = FALSE,
UI_REGION *_clipRegion = ZIL_NULLP(UI_REGION))i

EVENT_TYPE Event (const UI_EVENT &)i

EVENT_TYPE DrawItem(const Ur_EVENT &, EVENT_TYPE)i

int column, linei
int startAngle,endAnglei
int xRadius,yRadiusi
int fill,xori

} i

The DrawItem() function gets called whenever the object needs to draw itself on the screen. The
display->Ellipse() function gets called from within the Drawltem() function.

For a complete example program on creating and using an ellipse, line, rectangle, and geometry text object,
see geo.zip on the bulletin board, user contributions conference, Zinc 4.0 listing.

Zinc 4.1 Addenda and Errata 211

Deriving a window ZD·TNI013

6.33

Keywords:
Versions:
Components:
Platforms:

Question

Deriving a window

UIW_WINDOW, Designer, derive
3.0+
UIW_WINDOW
All.

ZD-TN1013

I can't modify the derived name of a window in the Designer. How do I derive a window that was created
with the Designer?

Answer

The way to derive a window from Designer is to create the class definition for your window class as you
would create any other derived class, then call the persistence constructor for UIW_WINDOW in the base
class constructor. The following snippet ofcode illustrates the simplest method for this.

class WINDOW : public UIW_WINDOW
{

public:

WINDDW();

virtual -WINDOw() {}
virtual EVENT_TYPE Event (const UI_EVENT &event);

} ;

WINDOW::WINDOw() : UIW_WINDOW(Np_main.dat-WINDOWN)
{

II Center the window.
windowManager->Center(this);

Ifyou prefer passing in a pointer to default storage, you can do it as well.

class WINDOW : public UIW_WINDOW
{

public:
WINDOW(ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *storage);
virtual -WIN1X)W() {}
virtual EVENT_TYPE Event (const UI_EVENT &event);

} ;

WINDOW: :WINDOW (ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *storage)
UIW_WINDOW(name, storage)

II Center the window.
windowManager->Center(this);

212 Zinc 4.1 Addenda and Errata

Interfacing the UIW_TABLE object to a database ZD·TN2006

6.34

Keywords:
Versions:
Components:
Platforms:
Issued:

Question

Interfacing the UIW_TABLE object to a database

UIW_TABLE, database
4.0
Library
All
January 19, 1995

ZD-TN2006

How do I interface the UIW_TABLE object to a database?

Answer

Here's how to interface UIW_TABLE to a database.

Set the WOF_NO_ALLOCATE_DATA flag on the table.

Setting the WOF_NO_AllOCATE_DATA flag tells the table that you will be responsible for keeping track of
the data and not to allocate any space. Setting this flag also makes several parameters in the UIW_TABLE
constructor irrelevant. They are: recordSize, maxRecords, and data. Set these parameters as follows:

recordSize = 0,
maxRecords = -1, and
data = ZIL_~LLP(void).

Use InsertRecord() and DeleteRecord() to add and delete records from the table.

InsertRecord() and DeleteRecord() add and remove records from the table. When the WOF_NO_
ALWCATE_DATA flag is set, InsertRecord() and DeleteRecord() only adjust the number of records in the
table and which record is current Because they have no effect on the data, records should always be added or
removed from the database before either of these functions are called. DataSet() can be used to add or
remove all records at once. This function also requires all records to be added or removed from the database
before it is called.

Use the S....$ET_DATAm~e in the attached user function or the derived table record's Event() function
to move data from the database to the table.

Data is moved from the database to the table during processing of the S_SET_DATA. The S_SET_DATA will
be generated whenever a record is added to the table, becomes current or needs to be redrawn. This message
should be processed in the user function attached to the table record or in the Event() function of a derived
table record. When this message is received event.rawCode contains the based index of the record that needs
its data updated. This number can then be used to access the proper database record and the data can be
retrieved. Any necessary conversions can be done and the data place in the proper fields in the table record.

Zinc 4.1 Addenda and Errata 213

Interfacing the UIW_TABLE object to a database ZD-TN2006

Use the S_NON_CURRENT and L_SELECT messages in the attached user function or the derived table
record's Event() function to move data from the table to the database.

Data is moved from the table to the database during processing of the S_NON_CURRENT and L_SELECT
events in much the same way. The user function or the Event() function of a derived table record must pro
cess the S_NON_CURRENT and L_SELECT messages. The data in the table record should be updated to the
database when either of these messages are received. This will require getting the data from each field on the
table record, doing any necessary conversions and then writing the data out to the database. This must also be
done any time that a record's data is changed regardless of wether the data is changed by the end user or
programmatically.

Consider the data types needed by the database and the table and match them up as appropriate.

When interfacing the table to a database, consider the type of data stored by the database and the type of data
needed by the objects in the table. For example, the database may contain a list ofemployees, their addresses
and salaries. The employees' names and addresses could be stored in the database as a string and the salary
could be stored as a double. To display the information, the UIW_TABLE_RECORD can contain two
UIW_STRINGs and a UIW_BIGNUM. The strings from the database can easily be placed in a UIW_
STRING. The real however, cannot be directly placed in a UIW_BIGNUM. The real must be converted to a
ZlL_BIGNUM before it can be placed in the UIW_BIGNUM. The conversion of the real to a ZIL_BIGNUM
and the placing of the data in the table record occurs when you use S_SET_DATA. When the data is trans
ferred back to the database, you can remove the text from the UIW_STRINGs and place it in the database, but
you will also need to remove the ZIL_BIGNUM data from the UIW_BIGNUM, then export it to a double
before storing it in the database. Do this with S_NON_CURRENT and L_SELECT.

214 Zinc 4.1 Addenda and Errata

Viewing system resources at run time ZD·TN4018

6.35

Keywords:
Version:
Component:
Platforms:
Issued:

Question

Viewing system resources at run time

Resource monitor; memory monitor
3.6,4.0
Event Manager; derived device
DOS
January 31, 1995

ZD-TN4018

How can I monitor a system resource such as available memory when a Zinc application is running?

Answer

You can monitor a system resource such as available memory by deriving a device that queries the system for
the resource status, and displaying this information top, left comer of the screen in a user created resource
monitor window.

Query the system resource in the Poll() function of the resource monitor device. The function for getting the
amount of memory in use with the Borland compiler is the heapwalk:() function. (Similar functions are avail
able with other compilers.)

From within the Poll() function, use the results of the heapwalk function to compute the total amount of
available memory. Send this result directly to a display field in the resource monitor window.

Create the resource monitor window in the constructor of our resource monitor device. Then add the resource
monitor window directly to the windowManager from within the constructor.

For a complete example on how this is done for OOS, see resource.zip on the bulletin board, user contribu
tions conference, Zinc 4.0 listing. It is also available at ftp.zinc.com under pub\contrib\zinc_4.0.

Zinc 4.1 Addenda and Errata 215

User functions that are members of a class ZD-TN4019

6.36

Keywords:
Version:
Component:
Platforms:
Issued:

Question

User functions that are members of a class

userFunction; callback function
3.6,4.0
Callback function; user function
All
January 31, 1995

ZD-TN4019

How can a user function be assigned to a Zinc object and also be a member of a class?

Answer

A user function, also referred to as a callback function, must be a standard C function with the predefined
parameter list that the userFunction declaration expects. Any function that is a member ofa class by default is
not a standard C function, because it contains a hidden member called the "this" pointer that is a pointer to the
class of which the function is a member. When this function is prefaced with the keyword "static," it forces
the hidden ''this'' pointer to be removed from the function. However, static functions can only access other
static data members of the class. This makes the non static data member inaccessible to the static function.
Also, Zinc Designer does not allow user functions that are members of a class to be assigned to an object
when in the Designer.

A simple way to resolve both of these problems is by assigning a standard C userFunction to an object, and
from within this userFunction, call a nonstatic function that is a class member, passing to the function the
same arguments passed to the standard C userFunction.

If you have created a window with a button on it, and you had assigned to the button userFunction
MyFunction(), do the following:

II Create a standard C userFunction
EVENT_TYPE MyFunction(UI_WINDOW_OBJECT *object, UI_EVENT &event, EVENT_TYPE ccode)
{

((MY_WINDOW *)object->parent)->MyFunctionl(object, event, ccode);

Declare the MY_WINDOW class as follows, creating a nonstatic function, MyFunction1(), that is called by
the C userFunction assigned to the button.

class MY_WINDOW : public UIW_WINDOW
{

public:

MY_WINDOw();

-MY_WINDOw() {};

II MyFunctionl() has complete access to all class members.
EVENT_TYPE MyFunctionl(UI_WINDOW_OBJECT *object,

216 Zinc 4.1 Addenda and Errata

User functions that are members of a class ZD-TN4019

DI_EVENT &event, EVENT_TYPE ccode);
private:

II any variables
};

The code definition for MyFunctionl() would then take some action and return ccode.

EVENT_TYPE MY_WINDOW::MyFunctionl(DI_WINDOW_OBJECT *object,
DI_EVENT &event, EVENT_TYPE ccode)

{

I I take some action ...
return ccode;

See usrfunc3.zip on the user contributions conference, Zinc 4.0 listing, on the bulletin board.

Zinc 4.1 Addenda and Errata 217

Displaying timed window on application startup ZD-TN4021

6.37

Keywords:
Version:
Component:
Platforms:
Issued:

Question

Displaying timed window on application startup

UID_TIMER; dialog window
3.6,4.0
UIW_WINDOW; UID_TIMER
ALL
January 31, 1995

ZD-TN4021

How can an introduction window be displayed at application startup that automatically closes after a set num
ber of seconds?

Answer

This can be done by creating a derived window and adding it to the Window Manager. A UID_TIMER
device is then created and added to the Event Manager. This timer device would be told to post a timer mes
sage on the queue at a given time interval.

In the Event() function of the derived window we would look for the E_TIMER event. When this occurs, we
would create an S_ADD_OBJECT event, setting data equal to a new window that we want to appear on the
screen after our introduction window is deleted. We put this S_ADD_OBJECT event on the queue.

We then create a user defined close event, setting data equal to the "this" pointer. We then put this event on
the queue. When the Window Manager gets the S_ADD_OBJECT event, it adds the window specified by
data to the screen. This new window is now the current window on the screen.

Next, the Window Manager gets our user-defmed close event and sends it to the Event() function of the
current window. Inside the Event() function of the current window, when we see this user defined close
event, we subtract from the windowManager the window specified by data, and then delete this window.

This way, we can put a new window on the screen and close the window behind it.

For a complete example on doing this, see introwin.zip on the user contributions conference, Zinc 4.0 listing
of the bulletin board.

218 Zinc 4.1 Addenda and Errata

6.38

Keywords:
Versions:
Components:
Platforms:
Issued:

Question

Using UIW_TABLE with a database

UIW_TABLE; Database
Zinc 4.0+
LIBRARY
All
5-11-95

Using UIW_TABLE with a database ZD·TN4026

ZD-TN4026

How do I use the UIW_TABLE object with a database package?

Answer

Here's how to create and use a table in an application using the Designer and a third-party database tool.

This example program creates a table with the following design:

Social Security Number Name

555-55-5555 John QSmith

Address

1122 Some Street Dr.

The program requires the following structure to read and write information to the database file.

struct SDATA
{

char firstName[ll] ,
mi [1],
lastName [12] ,
ssn[9] ,
streetData[22] ,
city[20] ,
state[ll] ,
zip[6] ,
grades [30] [7];// not used

} ;

Database management functions

The program uses the following functions for database management:

long StudentViewRecord(SDATA &sdata, int mode = 0);

Pass an SDATA variable into this function with a SSN. If it finds a match, the function returns its
index in the database. If no match is found, it returns RECORD_NOT_FOUND (-2.

int StudentAddRecord(SDATA sdata);

Pass this function an SDATA variable with an SSN; this adds it to the database according to its SSN.

int StudentModifyRecord(SDATA sdata,int modifySSN);

Zinc 4.1 Addenda and Errata 219

Using UIW_TABLE with a database ZD·TN4026

SDATA StudentGetRecord(long recNum);

Pass this function an index into the data base, and it returns the associated record.

int StudentDeleteRecord(SDATA sdata)i

Pass this function an SDATA variable with a SSN, and the with a matching SSN gets deleted from
the database.

void StudentlnitOriginal();

Creates a new random student database.

void StudentlnitExisting();

Uses existing student database.

void StudentSave()i

Saves database info to disk.

Using the Designer to build a table object

(TABLE_WINDOW inside p_event2.dat shows the appearance of the window.)

1. Create a window. Give it the name TABLE in its General page. Add a table object to it. Size the window to
the size desired.

2. Size the table. Grab the bottom-right comer of the table with the mouse and size the table to the desired
size. You can also size the table in the table's Position page by specifying the desired size. In our example, we
size the window to about 75 x 23 cells, almost the entire screen size.

3. Size the table record. Grab the bottom-right comer of the record-the field within the table that looks like
a string-with the mouse and size it. (You can size it both vertically and horizontally.) You can also size the
table record in the table record's Position page by specifying the desired size.

4. Add fields to the column header. The area that has xxx on it above the table record is the column header.
You can drag prompts, strings etc. to the column header. They can then be edited to display the desired text
for the column headings of the table. In our example we set the column headings to SSN, Nanie, Address.

You can also add items to the header from the subobjects notebook page of the header. If a column entry is to
be off the screen, the position of the item can be changed from within the position notebook page of the item.

5. Add fields to the table record. From the control panel toolbar, select a formatted string and add it below the
SSN column header prompt. Set the delete and maskcharacters so it looks like a SSN field. Give it a name of
SSN. (This name is used with the StringID() function to get a pointer to the object.) Add the following seven
more strings to the table record. Assign to them the names

Strings

first name

middle initial

220

Names

FIRST

MI

Zinc 4.1 Addenda and Errata

last name

street address

city

state

zip code

LAST

STREET_DATA

CITY

STATE

ZIP

Using UIW_TABLE with a database ZD-TN4026

6. Customize the table parameters. Double-click on the empty area of the table to bring up its notebook editor.
On its General page, set columns to 1. (One table record is equivalent to one column. Within the table record
you can specify multiple columns as done in step 4.) Set record size equal to the struct used to interface with
the data base package. In our example we set this to 71. Also give a unique name to the table. In our example
we set Name to TABLE. (This is used with the StringID() function to get a pointer to the table.)

7. Customize the table record. Double click on the table record area. On the Advanced notebook page, assign
a callback Function. In our example we use "RecordFunction." This function sets data in the table record
from the database and is explained below.

At this point we are done with the Designer aspect of the table program. The following explains what we
need to do in code.

Writing code to interface our table object to the database

8. Create the callback function. See RecordFunction() in the event2.cpp module.

9. Create the TABLE_WINDOW class. In the constructor for TABLE_WINDOW, we Get() a pointer to the
table and call its DataSet() function. The fIrst parameter is ignored and should be NULL. The second param
eter is the number of elements initially used in the table; in our example we set this to 900. The third parame
ter of the DataSet() function is the maximum number of records. In our example we set this to 1000. You can
call the DataSet() function at run time to change these parameters.

10. The Event() function of the TABLE_WINDOW is designed to handle the event processing of the table. It
has functionality to

• find a record based on either its index or SSN

• insert a new record

• delete a record based its index or SSN

• delete the record.

See dbase.zip on the Main Conference, Tech Support listing on the bulletin board. See pub\tech_sup
port\dbase I.zip on the Zinc FTP site.

Zinc 4.1 Addenda and Errata 221

Using UIW_TABLE with a database ZD·TN4026

Section 7
Zinc and third-party
libraries

222 Zinc 4.1 Addenda and Errata

MetaWINDOW display class ZD-TN2015

7.1

Keywords:
Versions:
Components:
Platforms:
Issued:

Question

MetaWINDOW display class

graphics display, MetaWINDOW, METAGRAPHICS
4.0+
graphics library
DOS
May 1,1995

ZD-TN2015

How do I interface the METAGRAPHICS graphics library with Zinc?

Answer

Ifyou are using Zinc 4.1, you must do two things to interface METAGRAPIDCS's MetaWINDOW graphics
library.

First, compile D_METDSP.CPP into the library.

You can find D_METDS~CPP in TN2015.ZIP. To add this to a library, change the library makefile.

Here is an example of how to do this for a 16 bit library in the Borland makefile:

Add the graphics library to the makefile so it will be built.
dos16: copy gfx_copy d16_gfx.lib d16_bgi.lib bc_16gfx.lib d16~t.lib test16.exe

Specify how to build the dl6_metJib and copy it to the proper lib directory.

d16_met.lib : d_metdsp.o16 d_metprn.o16 z_appmet.o16

-@del d16_met.lib

$ (D16_LIBRARIAN) $ (D16_LIB_OPTS) @&&!

$* &

+d~etdsp.o16+d_metprn.o16+z_appmet.o16

@del zil.sym

-@md .. \lib\$(VERSION)

copy d16_met.lib .. \lib\$(VERSION)

Specify how to build Z_APP.CPP and D_PRINT.CPP for the METAGRAPIDCS graphics library.

z_appmet.o16: z_app.cpp $ (D16_CPP) -DMETA $(D16_CPP_OPTS) -o$@ $?

d_metprn.o16: d-print.cpp $(D16_CPP) -DMETA $ (D16_CPP_OPTS) -o$@ $?

Specify which graphics library to use at link time.

Zinc 4.1 Addenda and Errata 223

MetaWINDOW display class ZD·TN2015

--- Use the next line for UI_META_DISPLAY ---
D16_LIBS=phapi d16_zil d16_met met_xp2d graph286 emu286 emu mathl bc1286

Next, place the font tiles in your path.

Included in the ftle TN2015.ZIP are the Zinc fonts converted to the METAGRAPIDCS .FNT file format.
Make sure that these files are in your path before the font ftles for Borland. The Borland font files and the
METAGRAPHICS fonts files have the same name. If the Borland fonts precede the METAGRAPHICS fonts
in your path the METAGRAPIDCS display class will try and load them first and your system will crash. If
you wish to use fonts supplied by METAGRAPHICS load the following structure and set it into the font
table.

METAFONT newMetaFontillStructure definition
newMetaFont.fontPtr = ZIL_NULLP(char)illfont pointer
newMetaFont.fontName = IROMANSIM.FNT" i IIFont file name
newMetaFont.size =2830i11Size of font file
newMetaFont.maxWidth =8illMax width of the loaded font.
newMetaFont.maxHeight = 13iliMax height of the loaded font
UI_META_DISPLAY::fontTable[4J = newMetaFontil1 Set font into font table.

Ifyou are using Zinc 4.0, add D_METDSP.CPP to your library as above. You will also need to add the class
declaration to UCDSP.HPP. The class declaration can be found in TN2015.ZIP.

Zinc added two new functions to the library for 4.1 that were not available in 4.0: DestroyBitmapHandle()
and DestroyIconHandle(). Comment these functions out ofD_METDSP.CPP. Finally, add the constructor of
the display class to Z_APP.CPP. Add this around line 169, where the different graphics display constructors
for DOS are called.

elif defined (META)
II ----- Code for the Metawindow graphics display ----
if (!display)

display = new UI_META_DISPLAYi

224 Zinc 4.1 Addenda and Errata

7.2

Keywords:
Versions:
Components:
Platforms:
Issued:

Question

General Protection Faults

General Protection Fault
3.5 and later
Library
Windows
September 7, 1994

General Protection Faults ZD·TN3008

ZD-TN3008

My program quits with a General Protection Fault. What am I doing wrong?

Answer

General Protection Faults are usually related to the following problems:

Problem

The program was compiled without a .DEF file to increase the stack and heap size. This causes a GP Fault
because of a heap or stack overflow.

Solution

Copy one of the .DEF files from the Zinc examples.

Problem

The program was compiled with the Borland 4.0 compiler and exception handling and run-time type infor
mation was not turned off. Zinc's libraries were made with these options turned off. Applications must be
internally consistent or they crash frequently.

Solution

Turn off all exception handling and options for your project related to run-time type information. If you are
using the Borland IDE see the technote on using the Borland IDE.

An object was added to more than one list. The problem with this is that it causes one of the lists to become
corrupted. Each object contains only one set of pointers (parent, previous, next).

Solution

Don't add an object to more than one list.

Problem

A window or an object was deleted from within a user function called by that object or one of its children.
You must not delete the object which originates a function. Otherwise, the function will return to an invalid
address and crash your application.

Zinc 4.1 Addenda and Errata 225

General Protection Faults ZD·TN3008

Solution

Rather than delete the calling object directly, instead send an event to do the same thing. For example, to
close the current window put an S_CLOSE event on the event manager's queue:

EVENT_TYPE myFunction(UI_WINDOW_OBJECT *object, UI_EVENT &, EVENT_TYPE ccode)
{

if (ccode != L_SELECT)
return (ccode);

object->eventManager->Put(S_CLOSE);
return (ccode);

Or to delete an object, put an event on the Event Manager's queue that will tell the object's parent to delete it.

const EVENT_TYPE DELETE_BUTTON = 10009;
EVENT_TYPE myFunction (UI_WINDOW_OBJECT *obj ect, UI_EVENT &, EVENT_TYPE ccode)
{

if (ccode != L_SELECT)
return (ccode) ;

object->eventManager->Put(DELETE_BUTTON);

return (ccode);

MY_WINDOW::Event(const UI_EVENT &event)
{

EVENT_TYPE ccode = LogicalEvent(event);

switch (ccode)
{

case DELETE_BUTTON:
{

UI_WINDOW_OBJECT *button = Get ("BUTTON_STRING_ID");
*this - button;
delete button;

}

default:
ccode = UIW_WINDOW::Event(event);

return (ccode);

226 Zinc 4.1 Addenda and Errata

Eliminating optional library components ZD-TN3009

7.3

Keywords:
Versions:
Components:
Platforms:
Issued:

Question

Eliminating optional library components

internationalization, persistence, storage, Unicode
4.0
Library
All
September 15, 1994

ZD-TN3009

How do I make the libraries without internationalization, persistence, etc.?

Answer

Zinc Application Framework has many components which can be compiled in or out of the library depending
on the status of specific #define switches. To remove an optional component, comment out the related
#detine. To include a component, make sure the appropriate #define is active.

The following switches include or remove load and store capability for each object.

II Optimization switches for object persistence.
#define ZIL_LOADII Object Load() member functions.

#define ZIL_STOREII Object Store() member functions.
#define ZIL_STORAGE_IMAGEII zinc DI_STORAGE class.

These switches include or remove internationalization capability.

II Switches for the international language versions.
#define ZIL_REARRANGEARGSII Support for argument rearrangement in

II sprintf() and sscanf().
#define ZIL_DO_FILE_I18NII Support for Internationalization
#define ZIL_3x_COMPATII Compatibility for 3x .dat files.
#define ZIL_DO_OS_I18NII Do possibly broken OS i18n support

To compile for Unicode support uncomment the following in UCENV:HPP. Note: Unicode support requires
the Unicode Key and basic internationalization support (above).

II#define ZIL_UNICODEII Support for UNICODE
II#define ZIL_DECOMPOSEII Support to decompose compound Unicode
II#define ZIL_HARDWAREII Support for Non-AT MS-DOS machines.

The #detine switches can be found in ZINC\SOURCE\UI_EN~HP~ After setting or unsetting the appro
priate switches the libraries need to be remade. To remake the libraries change to the ZINc\sOURCE direc
tory and run make with the appropriate make file for your compiler. For instance if the compiler was Borland
4.0 and the target was DOS you would type:

make -f btcpp400 dos

Zinc 4.1 Addenda and Errata 227

Using PharLap 286 with Zinc ZD-TN4004

7.4

Keywords:
Versions:
Components:
Platforms:
Issued:
File:

Question

Using PharLap 286 with Zinc

DOS extender, PharLap 286
3.6 and later
Library
DOS
October 28, 1994
None

ZD-TN4004

How do I use the PharLap 286 DOS extender with Zinc?

Answer

To compile and run a program using PharLap 286, use the following procedure:

• Rebuild the Zinc libraries:

-Make sure that the Zinc include and library files can be found in your path.

-Make sure that the PharLap include, library, and bin files can be found in your path.

-Change directories to ZINc\sOURCE.

-Execute the DOS16 makefile for your compiler

make -fbtcpp400.mak dos16) .

• Modify your makefile to include information for PharLap 286:

-To bind PharLap to your executable, add the following to the top of your makefile:

D16_BIND=bind286
PHARLAP_RTL=c:\phar286\rtl
D16_LOAD=run286a

-After the section of the makefile which builds your executable, add:

$ (D16_BIND) @&&!
$ (PHARLAP_RTL)\$ (D16_LOAD)
$*
-dll$ (PHARLAP_RTL) \moucalls

$ (PHARLAP_RTL)\int33
$ (PHARLAP_RTL)\doscalls

@del *.sym

Note:

See ZINc\sOURCE\DESIGN for an example makefile.

228 Zinc 4.1 Addenda and Errata

Using PbarLap 286 with Zinc ZD-TN4004

Section 8
Unicode and i18n

Zinc 4.1 Addenda and Errata 229

Decreasing the shipping size of Unicode.dat ZD-TN4003

8.1

Keywords:
Version:
Component:
Platforms:
Issued:
Obsolete:
File:

Question

Decreasing the shipping size of Unicode.dat

unicode.dat
3.6,4.0
UNICODE.DAT
ALL
October 5, 1994
NA
4003.wp

ZD-TN4003

How do I decrease the size of the my shipping copy of UNICODE.DAT?

Answer

When your application is ready to ship, you may use rrmdir to remove character map tables, locale informa
tion, and language strings that won't be used by your application.

Ifyour application is compiled for Unicode you may remove ISO character map tables using:

rrmdir i18n.dat -ZIL_INTERNATIONAL-ISO

Ifyour application is NOT compiled for Unicode you may remove the Unicode character map tables:

rrmdir i18n.dat -ZIL_INTERNATIONAL-UNICODE

Here is a brief description of each object that you might remove:

Unicode tables:

Shift-TIS (Japanese DOS, Wmdows, OS/2) ZIL_INTERNATIONAL UNICODE....ffiM_932

ffiM 5550 (Chinese DOS for Taiwan) ZIL_INTERNATIONAL UNICODE-ffiM_938

KSC 5601 (Korean DOS, Wmdows) -ZIL_INTERNATIONAL-UNICODE-ffiM_949

BIG 5 (Chinese DOS, Wmdows for Taiwan)ZIL_INTERNATIONAL-UNICODE-ffiM_950

GB 2312 (Chinese DOS, Wmdows)

USCP437

Greek DOS

Latin 1DOS

Slavic DOS

Cyrillic DOS

-ZIL_INTERNATIONAL-UNICODE-ffiM_1381

-ZIL_INTERNATIONAL-UNICODE-ffiM_437

....ZIL_INTERNATIONAL UNICODE....ffiM_737

-ZIL_INTERNATIONAL UNICODE-ffiM_850

-ZIL_INTERNATIONAL-UNICODE-ffiM_852

....ZIL_INTERNATIONAL....UNICODE-ffiM_855

230 Zinc 4.1 Addenda and Errata

ThrkishooS

Portuguese OOS

Iceland DOS

Canadian-French DOS

NordicooS

Cyrillic DOS

Greek DOS

Eastern European Wmdows

Cyrillic Wmdows

ANSIlLatin I Wmdows

Greek Wmdows

Turkish Wmdows

Hebrew Wmdows

Arabic Wmdows

Japanese Solaris

Macintosh

NEXTSTEP

ISO 8859-1 tables (see above descriptions):

Decreasing the shipping size of Unicode.dat ZD·TN4003

-ZIL_INTERNATIONAL-UNICODE-ffiM_857

-ZIL_INTERNATIONAL-UNICODE-ffiM_860

-ZIL_INTERNATIONAL-UNICODE-ffiM_861

-ZIL_INTERNATIONAL-UNICODE-ffiM_863

-ZIL_INTERNATIONAL-UNICODE-ffiM_86S

-ZIL_INTERNATIONAL-UNICODE-ffiM_866

-ZIL_INTERNATIONAL-UNICODE-ffiM_869

-ZIL_INTERNATIONAL-UNICODE-ffiM_I250

-ZIL_INTERNATIONAL-UNICODE-ffiM_I251

-ZIL_INTERNATIONAL-UNICODE-ffiM_I252

-ZIL_INTERNATIONAL-UNICODE-ffiM_I253

-ZIL_INTERNATIONAL-UNICODE-ffiM_1254

-ZIL_INTERNATIONAL-UNICODE-ffiM_1255

-ZIL_INTERNATIONAL-UNICODE-ffiM_I256

-ZIL_INTERNATIONAL-UNICODE-EUCJIS

-ZIL_INTERNATIONAL-UNICODE-MACINTOSH

-ZIL_INTERNATIONAL-UNICODE-NeXT

-ZIL_INTERNATIONAL-ISO-ffiM_437

-ZIL_INTERNATIONAL-ISO-mM_737

-Zll..._INTERNATIONAL-ISO-mM_850

-Zll..._INTERNATIONAL-ISO-mM_852

-Zll..._INTERNATIONAL-ISO-mM_855

-Zll..._INTERNATIONAL-ISO-mM_857

-Zll..._INTERNATIONAL-ISO-mM_860

-Zll..._INTERNATIONAL-ISO-mM_861

-Zll..._INTERNATIONAL-ISO-mM_863

Zinc 4.1 Addenda and Errata 231

Decreasing the shipping size of Unicode.dat ZD·TN4003

-ZIL_INTERNATIONAL-ISO-ffiM_865

-ZIL_INTERNATIONAL-ISO-ffiM_866

-ZIL_INTERNATIONAL-ISO-ffiM_869

-ZIL_INTERNATIONAL-ISO-ffiM_1250

-ZIL_INTERNATIONAL-ISO-ffiM_1251

-ZIL_INTERNATIONAL-ISO-ffiM_1252

-ZIL_INTERNATIONAL-ISO-ffiM_1253

-ZIL_INTERNATIONAL-ISO-ffiM_1254

-Zll.._INTERNATIONAL-ISO-ffiM_1255

-Zll.._INTERNATIONAL-ISO-ffiM_1256

-ZIL_INTERNATIONAL-ISO-MACINTOSH

-Zll.._INTERNATIONAL-ISO-NeXT

Delete the Ianguag~ you aren't supporting:

Catalan -ZIL_INTERNATIONAL-LANGUAGE-ea

Danish -ZIL_INTERNATIONAL-LANGUAGE-da

Gennan -ZIL_INTERNATIONAL-LANGUAGE-de

English -ZIL_INTERNATIONAL-LANGUAGE-en

Spanish -ZIL_INTERNATIONAL-LANGUAGE-es

Finish -ZIL_INTERNATIONAL-LANGUAGE-ft

French -ZIL_INTERNATIONAL-LANGUAGE-fr

Italian -ZIL_INTERNATIONAL-LANGUAGE-it

Dutch -ZIL_INTERNATIONAL-LANGUAGE-n1

Norwegian -ZIL_INTERNATIONAL-LANGUAGE-no

Swedish -ZIL_INTERNATIONAL-LANGUAGE-sv

The following Ianguag~ are all Unicode. You may delete them ifyou aren't using the Unicode key.

Greek -ZIL_INTERNATIONAL-LANGUAGE-el

Japanese

232

-ZIL_INTERNATIONAL-LANGUAGE-ja

Zinc 4.1 Addenda and Errata

Korean

Delete the locales you aren't using:

Austria

English Canada

French Canada

Gennany

Denmark

Spain

Finland

France

Great Britain

Greece

Italy

Mexico

Netherlands

Norway

Sweden

Uoited States

Decreasing the shipping size of Unicode.dat ZD·TN4003

-ZIL_INTERNATIONAL-LANGUAGE-ko

-ZIL_INTERNATIONAL-LOCALE-AT

-ZIL_INTERNATIONAL-WCALE-CA

-ZIL_INTERNATIONAL-WCALE-fr_CA

-ZIL_INTERNATIONAL-LOCALE-DE

-ZIL_INTERNATIONAL-LOCALE-DK

-ZIL_INTERNATIONAL-WCALE-ES

-ZIL_INTERNATIONAL-LOCALE-FI

-ZIL_INTERNATIONAL-LOCALE-FR

-ZIL_INTERNATIONAL-WCALE-GB

-ZIL_INTERNATIONAL-LOCALE-GR

-ZIL_INTERNATIONAL-LOCALE-IT

-ZIL_INTERNATIONAL-LOCALE-MX

-ZIL_INTERNATIONAL-LOCALE-NL

-ZIL_INTERNATIONAL-LOCALE-NO

-ZIL_INTERNATIONAL-WCALE-SE

-ZIL_INTERNATIONAL-WCALE-US

These locales are all Unicode. Delete them ifyou aren't using the Unicode key.

China -ZIL_INTERNATIONAL-LOCALE-CN

Japan -ZIL_INTERNATIONAL-LOCALE-JP

Korea -ZIL_INTERNATIONAL-LOCALE-KR

Taiwan -ZIL_INTERNATIONAL-LOCALE-TW

1b create an i18n.dat for JapaneseD~Windows, and for English in the US and Canada (because this is
Japanese, the code is compBed for Unicode support):

mndir i18n.dat -ZIL_INTERNATIONAL-UNICODE-mM_938

mndir i18n.dat -ZIL_INTERNATIONAL-UNICODE-mM-'49

rnndir i18n.dat -ZIL_INTERNATIONAL-UNICODE-mM_9S0

Zinc 4.1 Addenda and Errata 233

Decreasing the shipping size of Unicode.dat ZD-TN4003

mndir i18n.dat

mndir i18n.dat

mndir i18n.dat

mndir i18n.dat

mndir i18n.dat

mndir i18n.dat

mndir i18n.dat

mndir i18n.dat

rnndir i18n.dat

rnndir i18n.dat

rnndir i18n.dat

rnndir i18n.dat

mndir i18n.dat

rnndir i18n.dat

rnndir i18n.dat

rnndir i18n.dat

rnndir i18n.dat

mndir i18n.dat

mndir i18n.dat

mndir i18n.dat

mndir i18n.dat

mndir i18n.dat

mndir i18n.dat

mndir i18n.dat

mndir i18n.dat

mndir i18n.dat

rnndir i18n.dat

234

-ZIL_INTERNATIONAL-UNICODE-mM_1381

-ZIL_INTERNATIONAL-UNICODE-mM_737

-ZIL_INTERNATIONAL-UNICODE-mM_852

-ZIL_INTERNATIONAL-UNICODE-mM_855

-ZIL_INTERNATIONAL-UNICODE-mM_857

-ZIL_INTERNATIONAL-UNICODE-mM_860

-ZIL_INTERNATIONAL-UNICODE-mM_861

-ZIL_INTERNATIONAL-UNICODE-mM_863

-ZIL_INTERNATIONAL-UNICODE-mM_865

-ZIL_INTERNATIONAL-UNICODE-mM_866

-ZIL_INTERNATIONAL-UNICODE-mM_869

-ZIL_INTERNATIONAL-UNICODE-mM_1250

-ZIL_INTERNATIONAL-UNICODE-mM_1251

-ZIL_INTERNATIONAL-UNICODE-mM_1252

-ZIL_INTERNATIONAL-UNICODE-mM_1253

-ZIL_INTERNATIONAL-UNICODE-mM_l254

-ZIL_INTERNATIONAL-UNICODE-mM_1255

-ZIL_INTERNATIONAL-UNICODE-mM_1256

-ZIL_INTERNATIONAL-UNICODE-EUCJIS

-ZIL_INTERNATIONAL-UNICODE-MACINTOSH

-ZIL_INTERNATIONAL-UNICODE-NeXT

-ZIL_INTERNATIONAL-LANGUAGE-ca

-ZIL_INTERNATIONAL-LANGUAGE-da

-ZIL_INTERNATIONAL-LANGUAGE-de

-ZIL_INTERNATIONAL-LANGUAGE-es

-ZIL_INTERNATIONAL-LANGUAGE-ti

-ZIL_INTERNATIONAL-LANGUAGE-fr

Zinc 4.1 Addenda and Errata

mndir i18n.dat

mndir i18n.dat

mndir i18n.dat

mndir i18n.dat

mndir i18n.dat

mndir i18n.dat

mndir i18n.dat

mndir i18n.dat

mndir i18n.dat

mndir i18n.dat

mndir i18n.dat

mndir i18n.dat

mndir i18n.dat

mndir i18n.dat

mndir i18n.dat

mndir i18n.dat

mndir i18n.dat

mndir i18n.dat

mndir i18n.dat

mndir i18n.dat

mndir i18n.dat

mndir i18n.dat

Decreasing the shipping size of Unicode.dat ZD-TN4003

-Zll.._INTERNATIONAL-LANGUAGE-it

-Zll.._INTERNATIONAL-LANGUAGE-nl

-Zll.._INTERNATIONAL-LANGUAGE-no

-Zll.._INTERNATIONAL-LANGUAGE-sv

-Zll.._INTERNATIONAL-LOCALE-AT

-Zll.._INTERNATIONAL-LOCALE-fr_CA

-Zll.._INTERNATIONAL-LOCALE-DE

-Zll.._INTERNATIONAL-LOCALE-DK

-Zll.._INTERNATIONAL-LOCALE-ES

-Zll.._INTERNATIONAL-LOCALE-FI

-Zll.._INTERNATIONAL-LOCALE-FR

-Zll.._INTERNATIONAL-LOCALE-GB

-Zll.._INTERNATIONAL-LOCALE-GR

-Zll.._INTERNATIONAL-LOCALE-IT

-Zll.._INTERNATIONAL-LOCALE-MX

-Zll.._INTERNATIONAL-LOCALE-NL

-Zrr..._INTERNATIONAL-LOCALE-NO

-Zll.._INTERNATIONAL-LOCALE-SE

-Zll.._INTERNATIONAL-LOCALE-CN

-Zrr..._INTERNATIONAL-LOCALE-KR

-Zll.._INTERNATIONAL-LOCALE-TW

-Zll.._INTERNATIONAL-LANGUAGE-e1

Zinc 4.1 Addenda and Errata 235

Decreasing the shipping size of Unicode.dat ZD·TN4003

Section 9
Help and error system

236 Zinc 4.1 Addenda and Errata

Integrating native Windows help with Zinc ZD·TN3013

9.1

Keywords:
Versions:
Components:
Platforms:
Issued:

Question

Integrating native Windows help with Zinc

Help
3.5 and later
Help system
Windows
February 3, 1995

ZD-TN3013

How do I integrate the native Windows help system with Zinc?

Answer

To integrate the native Windows help system with Zinc, create a Windows-compatible help file, then derive a
new class from ill_HELP_STUB to call the Windows help engine. To make this as transparent as possible,
use Zinc Designer to specify help contexts for each object, then pass the contexts programmatically to the
native help engine as hypertext lookups.

1. Design your help contexts in the help editor for each object that needs one. Store the keyword for that help
context in the title portion of the help. (It would be easiest if you chose the same keywords for the help con
texts as the ones for keywords being used.)

2. Using the Designer, design your windows and add the help contexts to the objects.

3. Create a Windows help ftle. Zinc does not provide tools to assist this process. One way to create a Win
dows help file is to prepare a document in RTF format and compile it using a Windows help compiler. (For
more information on how to do this, see the windows programming guide). Alternatively you may use com
mercial software for preparing help files, such as robohelp.

4. Compile the Windows help ftle with a help compiler.

5. Derive a new help system from UI_HELP_STUB and provide a virtual DisplayHelp() function. In this
function, Zinc will call WmHelp.

The following example will not remove the help window from the screen if the application doesn't have a
control window; for example, assign a Wmdows screenID to windowManager->screenID.

If the record size is set incorrectly in the .DAT file and you use DataSet()to initialize the table, then you will
get unpredictable results. To determine the size of your data structure, write a simple program that prints out
the size of the structure. If you are setting the size of the records on multiple platforms and the size of the
structure is different on each platform, then you could use #ifdefs to make the size of the structures the same
across platforms. (This is only important if you are setting the data's size and aren't using the "don't allocate
data" flag.) We are in the process of improving the ability to set the record size, and it will probably not need
to be read in from the .DAT fue.

Zinc 4.1 Addenda and Errata 237

Integrating native Windows help with Zinc ZD·TN3013

The following is an example of how to integrate native Windows help with Zinc.

class ZIL_EXPORT_CLASS MY_HELP_SYSTEM: public UI_HELP_STUB
{

public:
MY_HELP_SYSTEM(ZIL_ICHAR *winHelpFile, ZIL_ICHAR *zincDatFile,

UI_HELP_CONTEXT helpContext = NO_HELP_CONTEXT);

-MY_HELP_SYSTEM();
virtual void DisplayHelp(UI_WINDOW_MANAGER *windowManager,

UI_HELP_CONTEXT helpContext = NO_HELP_CONTEXT);
protected:

ZIL_ICHAR *winHelpFile;
ZIL_STORAGE_READ_ONLY *storage;
UI_HELP_CONTEXT defaultHelpContext;
ZIL_SCREENID screenID;

} ;

static ZIL_ICHAR ZIL_FARDATA _helpDirectory[J= { '-', 'U', 'I', '_', 'H', 'E', 'L', 'P', 0 };
static ZIL_ICHAR ZIL_FARDATA ...,parentDirectory [J= { 0 };
static ZIL_ICHAR ZIL_FARDATA _currentDirectory[J = { '.', 0 };

MY_HELP_SYSTEM::MY_HELP_SYSTEM(ZIL_ICHAR *_winHelpFile, ZIL_ICHAR *zincDatFile,

UI_HELP_CONTEXT _helpContext): UI_HELP_STUB(),
storage (0) , defaultHelpContext(_helpContext), winHelpFile(_winHelpFile),
screenID(O)
II Create the storage for the help class to load the help contexts out of
II the .DAT file
if (zincDatFile)

storage = new ZIL_STORAGE_READ_ONLY(zincDatFile);

MY_HELP_SYSTEM::-MY_HELP_SYSTEM()
{

delete storage;
if (screenID) II only nonzero if help has been used

WinHelp(screenID, (LPSTR)winHelpFile, HELP_QUIT, (DWORD)O);

void MY_HELP_SYSTEM::DisplayHelp(UI_WINDOW_MANAGER *windowManager,
UI_HELP_CONTEXT helpContext)

if (windowManager->screenID)
screenID = windowManager->screenID;

else
screenID = windowManager->First()->screenID;

if (storage)

238 Zinc 4.1 Addenda and Errata

Integrating native Windows help with Zinc ZD-TN3013

storage->ChDir(_helpDirectory);
if (helpContext == NO_HELP_CONTEXT)

helpContext = defaultHelpContext;
ZIL_ICHAR *helpName = storage->FindFirstID(helpContext);
II If the context was fond in the .DAT file then load it otherwise display
II the index from the help file.
if (helpName && strcmp(helpName, -parentDirectory) &&

strcmp(helpName, _currentDirectory))

ZIL_STORAGE_OBJECT_READ_ONLY hFile(*storage, helpName, helpContext)j
ZIL_ICHAR *text;
hFile.Load(&text);
if (text) II If text has a value then call WinHelp for that context.

WinHelp(screenID, (LPSTR)winHelpFile, HELP_KEY, (DWORD)text)j
else

WinHelp(screenID, (LPSTR)winHelpFile, HELP_INDEX, (DWORD)O)j
delete textj

else
WinHelp(screenID, (LPSTR)winHelpFile, HELP_INDEX, (DWORD)O)j

II Display the help index if there was no associated .DAT file to get the
II help contexts from

else
WinHelp(screenID, (LPSTR)winHelpFile, HELP_INDEX, (DWORD)O)j

}

UI_APPLICATION::Main()
{

UI_WINDOW_OBJECT: :helpSystem = new MY_HELP_SYSTEM("calc.hlp", "p_test.dat") j

UIW_WINDOW *win = new UIW_WINOOW("p_test.dat-RESOURCE_l") j

UIW_WINDOW *win2 = new UIW_WINOOW ("p_test. dat-RESOURCE_2") j

*windowManager
+ win
+ win2

windowManager->screenID win->screenID;
ControlC);

delete UI_WINDOW_OBJECT::helpSystem;
return (0);

Zinc 4.1 Addenda and Errata 239

Integrating native Windows help with Zinc ZD·TN3013

240 Zinc 4.1 Addenda and Errata

In lex
Symbols
"black box," the 97
*New()

storage
using with UIW_IMAGE 23

*pathName
with UIW_IMAGE 20

.BMP 120
using Zinc Designer to import 144

.CPP files 133

.DAT 138
deriving button from a 136
using with UIW_IMAGE

overview of 17
.DAT file 137, 140

loading derived object from 136
multiple 131

.DEF files
compiling without 225

.HPP files 133

.ICO
using Zinc Designer to import 144

.TXT
importing using Zinc Designer 144

.xPM
using Zinc Designer to import 144

.Z_T 143
3lassName

used in UIW_IMAGE 25
_helpDirectory 238
_serviceManager 149

Numerics
3D controls

how to use with Zinc 51
overview of 51

A
accelerator keys 68
access

defined in ZIL_FILE 30
description of 36

actions
COpy 200
MOVE 200

Add()
behavior of in UCLIST 57
virtualized 77

adding 162
adding fonts 88
AGENCY21P 160
ANALOG

UIW_DATE used in 68
ANSIILatin I 231

Apple menu item
how to implement 64

Arabic 231
argc 55
argv 55
ATCF_FLAGS

checking with inline functions 42
Attachments

checking with inline functions 42
Austria 233

B
Backspace

under Macintosh 69
bar chart

creating 186
BeginPrintJob() 59
BIG 5 230
bit masking

using to change status of a flag on an object 155
bitmap children 195
BITMAP_OBJECT 121
bitmaps

swapping when button is nonselectable 209
using with OS/2 120

Borland 81
PowerPak 32 54

Borland 4.0 compiler 225, 227
Borland IDE 81
BTF_FLAGS

checking with inline functions 42
BTF_SEND_MESSAGE 154
BTS_FLAGS

checking with inline functions 42
button 209

graying bitmap on a 209
in vertical list 195
toggling 156
toggling on a window 156
using to close window 154
checking with inline functions 42
in a list with different fonts 195

button status
checking with inline functions 42

C
callback function 97,216
Catalan 232
ccode 205,207
centering object 60
CHANGED_FLAGS 155, 163
CHANGED_STATUS 155,165
check box

deselecting 156
selecting 165

CHR 90
class

initializing information in a 166
class description

ofUIW IMAGE 21
class overView

of ZIL FILE 27
close window 154
Close()

defInition of 29
description of 33

code readability
improving 41

color 117
columns

in UIW_TABLE 71
using with the table object 160

columns in lists 160
COLUMNS.ZIP 160
combo box

nth element within 161
CommitStack()

allocating stack space using 54
compiler

Borland 4.0 227
constructor

calling the base class 166
new in UIW_WINDOW 65
persistence 206
persistent 166
UIW_IMAGE 22

copy operations 201
CPP 131,133
CreateWine)

called CreateWindow() 68
CreateWindow() 68
current

forcing an object to remain 168
Curses 117
cursor

changing to an hourglas 122
CURVALID.ZIP 169
Cyrillic 231

o
D_ERRORl.CPP 98
D_GFXDSP.CP 91
D_GFXDSP.CPP 90
Danish 232
DATfile

exporting to text 129

DAT files 131, 133
using multiple in one application 131

database 205
third-party

using with Zinc table object 213
using with UIW_TABLE 219

DataSet() 137, 138
initializing table with 71

Dates
checking with inline functions 43

default printing 59
defaultInitialized

in ZAF MESSAGE WINDOW 66
Defaults Editor -

description of 73
Delete

under Macintosh 69
Delete Right

under Macintosh 69
Denmark 233
derive 212
derived object

loading from .DAT 136
Designer 125, 164

using a table created in the 145
DestroyImageHandle(void)

description of 25
destructor of

UIW IMAGE 22
dialog font

loading into fontTable 91
dialog window 218
Dimension constraints

checking with inline functions 42
DIRECT.HPP 125
Directory services 125
directory services

using Service Manager with 128
display

font table 196
using METAGRAPHICS 223

display mode
changing at run time 113

DisplayHelp(237
DisplayHelp() 237
DM_CANCEL 198, 199

description of 74
DM_DRAG 47
DM DRAG COPY 198

description of 74
DM DRAG COpy MULTIPLE 198

description of 74
DM_DRAG_MOVE 198

description of 74

DM DRAG MOVE MULTIPLE 198
description of 74 -

DNCF FLAGS
checking with inline functions 42

DOS 98, 117, 164,230
Borland

stack size with 78
Canadian-French 231
Chinese 230
Cyrillic 230
Greek 230
Iceland 231
Latin 230
Microsoft

stack size with 78
Nordic 231
Portuguese 231
Slavic 230
Symantec

stack size with 78
Taiwan 230
Turkish 231
using display classes with 77
Watcom

stack size with 78
DOS extender 228

Pharlap 286 228
dot matrix printer

support for in UCPRINTER 187
drag and drop 198

in Zinc Designer 73
dragObject 198
DrawFocus()

drawing focus on object with 61
drawing 110
DrawItem() 110, 117, 120, 160, 186,211

using with UIW_IMAGE 18, 22
DTF_FLAGS

checking with inline functions 43
Dutch 232

E
E_DEVICE

using with DeviceState() 56
E_TIMER 218
Eastern European 231
ellipse 210
EndPrintJob(59
English 232
English Canada 233
Epson-compatible dot-matrix printer

using with Zinc 58
errata

overview of 55

error 140
defined in ZIL_FILE 30
description of 36
checking 140

ERROR_ACCESS
description of 32

ERROR_NAME
description of 32

ERROR_NONE
description of 32

ERROR_NULL_STRING
description of 32

ErrorMessage() 98
event

flow 96
interpretation 100
receiving in a window 168
user-defined 168
user-defined close 218

event flow
bottom-up 96
NEXTSTEP 96, 97
top-down 96

EventManager 96,168,218
using to monitor system resource 215

event map table 101
event queue 96, 168,226
Event() 100,102,126,162,186,218

selecting mouse cursor images with 199
using to redisplay a new item in a list 162
using with UIW_IMAGE 18, 22

event.data 137
event.rawCode 137
eventtext

deallocating 51
EVENT_TYPE 98
eventManager 149
eventMapTable 100
events

example of using programmatically 49
interpreting 100
open and print document 48

example
LSTITM 110

exception handling 81
with the Borland compiler 225

exitFunction
definition of 60

export
using Zinc Designer to files 144

F
field

invalid 168
FILEEDIT 125
Finish 232
Finland 233
fixed-width font 94
flag

changing at run time 155
flags

how to use 105
FlagSet() 118

supplemented with inline functions 41
FlagsSet() 118

using multiple functions instead of 41
font 89,90

changing for object 88
GFX 90
Motif 92
on buttons 195
OS/2 89
variable 91

font table 196
initializing with fonts 196

Font() 88
FontRec

changed to FontInfo 58
fonts

changing object 88
fontTable 88, 89, 90

fixed-width fonts 94
GFX 90
OS/2 89

France 233
French 232
French Canada 233

G
~pnonn.cpp 118
GB 2312 230
General Protection Fault 225
general protection fault 225
geometric objects

displaying 210
Geometry

notebook page
selecting relative constraint in 70

geometry management
removing 152

Gennan 232
Germany 233
Get(161
Get() 164, 205

GetError(void)
definition of 28

Getting Started 110
errata in 67

GFX 90
GFX fonts 90
GpiLoadBitmap 121
Great Britain 233
Greece 233
Greek 231

H
handle

defined in ZIL_FILE 30
description of 36

heap size
minimum size for Macintosh 78

Hebrew 231
Help Editor 144
help system

integrating native with Zinc 237
help system

overview of 40
HELP INDEX 239
helpContext 239
horizontal list 161
HPP 131

I
I ACTIVATE SERVICE 149
I-GET BITMAP HEIGHT 209
(GET=BITMAP=WIDTH 209
I GET VALUE 159
(INITIALIZE_CLASS 166
LSET_REQUESTOR 149
IBM 5550 230
ICF_FLAGS

checking with inline functions 43
icons

checking with inline functions 43
IDE 81

Borland 81
Microsoft 83
Watcom for Windows 85

image
located in UIW IMAGE

member-variable of UIW_IMAGE 25
mouse cursor 122

Image Editor 144
grouping objects in 73

imageHeight 25
images

checking with inline functions 43
imageWidth 25

IMF_BACKGROUND 18, 22
description of 21,22

IMF FLAGS 25
checking with inline functions 43
definition of 18

IMF NO FLAGS 18
deScription of 21

IMF_SCALED 18,22
description of 21

IMF_TILED 18, 22
description of 21

imFlags
used in UIW_IMAGE 25

implementation
of UIW IMAGE 18
of ZIL_FILE 27

import
using Zinc Designer to 144

Index
using with help system 40

information requests
UIW TIME 64

Information() 149, 155, 166,205
Inheritance

ofUIW IMAGE 18
INITIALIZE CLASS 166

becomes I-INITIALIZE CLASS in 4.0 166
inline function 41 -
internationalization 227

eliminating 227
invalid field

forcing to be current 168
IsBackground(void) 18,23
ISO

character map tables 230
ISO 8859-1 150

tables 231
ISO_DIAL.CPP 90,91
IsScaled(void) 19, 23
IsTiled(void) 23

using with UIW_IMAGE 19
Italian 232
Italy 233

J
Japanese 231

DOS 230
OS/2 230

K
keyboard

mapping
gray keys in 69

KSC 5601 230

L
L BEGIN COpy DRAG 198

-description of is
L BEGIN MARK 102
L-BEGIN-MOVE DRAG 198

-descriptiOn of 75
L BEGIN SELECT 198
L-CONTINUE COPY DRAG 199

-description of 75 -
L CONTINUE MOVE DRAG 199

-description of 75 -
L CONTINUE SELECT 199
L=END_COPY-=,DRAG

description of 75
L END MOVE DRAG

-description of-75
L NEXT 96
L=SELECT 102,203,205,207,214
language

selecting a new 68
Length()

description of 33
LID 125
lifetime

of an object 166, 167
list

adding object at run time 197
columns 160
nth element within 161, 162
object added to a 166
redisplaying 162
removing an object from a 166
retrieving items from a 161

Lists
checking with inline functions 46

lists
forcing an item to remain current 169

LoadlmageFromApplication()
using with pathName 22

LoadlmageFromApplication(void) 20
description of 25

LoadlmageFromFile()
using with pathName 22

LoadlmageFromFile(void) 20
description of 25

loading derived object from .DAT 136
local control loop 98

implementing 98
location

of ZIL FILE definition 27
UIWj'MAGE definition 18

logical events
those generic to all platforms 53

LOGICAL PALETIE 118
LogicalEveDt() 101
LogicaIPalette() 119
loop

control 98
local 98
main 98
modal 98
while 99

LOOP_CANCEL 98,99
LOOP OK 99
LOOP=:WINDOW 98
LSTITM 110

M
Mac

file and edit menus in 76
Macintosh 164, 195,231

Clipboard 76
grouping objects on 70
keyboard mapping under 69
libraries in 73
Power Macintosh 78
restrictions using drag-and-drop under 49

Macintosh libraries
contents of listed in Writing Multiplatform

Programs 67
listed in Writing Multiplatform Programs 67
Mac_ZIL11 68

MAGIC NVMBER
using with .DAT file security 134

makefile
information about PharLap 286 228

map table
for events 101

MapPalette() 119
mappings

keyboard and mouse
under Macintosh 69

MapRGBColor()
used in VI MACINTOSH DISPLAY 57

maxColors - -
used in VI MACINTOSH DISPLAY 57

MDI - -
displaying children 208

MDI window 208
displaying 208

Member functions
of VIW_IMAGE 18, 22

protected 25
member variables

in ZAF MESSAGE WINDOW 66
VIW_IMAGE -

protected 25

memory
monitoring available 215

memory monitor 215
Menu items

checking with inline functions 44
Message Editor 144
message passing 96
MessageBox() 98
messages

during object's lifetime 166
operating environment-specific 97
Zinc-specific 97

METAGRAPHICS 223
MetaWINDOW 223
Mexico 233
Microsoft 77

IDE 83
MNIF_ABOVT

using with Macintosh 63
MNIF_FLAGS

checking with inline functions 44
mode

defined in ZIL FILE 30
description of 36

Motif 164, 195
DESQviewlX

stack size with 78
fonts 92
QNX

stack size with 78
mouse

cursor 122
mouse cursor

changing to drag image 47
setting image of

drag and drop 198
MOVE 201
move operations 201
MY_BTN.ZIP 136
myLanguage

in ZAF_MESSAGE_WINDOW 66

N
Netherlands 233
New() 136
NewFunction()

used with VIW_IMAGE 23
NEXTSTEP 195,231

file and edit menus in 76
Pasteboard 76
using VIW_IMAGE with 17

NMF_DECIMAL
was NMF_DIGITS 63

NMF DIGITS
changed to NMF_DECIMAL 63

NMF FLAGS
checking with inline functions 44
supplanted with inline functions 44

nonfield region
equivalent of in UIW_IMAGE 21
equivalent of with UIW_IMAGE 21

nonstatic function 216
NormalizePosition()

description of 52
NormalizeString()

description of 52
Norway 233
Norwegian 232
nth item 161
numberID 131
Numbers

checking with inline functions 44

o
O_DSP.CPP 89
object

adding to a list at run time 162
adding to list 162, 197
adding to the Window Manager 166
deriving

bar chart 186
in Zinc Designer 141

inserting into a list 197
messages 166
moving at run time 163
moving on a window 163
pointer to 168
reactivating on Macintosh 70
reading from a .DAT file

errors in 140
objectID 155
objects

dragging 198
dropping 198, 199
grouping on Macintosh 70

objectTable 25
using with UIW_IMAGE 24

Open()
definition of 29
description of 33

opening
implementing with S_OPEN_DOCUMENT 48

operating system
ISO name of current 62

operations
move 201

Opt+Tab
under Macintosh 69

OS/2 98, 164, 195
bitmaps under 120
fonts 89
stack size with 78
using bitmaps with 120
using UIW_IMAGE with 17

OSF/Motif 17
using UIW_IMAGE with 17

ownerdraw 195

p
p_stredit.znc 149
palette mapping 117
PALETTE.ZIP 117
palette.zip 119
paletteMapTable 119
parent

of an object 168
paste buffer 76
pathName

description of 36
defined in ZIL FILE 30
with UIW_IMAGE 22

patternTable
used in UCMACINTOSH_DISPLAY 57

pcx
using with UIW_IMAGE 17

persistence 141,206,227
eliminating 227
using with UIW_IMAGE 17
with UIW_IMAGE 23

PharLap
using with Zinc 228

PharLap 286 228
pointer 161
Poll() 215
portability

of UIW_IMAGE 18
of ZIL_FILE 27

POSIX
using with ZIL_FILE 36

PostScript
using with UCPRINTER 60

Power Macintosh
see Macintosh 78

PowerPak 32
crashing applications with

fixing 54
printing

implementing with S_PRINT_DOCUMENT 48
using dot-matrix printer 58
Zinc recommendations for behavior concerning 51

PRM_DOTMATRIX24 187
PRM_DOTMATRIX9 187
PRM_LANDSCAPE

environment variable 60
Programmer's Reference Volume One

errata in 55
Programmer's Reference Volume Two

errata in 62
Protected

members of UIW_IMAGE 20
protected

members of UIW_IMAGE 25
PfN INTERLEAVE FILL

used on UCMACiNTOSH_DISPLAY 58
PfN RGB COLOR

used on Macintosh 57
Public

description of UIW_IMAGE members 21
pull-down item

send flag 71
pull-down menu

appearing while editing window under Mac 70

Q
QuickDraw

used in UCMACINTOSH_DISPLAY 58

R
radio button

selecting 165
Read()

defined with ZIL_UNICODE 29
definitions of 29
description of 34

using with Unicode 35
record size

in UIW_TABLE 71
rectangle 210
region

drawing focus in 61
with IMF SCALED 21
with IMF=TILED 21

Relative constraints
checking with inline functions 44

relative constraints
in Zinc Designer 70

relative position
determines screen position 166

Rename()
definition of 29
description of 34

resolution
changing at run time 113

resource files
overview of using with UIW_IMAGE 17

resource monitor 215
rgbColorMap

used in UCMACINTOSH_DISPLAY 57
RLCF_FLAGS

checking with inline functions 44
RTTI options 81
run time 155

adding a list or object at 197
adding object to list 162, 197
changing flags 155
changing resolution 113
changing status 155
moving object 163
type information

with the Borland compiler 225

s
S 162
S_ADD_OBJECT 218
S_CLOSE 96, 103, 154, 166, 226

trapping the 103
S_CREATE 121, 158, 167
S_DEINITIALIZE 103,166,167
S_DISPLAY_ACTIVE 208
S_DRAG_COPY_OBJECT 199

description of 74
S_DRAG_DEFAULT 199,201

description of 75
S_DRAG_MOVE_OBJECT 199,201

description of 74
S_DROP_COPY_OBJECT 200

description of 75
S_DROP_DEFAULT 199,201

description of 75
S_DROP_MOVE_OBJECT 200, 201

description of 75
S_ERROR 199

description of 76
S_INITIALIZE 166, 167
S MDICHILD EVENT 154
S=NON_CURRENT 139, 146, 168,205,207,214
S_OPEN_DOCUMENT 48

how to use 50
S_PRINT_DOCUMENT 48

how to use 51
posting to print queue 51

S_REDISPLAY 117, 162, 208
S_SET_DATA 139,146,205,207,213
S_SIZE 117
S_UNKNOWN 199

description of 76
S_VSCROLL 159

screenID 166
Windows 237

scroll bar
default width and height of 64

ScrollEventO 158, 159
scrolling

UIW_TABLE 158
security

using with .DAT file 134
SEEK

type definition 28
Seek()

definition of 29
description of 34

SEEK FROM CURRENT
desCription of 32
using with Seek() 34

SEEK FROM END
desZription of 32
using with Seek() 34

SEEK FROM START
desCription of 32
using with Seek() 34

selecting a button 165
Service Manager 128
service.lib

building 148
services

directory 125
SetError()

definition of 29
Shift-JIS 230
Solaris

Japanese 231
Spain 233
Spanish 232
stack

allocating space on 54
recommend size with Zinc 78

status
changing at run time 155
changing on a flag or an object 155

STF FLAGS
checking with inline functions 45

Storage
checking with inline functions 45

storage
eliminating 227
limitations of with UIW_IMAGE 17
using UIW_WINDOW constructor 65

STREDIT.HPP 149
string

converting 8-bit to 16-bit 52
String Editor 148
STRING_FIELD 126

stringID 126
strings

checking with inline functions 45
Subtract()

virtualized 77
swapping bitmaps 209
Sweden 233
Swedish 232
SYF FLAGS

checking with inline function 45
supplanted with inline functions 45

system buttons
checking with inline functions 45

system events
those available to the user 53

T
table 137, 145, 206

displaying info in 145
navigating 203
record in a 205

table interaction 203
table record

number 138
TableRecordCallBack() 137
Tell()

description of 33
TESTl.CPP 132
TEST2.CPP 132
text 210

centered 195
changing font 88
exporting from .DAT file 129

text field
processing raw events with 100

TextFormat()
in UCPRINTER 60

thermo.zip 186
TIFF images

using with UIW_IMAGE 17
time

checking with inline functions 45
timer 218
title 164

subtracting from a window 164
TMF FLAGS

checking with inline functions 45
toggling buttons 156
toolbar 209
TrueToRelative()

description of 52
Turkish 231
types and constants

ofUIW_IMAGE 21

U
UCAPPLICATION

argc and argv 55
UI_CONSTRAINT 152
UCDISPLAY

Text 56
left and right in 56

using VirtualGet() and VirtualPut() with 56
UI_ELEMENT 197
UI_EVENT_MANAGER

using DeviceState() 56
UI_GEOMETRY_MANAGER 152

pixel and minicell coordinates in 56
UI_GRAPHICS_DISPLAY 88
UI_HELP_CONTEXT 238
UI_HELP_STUB 237
UCHELP_SYSTEM

SetLanguage 57
UCLIST

Add() 57
Add() and Subtract() in 77

UI_MACINTOSH_DISPLAY
FontRec 58
MapRGBColor() 57
maxColors 57
pattemTable 57
Pm INTERLEAVE FILL 58
Pm=RGB_COLOR-57
rgbColorMap 57

UI_MSC_DISPLAY
using with Microsoft conpiler 77

UI_PALETTE_MAP 119
UI_PRINTER

BeginPage() 59
BeginPrintJob() 59
dot-matrix printer support 58, 187
EndPrintJob() 59
how to print documents with 58
using UI_PRINTER 58
using with S_PRINT_DOCUMENT 51

UCREGION 110,211
UCRELATIVE_CONSTRAINT 60
UI_SCROLL_INFORMATION 159
UCSTORAGE_OBJECT_READ_ONLY

see ZIL_STORAGE OBJECT READ ONLY 69
UI_WCC_DISPLAY - - -

using with Watcom compiler 77
UI_WINDOW_MANAGER 103

adding print functionality to 51
misspelled as UI_WINDOW_MANGER 67

UI_WlNDOW_OBJECT 88,96,100,110,117,186
DrawFocus() 61
helpSystem 239

UID_TIMER 218

UIF_FLAGS
type definition of 28
using in place of UIF_STATUS 155

UIS_BINARY 28
description of 31

UIS_COPY 28
description of 31

UIS_CREATE 28
description of 31

UIS_FLAGS
checking with inline functions 45

UIS_OPENCREATE 28
description of 31

UIS_READ 28
description of 31

UIS_READWRITE 28
description of 31

UIS_TEMPORARY 28
UIS_TEXT 28

description of 31
UIW_BIGNUM

infonnation requests in 62
NMF_SCIENTIFIC flag in 62

UIW_BUTTON 141
bottom edge of 63
toggling appearance of 63
toggling behavior in 62

UIW_COMBO BOX 161
virtualized AddO and SubtractO in 77

UIW_DATE
infonnation requests 63

UIW_EDIT_STRING 150
UIW_ELLIPSE 210
UIW_GEOMETRY_OBJECT 210
UIW_GROUP 101, 118, 156
UIW_ILl_LIST 156,161

virtualized AddO and SubtractO in 77
UIW_IMAGE

constructing 22
creating persistent object in 24
destroying 22
overview of 17

UIW_POP_UP_ITEM
MNIF_ABOUT

using with Macintosh 63
UIW_POP_UP_MENU 156

virtualized AddO and SubtractO in 77
UIW PULL DOWN MENU

virtualizedAddO aDd SubtractO in 77
UIW_REAL

flags in 63
UIW_SCROLL_BAR

default width and height 64

UIW STATUS BAR
adding objects to 64
virtualized AddO and SubtractO in 77

UIW_STRING 126
inheritance of 55

UIW_SYSTEM_BUTTON
using with Macintosh 64

UIW_TABLE 138, 145, 146,203,205
building with persistence 64
DataSet() 71
DeleteRecord() 213
edit mode 203
features of 71
InsertRecord() 213
manipulating visually 72
scrolling more than 32767 records in 158
using with a database 219
using with third-party database 213

UIW_TABLE_RECORD 203,204,205 207
UIW_TEXT 204 '
UIW TIME

information requests 64
UIW_VT_LIST 156, 161

virtualized AddO and SubtractO in 77
UIW_WINDOW 156,161,168,212,218

virtualized Add() and Subtract() 77
Unicode 150

character map table 230
China 233
eliminating 227
Greek 232
Japan 233
Japanese 232
Korea 233
Korean 233
Taiwan 233
using with NormalizeString() 52

Unicode tables 230
UNICODE.DAT 230

decreasing size of 230
United States 233
Unlink()

definition of 29
description of 33

US CP 437 230
user functio 205
userfunction 216

using as member of a class 216
using with drag-and-drop 199

user functions
using those that are members of a class 216

userFunction 216
userObject 168
userTable 25

using with UIW_IMAGE 24

V
validation

of a field 168
VALIDT

description of 68
vertical list 161

columns in a 160
deriving a new class with columns 160
with buttons 195

vertical list with buttons 195
VirtuaIGet() 110, 120

using with UCDISPLAY 56
VirtualPut() 110

using with UCDISPLAY 56
Visual C++ 83

W
Watcom 77
Watcom IDE for Windows 85, 111, 129, 134, 152,

157,158,170,175,223
window 161, 164

closing an MDI child 154
deriving a 212
displaying temporarily at startup 218
how to close a 154

Window Editor 144
\\?ndow Manager 96, 103, 166,218
wmdow object

how to use 72
actions

checking with inline functions 46
windowID 101
windowManager 98, 122 154 215 237
windowManager- 198 ' , ,
Windows 98, 164, 195

ANSI/Latin I 231
Arabic 231
argc and argv in UCAPPLICATION 55
Cyrillic 231
Eastern Europe 231
fixed-width fonts 94
Greek 231
Hebrew 231
Japanese 230
stack size with 78
Taiwan 230
Turkish 231
using help system with Zinc applications 237
Watcom IDE 85

windows
without titles 164

WinDrawBitmap 120, 121
WinGetPS 120, 121
WinHelp() 239

WinMessageBox() 98
WNF_AUTO_SELECT 165
WNF_FLAGS

checking with inline functions 46
WNF SELECT MULTIPLE 156
WOAF_ACCEPfS_DROP 199,201,202

description of 74
WOAF_COPY_DRAG_OBJECT 201,202

description of 74
WOAF_DRAG_OBJECT 202
WOAF_FLAGS

checking with inline functions 46
WOAF_MDCOBJECT

setting 65
WOAF_MOVE_DRAG_OBJECT 201

description of 74 .
WOAF_NO_DESTROY 167
WOF_FLAGS

checking with inline functions 46
WOF_NO_ALLOCATE_DATA 138, 139, 145,213
WOF_NON_FIELD_REGION

cleared during construction of UIW_WINDOW 65
WOF_PIXEL

with VI_WINDOW_OBJECT 61
WOS_FLAGS

checking with inline functions 47
WOS_GRAPHICS 166
WOS_OWNERDRAW 110, 117
WOS_READ_ERROR 140
WOS_SELECTED 165
Write()

defmed with ZIL UNICODE 30
defmitions of 29-
description of 35

using with Unicode 36

z
Z ERROR
type definition 28

z_map.cpp 101
z_win2.cpp 101
ZAF MESSAGE WINDOW

member variabks in 66
new member variables 66

ZAF SERVICE MANAGER 149
ZAF=STRING_EDITOR 148, 149, 150
ZIL_BITMAP_HANDLE 25
ZIL_COLOR 211
ZIL_DECORATION_MANAGER

defaultOSName 61
ZIL_FARDATA 238
ZIL FILE

destroying a 33
ZIL_FILE()

creating a new file with 33
ZIL_I18N_MANAGER

defaultOSName 61
ZIL_ICHAR 146,238,239
ZIL_IMAGE_HANDLE 20
ZIL LANGUAGE MANAGER

defaultOSName -61
ZIL_LOAD 206

defmed in Zinc Designer 73
defming in UIW_IMAGE 23

ZIL_LOCALE_MANAGER
defaultOSName 62

ZIL_SCREENID 238
ZIL STORAGE OBJECT READ ONLY 239

used in UIW iMAGE 25 -
used with VIW_IMAGE 24

ZIL_STORAGE_READ_ONLY
used in UIW_IMAGE 24, 25
used with UIW IMAGE 24

ZIL_STORE -
defined in Zinc Designer 73
using with UIW_IMAGE 20

ZIL_UNICODE
if defined in ZIL_FlLE 30

Zinc
upgrading to 4.1 from earlier versions 175

Zinc 3.5
displaying MDI child windows in 208

Zinc 3.6
displaying MDI child windows in 208

Zinc Designer 125, 136, 137, 141, 143, 148,212,237
displaying information in a table created with 145
errata in 70
failing to launch 143
Image Editor 73
importing and exporting files with 144
integrated modules in 73
preferences

using to deselect Write CPP 141
relative constraints in 70
running in graphics mode 143
setting drag-and-drop with 198
text mode 143
using directory services with 125
Window Object option in 72

Zinc Designer 4.0
combining .CPP files created by 131

Zinc events
mapping to system events 49

Zinc libraries
rebuilding with PharLap 228

ZINC_PRINTER
environment variable in VI PRINTER 59

ZNC 143 -

 GNU Free Documentation License
 Version 1.3, 3 November 2008

 Copyright (C) 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
 <http://fsf.org/>
 Everyone is permitted to copy and distribute verbatim copies
 of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other
functional and useful document "free" in the sense of freedom: to
assure everyone the effective freedom to copy and redistribute it,
with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible
for modifications made by others.

This License is a kind of "copyleft", which means that derivative
works of the document must themselves be free in the same sense. It
complements the GNU General Public License, which is a copyleft
license designed for free software.

We have designed this License in order to use it for manuals for free
software, because free software needs free documentation: a free
program should come with manuals providing the same freedoms that the
software does. But this License is not limited to software manuals;
it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License
principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that
contains a notice placed by the copyright holder saying it can be
distributed under the terms of this License. Such a notice grants a
world-wide, royalty-free license, unlimited in duration, to use that
work under the conditions stated herein. The "Document", below,
refers to any such manual or work. Any member of the public is a
licensee, and is addressed as "you". You accept the license if you
copy, modify or distribute the work in a way requiring permission
under copyright law.

A "Modified Version" of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with
modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of
the Document that deals exclusively with the relationship of the
publishers or authors of the Document to the Document's overall
subject (or to related matters) and contains nothing that could fall
directly within that overall subject. (Thus, if the Document is in
part a textbook of mathematics, a Secondary Section may not explain
any mathematics.) The relationship could be a matter of historical
connection with the subject or with related matters, or of legal,
commercial, philosophical, ethical or political position regarding
them.

The "Invariant Sections" are certain Secondary Sections whose titles
are designated, as being those of Invariant Sections, in the notice
that says that the Document is released under this License. If a
section does not fit the above definition of Secondary then it is not
allowed to be designated as Invariant. The Document may contain zero
Invariant Sections. If the Document does not identify any Invariant
Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed,
as Front-Cover Texts or Back-Cover Texts, in the notice that says that
the Document is released under this License. A Front-Cover Text may
be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy,
represented in a format whose specification is available to the
general public, that is suitable for revising the document
straightforwardly with generic text editors or (for images composed of
pixels) generic paint programs or (for drawings) some widely available
drawing editor, and that is suitable for input to text formatters or
for automatic translation to a variety of formats suitable for input

to text formatters. A copy made in an otherwise Transparent file
format whose markup, or absence of markup, has been arranged to thwart
or discourage subsequent modification by readers is not Transparent.
An image format is not Transparent if used for any substantial amount
of text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain
ASCII without markup, Texinfo input format, LaTeX input format, SGML
or XML using a publicly available DTD, and standard-conforming simple
HTML, PostScript or PDF designed for human modification. Examples of
transparent image formats include PNG, XCF and JPG. Opaque formats
include proprietary formats that can be read and edited only by
proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the
machine-generated HTML, PostScript or PDF produced by some word
processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself,
plus such following pages as are needed to hold, legibly, the material
this License requires to appear in the title page. For works in
formats which do not have any title page as such, "Title Page" means
the text near the most prominent appearance of the work's title,
preceding the beginning of the body of the text.

The "publisher" means any person or entity that distributes copies of
the Document to the public.

A section "Entitled XYZ" means a named subunit of the Document whose
title either is precisely XYZ or contains XYZ in parentheses following
text that translates XYZ in another language. (Here XYZ stands for a
specific section name mentioned below, such as "Acknowledgements",
"Dedications", "Endorsements", or "History".) To "Preserve the Title"
of such a section when you modify the Document means that it remains a
section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which
states that this License applies to the Document. These Warranty
Disclaimers are considered to be included by reference in this
License, but only as regards disclaiming warranties: any other
implication that these Warranty Disclaimers may have is void and has
no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either
commercially or noncommercially, provided that this License, the
copyright notices, and the license notice saying this License applies
to the Document are reproduced in all copies, and that you add no
other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further
copying of the copies you make or distribute. However, you may accept
compensation in exchange for copies. If you distribute a large enough
number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and
you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have
printed covers) of the Document, numbering more than 100, and the
Document's license notice requires Cover Texts, you must enclose the
copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify
you as the publisher of these copies. The front cover must present
the full title with all words of the title equally prominent and
visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve
the title of the Document and satisfy these conditions, can be treated
as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit
legibly, you should put the first ones listed (as many as fit
reasonably) on the actual cover, and continue the rest onto adjacent
pages.

If you publish or distribute Opaque copies of the Document numbering
more than 100, you must either include a machine-readable Transparent
copy along with each Opaque copy, or state in or with each Opaque copy

a computer-network location from which the general network-using
public has access to download using public-standard network protocols
a complete Transparent copy of the Document, free of added material.
If you use the latter option, you must take reasonably prudent steps,
when you begin distribution of Opaque copies in quantity, to ensure
that this Transparent copy will remain thus accessible at the stated
location until at least one year after the last time you distribute an
Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the
Document well before redistributing any large number of copies, to
give them a chance to provide you with an updated version of the
Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under
the conditions of sections 2 and 3 above, provided that you release
the Modified Version under precisely this License, with the Modified
Version filling the role of the Document, thus licensing distribution
and modification of the Modified Version to whoever possesses a copy
of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct
 from that of the Document, and from those of previous versions
 (which should, if there were any, be listed in the History section
 of the Document). You may use the same title as a previous version
 if the original publisher of that version gives permission.
B. List on the Title Page, as authors, one or more persons or entities
 responsible for authorship of the modifications in the Modified
 Version, together with at least five of the principal authors of the
 Document (all of its principal authors, if it has fewer than five),
 unless they release you from this requirement.
C. State on the Title page the name of the publisher of the
 Modified Version, as the publisher.
D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications
 adjacent to the other copyright notices.
F. Include, immediately after the copyright notices, a license notice
 giving the public permission to use the Modified Version under the
 terms of this License, in the form shown in the Addendum below.
G. Preserve in that license notice the full lists of Invariant Sections
 and required Cover Texts given in the Document's license notice.
H. Include an unaltered copy of this License.
I. Preserve the section Entitled "History", Preserve its Title, and add
 to it an item stating at least the title, year, new authors, and
 publisher of the Modified Version as given on the Title Page. If
 there is no section Entitled "History" in the Document, create one
 stating the title, year, authors, and publisher of the Document as
 given on its Title Page, then add an item describing the Modified
 Version as stated in the previous sentence.
J. Preserve the network location, if any, given in the Document for
 public access to a Transparent copy of the Document, and likewise
 the network locations given in the Document for previous versions
 it was based on. These may be placed in the "History" section.
 You may omit a network location for a work that was published at
 least four years before the Document itself, or if the original
 publisher of the version it refers to gives permission.
K. For any section Entitled "Acknowledgements" or "Dedications",
 Preserve the Title of the section, and preserve in the section all
 the substance and tone of each of the contributor acknowledgements
 and/or dedications given therein.
L. Preserve all the Invariant Sections of the Document,
 unaltered in their text and in their titles. Section numbers
 or the equivalent are not considered part of the section titles.
M. Delete any section Entitled "Endorsements". Such a section
 may not be included in the Modified Version.
N. Do not retitle any existing section to be Entitled "Endorsements"
 or to conflict in title with any Invariant Section.
O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or
appendices that qualify as Secondary Sections and contain no material
copied from the Document, you may at your option designate some or all
of these sections as invariant. To do this, add their titles to the
list of Invariant Sections in the Modified Version's license notice.
These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains

nothing but endorsements of your Modified Version by various
parties--for example, statements of peer review or that the text has
been approved by an organization as the authoritative definition of a
standard.

You may add a passage of up to five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of the list
of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or
through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or
by arrangement made by the same entity you are acting on behalf of,
you may not add another; but you may replace the old one, on explicit
permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License
give permission to use their names for publicity for or to assert or
imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this
License, under the terms defined in section 4 above for modified
versions, provided that you include in the combination all of the
Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its
license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and
multiple identical Invariant Sections may be replaced with a single
copy. If there are multiple Invariant Sections with the same name but
different contents, make the title of each such section unique by
adding at the end of it, in parentheses, the name of the original
author or publisher of that section if known, or else a unique number.
Make the same adjustment to the section titles in the list of
Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History"
in the various original documents, forming one section Entitled
"History"; likewise combine any sections Entitled "Acknowledgements",
and any sections Entitled "Dedications". You must delete all sections
Entitled "Endorsements".

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other
documents released under this License, and replace the individual
copies of this License in the various documents with a single copy
that is included in the collection, provided that you follow the rules
of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and
distribute it individually under this License, provided you insert a
copy of this License into the extracted document, and follow this
License in all other respects regarding verbatim copying of that
document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate
and independent documents or works, in or on a volume of a storage or
distribution medium, is called an "aggregate" if the copyright
resulting from the compilation is not used to limit the legal rights
of the compilation's users beyond what the individual works permit.
When the Document is included in an aggregate, this License does not
apply to the other works in the aggregate which are not themselves
derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these
copies of the Document, then if the Document is less than one half of
the entire aggregate, the Document's Cover Texts may be placed on
covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form.
Otherwise they must appear on printed covers that bracket the whole
aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may
distribute translations of the Document under the terms of section 4.
Replacing Invariant Sections with translations requires special
permission from their copyright holders, but you may include
translations of some or all Invariant Sections in addition to the
original versions of these Invariant Sections. You may include a
translation of this License, and all the license notices in the
Document, and any Warranty Disclaimers, provided that you also include
the original English version of this License and the original versions
of those notices and disclaimers. In case of a disagreement between
the translation and the original version of this License or a notice
or disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements",
"Dedications", or "History", the requirement (section 4) to Preserve
its Title (section 1) will typically require changing the actual
title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense, or distribute it is void, and
will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license
from a particular copyright holder is reinstated (a) provisionally,
unless and until the copyright holder explicitly and finally
terminates your license, and (b) permanently, if the copyright holder
fails to notify you of the violation by some reasonable means prior to
60 days after the cessation.

Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.

Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, receipt of a copy of some or all of the same material does
not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the
GNU Free Documentation License from time to time. Such new versions
will be similar in spirit to the present version, but may differ in
detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number.
If the Document specifies that a particular numbered version of this
License "or any later version" applies to it, you have the option of
following the terms and conditions either of that specified version or
of any later version that has been published (not as a draft) by the
Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not
as a draft) by the Free Software Foundation. If the Document
specifies that a proxy can decide which future versions of this
License can be used, that proxy's public statement of acceptance of a
version permanently authorizes you to choose that version for the
Document.

11. RELICENSING

"Massive Multiauthor Collaboration Site" (or "MMC Site") means any
World Wide Web server that publishes copyrightable works and also
provides prominent facilities for anybody to edit those works. A
public wiki that anybody can edit is an example of such a server. A
"Massive Multiauthor Collaboration" (or "MMC") contained in the site
means any set of copyrightable works thus published on the MMC site.

"CC-BY-SA" means the Creative Commons Attribution-Share Alike 3.0
license published by Creative Commons Corporation, a not-for-profit

corporation with a principal place of business in San Francisco,
California, as well as future copyleft versions of that license
published by that same organization.

"Incorporate" means to publish or republish a Document, in whole or in
part, as part of another Document.

An MMC is "eligible for relicensing" if it is licensed under this
License, and if all works that were first published under this License
somewhere other than this MMC, and subsequently incorporated in whole or
in part into the MMC, (1) had no cover texts or invariant sections, and
(2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site
under CC-BY-SA on the same site at any time before August 1, 2009,
provided the MMC is eligible for relicensing.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of
the License in the document and put the following copyright and
license notices just after the title page:

 Copyright (c) YEAR YOUR NAME.
 Permission is granted to copy, distribute and/or modify this document
 under the terms of the GNU Free Documentation License, Version 1.3
 or any later version published by the Free Software Foundation;
 with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
 A copy of the license is included in the section entitled "GNU
 Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts,
replace the "with...Texts." line with this:

 with the Invariant Sections being LIST THEIR TITLES, with the
 Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other
combination of the three, merge those two alternatives to suit the
situation.

If your document contains nontrivial examples of program code, we
recommend releasing these examples in parallel under your choice of
free software license, such as the GNU General Public License,
to permit their use in free software.

